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Abstract

The generalization of neural networks is a central challenge
in machine learning, especially concerning the performance
under distributions that differ from training ones. Current
methods, mainly based on the data-driven paradigm such
as data augmentation, adversarial training, and noise injec-
tion, may encounter limited generalization due to model non-
smoothness. In this paper, we propose to investigate general-
ization from a Partial Differential Equation (PDE) perspective,
aiming to enhance it directly through the underlying func-
tion of neural networks, rather than focusing on adjusting
input data. Specifically, we first establish the connection be-
tween neural network generalization and the smoothness of
the solution to a specific PDE, namely transport equation.
Building upon this, we propose a general framework that intro-
duces adaptive distributional diffusion into transport equation
to enhance the smoothness of its solution, thereby improv-
ing generalization. In the context of neural networks, we put
this theoretical framework into practice as PDE+ (PDE with
Adaptive Distributional Diffusion) which diffuses each sample
into a distribution covering semantically similar inputs. This
enables better coverage of potentially unobserved distribu-
tions in training, thus improving generalization beyond merely
data-driven methods. The effectiveness of PDE+ is validated
through extensive experimental settings, demonstrating its su-
perior performance compared to state-of-the-art methods. Our
code is available at https://github.com/yuanyige/pde-add.

1 Introduction

The generalization of neural networks is a fundamental chal-
lenge in the field of machine learning. It refers to the ability of
neural networks to perform effectively under unobserved dis-
tributions, which may differ from those encountered during
the training process (Bousquet and Elisseeff 2002). Pursuing
superior generalization capability is essential as it ensures
model adaptability to diverse real-world scenarios, guaran-
teeing reliable predictions and decisions.

Existing approaches for improving generalization mainly
employ a data-driven paradigm (Emmert-Streib and Dehmer
2022), including data augmentation (Shorten and Khosh-
goftaar 2019), adversarial training (Madry et al. 2018), and
noise injection (Bishop 1995). In terms of implementation,
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Figure 1: Model trained on six training distributions and
evaluated on five corresponding test distributions. Model
performs best on each test distribution is highlighted in red.

they primarily enhance the training samples via manipulat-
ing the original input (Hendrycks et al. 2020; Madry et al.
2018) or transforming the hidden representations (Lim et al.
2022). However, such a data-driven paradigm usually cannot
guarantee reliable generalization capabilities on unobserved
distributions. Taking data augmentation as an illustration,
Fig. 1 shows that the model can only achieve satisfactory gen-
eralization performance when the training data is subjected
to augmentation similar to that of the testing data. Analo-
gous phenomena are also frequently observed in adversarial
training and noise injection. For instance, adversarial training
can improve generalization on adversarial examples but often
comes with the cost of performance on natural data (Tsipras
et al. 2019). Likewise, while injecting Gaussian noise can
enhance generalization in the face of common corruptions, it
risks o-overfitting (Klim, Maksym, and Nicolas 2022), i.e.,
overfitting to the particular Gaussian noise used in training.

The limited generalization capabilities of data-driven
paradigm is due to model irregularity (Wang et al. 2020), i.e.,
the function learned by the neural network is non-smoothness.
This may cause a problematic situation where semantically
similar samples are encoded distantly, resulting in incor-
rect predictions. To address the irregularity issue, several
approaches have been proposed to improve the smoothness
of models (Sokolic et al. 2017), which helps to tackle the dis-
tribution shift problem (Rodriguez et al. 2020). Among them,
Lipschitz continuity (Cisse et al. 2017) enforces smoothness
constraints on models through regularization or architectural
restrictions, e.g., gradient regularization (Drucker and Le Cun
1992) and spectral normalization (Miyato et al. 2018). How-
ever, such restrictions often come at the cost of expressive
power (Anil, Lucas, and Grosse 2019).
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In this paper, we go beyond the data-driven paradigm and
propose to investigate generalization from a Partial Differ-
ential Equation (PDE) (Arrigo 2017) perspective, aiming to
directly introduce the smoothness constraint into the underly-
ing function fn of neural network, rather than manipulating
input data. The feasibility of this perspective is rooted in the
intrinsic connection between neural networks and PDE (E
2017). PDE describes a function that satisfies differential re-
lationships, and neural networks can be regarded as a discrete
numerical difference solver of PDE. That is to say, the under-
lying function of a neural network can be considered as the
solution to PDE (Li and Shi 2017; Han, Jentzen, and E 2018).
From such perspective, we can leverage the vast prior knowl-
edge of PDE to constrain the underlying function of neural
network, thus encouraging the resulting neural networks to
exhibit specific desired properties, e.g., smoothness (Wang
et al. 2020), well-posedness (Haber and Ruthotto 2017), and
hyperbolicity (Eliasof, Haber, and Treister 2021).

The above fundamental connection inspires us to establish
the connection between neural network generalization and
the smoothness of PDE solution. Specifically, we initially
model the neural network as the solution of a specific type
of PDE, referred to as transport equation (TE) (Li and Shi
2017), which is often employed to describe the transporta-
tion of a quantity within a space. Then, a diffusion term is
introduced into the TE, which has been proven to smooth the
solution (Ladyzhenskaia, Solonnikov, and Ural’tseva 1968).
The core of such paradigm is this key question: What type of
diffusion term is appropriate for a neural network to achieve
effective generalization? To answer it, we propose a general
framework that introduces adaptive distributional diffusion
into transport equation to enhance the smoothness of its solu-
tion. Such diffusion ensures suitable smoothness by treating
the diffusion scope of each sample as a distribution that
should cover the potential semantically similar inputs, thus
improving generalization.

In the context of neural networks, we put this theoreti-
cal framework into practice as PDE+ (PDE with Adaptive
Distributional Diffusion, PDE-ADD) to achieve generaliza-
tion. Specifically, we introduce adaptive distributional dif-
fusion into the neural network, which performs diffusion
centered on each data point. The scope of each diffusion is
modeled as a distribution, determined adaptively by multiple
augmentations of the input. This enables better coverage of
potentially unobserved distributions and improves general-
ization beyond data-driven approaches. The effectiveness of
PDE-+ is validated on various distributions, including clean
samples and various common corruptions. The consistent
improvements demonstrate the superior performance of our
method over state-of-the-art methods.

Our main contributions include:

(1) A promising paradigm: we investigate generalization
from a Partial Differential Equation (PDE) perspective. To the
best of our knowledge, we are the first to achieve generaliza-
tion by establishing connections between the generalization
of neural networks and the smoothness of TE solutions.

(2) An innovative method: we propose an adaptive distribu-
tional diffusion term to incorporate smoothness into a neural
network and instantiate it as PDE+, enabling better cover-
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age of potentially unobserved distributions in training and
improves generalization compared to data-driven methods.
(3) Solid experiments: extensive experiments reveal PDE+
outperforms baselines across unobserved distributions, e.g.,
the improvements are up to 3.8% in Acc and 7.7% in mCE.

2 Related Work

In this section, we briefly review two lines of research that
close to our work: the generalization of neural networks
and differential equations based neural networks. Detailed
introduction of related works can be found in Appendix B!.

Generalization of Neural Networks. Current data-driven
methods encompass data augmentation, adversarial train-
ing, and noise injection. Data augmentation is a widely
adopted technique to enhance generalization, employing var-
ious strategies such as Mixup (Zhang et al. 2018)and Aug-
Mix (Hendrycks et al. 2020). Adversarial training is a robust
optimization approach for improving adversarial generaliza-
tion (Goodfellow, Shlens, and Szegedy 2015) while poten-
tially compromising non-adversarial generalization (Tsipras
et al. 2019; Zhang et al. 2019). Notable works in this area in-
clude PGD (Madry et al. 2018), TRADES (Zhang et al. 2019),
and RLAT (Klim, Maksym, and Nicolas 2022). Noise injec-
tion introduces noise into input data (An 1996), activations
(Gulcehre et al. 2016), or hidden layers (Camuto et al. 2020),
whose noise magnitude can be sensitive and susceptible to
overfitting (Klim, Maksym, and Nicolas 2022). Lipschitz con-
tinuity is often used to ensure model generalization (Drucker
and Le Cun 1992; Miyato et al. 2018; Liu et al. 2023), but
its strict constraint can restrict a model’s capabilities (Anil,
Lucas, and Grosse 2019). Our method diverges from above
approaches, as we directly constrain the smoothness of the
neural network’s underlying function rather than fitting a fi-
nite set of input data like data-driven methods. Although our
method shares the concept of smoothness with Lipschitz, it
avoids compromising the model’s capabilities.

Differential Equations based Neural Networks The con-
nection between continuous dynamical systems and residual
neural networks (He et al. 2016) is initially established in (E
2017). Subsequently, numerous studies have delved into the
relationships between various neural network architectures
and different types of differential equations (Lu et al. 2018;
Li and Shi 2017; Sun, Tao, and Du 2018). Since then, re-
searchers have started to explore the beneficial properties of
differential equations to enhance neural networks (Wang and
Lin 1998; Li, He, and Lin 2020; Wang et al. 2020).

3 Generalization under PDEs with Adaptive
Distributional Diffusion

This section introduces the theoretical motivation and frame-
work behind our method. We begin by establishing connec-
tions between PDEs and neural networks, thereby transform-
ing the generalization of neural networks into the smoothness
of PDE solutions. Our innovative adaptive distributional dif-
fusion term is then introduced to enhance the smoothness of
solutions, which improves generalizability.

! Appendix can be found in this version (Yuan et al. 2023)
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3.1 Neural Network as the Solution of Transport
Equation

Partial Differential Equation (PDE) (Arrigo 2017) is an equa-
tion containing an unknown function u of multiple variables
and its partial derivatives. The connection between PDEs and
neural networks has been discussed in (E 2017), where neural
networks could be interpreted as a numerical scheme to solve
PDEs. Such connection allows us to take advantage of PDE,
such as the properties of solution as well as the numerical
schemes, to obtain a better neural network. In this section,
we make use of the transport equation (TE), which is one
special form of PDE, to interpret neural networks.

TE describes the concentration of a quantity transport in a
fluid (Pogodaev 2016; Munson et al. 2006) (Eq. (1)), which
is suitable to model the feature transformation of data flow.
This observation has also been discussed in (Li and Shi 2017,
Sun, Tao, and Du 2018)

du

5 ey

where u(x, t) denotes a function of concentration, which can
be viewed as the underlying function of a neural network.
t € (0,1) denotes time, serving as the continuation of net-
work layers. x € R? denotes a variable in space, serving as
the variable for data representation in terms of neural net-
works. V represents gradient, and F'(x, 8(t)) is the velocity
field, serving as the continuation for network structures and
parameters. In terms of neural networks, the changing of
representation through layers can be viewed as a transport
process over time. The representation is transported through
each layer, where the parameters of each layer serve as a
velocity field aiming to make changes to the sample represen-
tations and transport it to the next layer. Given the parameters
of all layers, the representation transforms from the original
input to final output, acting like a transport of data flow as
illustrated in the top subfigure of Fig. 3.

u(x, t) represents the value obtained by transporting the
variable x through a series of F'(x,0(t)) from time ¢ until
the terminal. The terminal condition of TE is enforced at
t = 1as u(x,1) = o(x), where o(x) denotes the output
function such as softmax (Gold, Rangarajan et al. 1996). Let
% denote the input feature. The original data-label pair (X, y)
is given at ¢ = 0, and an optimal network u* should exactly
maps X to y, i.e., u* (X,0) = y. Obtaining the network is
equivalent to solving the numerical solution of TE at £ = 0 as
u(x, 0), where the method of characteristics (Sarra 2003) can
be effectively employed. The main idea of the characteristics
is to solve PDE via an ordinary differential equation (ODE)
defining the characteristic curves of original PDE, which is
shown in Eq. (2). Then the solution of PDE can be acquired
by following these curves in Eq. (3).

(x,t) + F(x,0(t)) - Vu(x,t) =0

dx(t) = F(x(t), 6(1)) dt @
1
u(x,O):o(x+ / F(x(t),O(t))dt) 3)
0
To solve Eq. (2) numerically, we adopt Euler

method (Butcher 2003, Chapter 2) as shown in Eq. (4),
which recovers the formulation of ResNet (He et al. 2016).
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le{1,..., L} is the network layer index, serving as a discrete
slicing to continuous time ¢. h; and 0; are representations
and parameters at layer [, respectively.

hy = f(h,0,) + by 4)
L

u(%,0) = o(x+ > f(1,,6))) ©)
=1

Overall, neural network, particularly ResNet can be seen as
a solution to TE. This connection lays a solid foundation to
achieve desired properties of neural networks by constraining
the solution of TE.

3.2 Improving Generalization via Enhancing the
Smoothness of TE Solution

Smoothness has been demonstrated to be strongly linked to
generalization, as it facilitates models to generalize beyond
the training distribution (Rosca et al. 2020; Rodriguez et al.
2020), enhances model robustness against small perturba-
tions (Cisse et al. 2017; Sokolic et al. 2017), and plays a
significant role in generalization quantization (Jin et al. 2020;
Ng et al. 2022) as well as uncertainty estimation (Van Amers-
foort et al. 2020; Liu et al. 2020). Building upon the insights,
we propose to achieve generalization from the perspective of
PDEs by modeling neural networks as solutions to PDEs and
transforming the generalization goal of neural networks into
smoothness goal of a solution to PDEs.

To enhance the smoothness of solution u(x, t), we leverage
knowledge from PDE field to introduce a diffusion term (La-
dyzhenskaia, Solonnikov, and Ural’tseva 1968) Au(x,t) into
TE as Eq. (6). The diffusion term corresponds to the Lapla-
cian, i.e., the second-order derivative with respect to x € R4,
as illustrated in Eq. (7). Here, A denotes the Laplacian oper-
ator, and o # 0 is a coefficient for the diffusive magnitude.

%(x, t)+ F(x,0(t)) Vu(x,t)+ %0’2~ Au(x,t) =0 (6)
Au = 9*u/0x? + 0%u/0z3 + - - - 4 9*u/0x? 7

Theorem 1 (Proved in Appendix C.1) Given TE with dif-
Susion term (Eq. (6)) with terminal condition u(x,1)
o(x), where F(x,0(t)) be a Lipschitz function in both x
and t, o(x) be a bounded function. Then, for any small §,
lu(x+6,0)—u(x,0)| < C(@)a holds for constant o« > 0
ifo <1, where ||0||2 is the {2 norm of 0, and C is a constant
that depends on d, ||o|| oo, and || F'|| Lo,

Corollary 1 (Proved in Appendix C.2) Generalization Er-
ror (GE) of model u(x, 0) trained on training set s is upper
bounded by diffusion o. For any € > 0, the following inequal-
ity holds with probability at least 1 — €. For more details
about the notations used, please refer to Appendix C.2.

GE (u(x,0),sx5) < C-L (@) +M\/2Kln2

T 2In(1/e)
N

®

Typically, o is chosen as a fixed scalar, imposing an uni-
form diffusion scale across entire data space (Wang et al.
2020). Fixed diffusion brings smoothness into TE solution,
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Flgure 2: Solutions to 2D TE differs in the diffusion . The
upper displays function surface, the lower exhibits its contour,
with samples showing its true and predicted label.

but it neglects structure of solution for different x. It can-
not achieve an optimal diffusion scale for network across
data space, as different locations require diverse diffusion
scales based on their distance to other samples or class bound-
aries. To intuitively introduce the influence of diffusion, we
illustrate the solution surface of 2D transport equation under
different diffusion terms in Fig. 2. No diffusion in (a) results
in highly irregular surface. Fixed diffusion with a small coef-
ficient in (b) imposes insufficient smoothness for same class.
Larger coefficient in (c) imposes over-smoothness for dif-
ferent classes. It reveals that a fixed coefficient can result in
over-smoothness which diminishes variability, or insufficient
smoothing. Thus, a new diffusion term is required to improve
generalizability.

3.3 Adaptive Distributional Diffusion for
Generalization

With concerns draw above, a crucial question arises:

What type of diffusion term is appropriate for a neural
network to achieve effective generalization?

To address it, we claim that a good diffusion term for
generalization should satisfy two goals: “Adaptive” and “Dis-
tributional”. “Adaptive” stands for that the diffusion varies
in magnitude for every point across the entire space. “Distri-
butional” treats the diffusion scope of each point as a distri-
bution. For any input from the data space at any time step,
the distribution should only encompass the inputs that are
potentially similar to the central point in semantics. This
mechanism allows for better coverage of potential unseen
distributions and improved generalization compared to data-
driven methods.

To achieve the above goals, we propose an Adaptive Dis-
tributional Diffusion (ADD) term and introduce it into TE
as presented in Eq. (9). Rather than using a fixed scalar, our
term incorporates a coefficient function G(x, ¢(t)) that takes
sample x as input and outputs its diffusion scale, exhibiting
different diffusion properties, based on the parameters ¢ at
each time step ¢. The benefits of the term can be illustrated in
Fig. 2(d), which allows for different smoothing effects across
space in accordance with the principle of “adaptive”. Mean-
while, data spaces with similar semantics or within the same
class can achieve smoothness in their scope, and those within
different classes can avoid over-smoothness and maintain
discrepancy. These satisfy the principle of “distributional”.

ou

t L (1) Au(x,t) =0

®

—(x,t)+ F(x,0(t)) - Vu(x,t) + %G(x
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3.4 Deriving Neural Network from Transport
Equation with ADD

Introducing adaptive distributional diffusion into TE as
Eq. (9) can realize the smoothness of the solution of TE,
and thus encourage the resulting neural networks to exhibit
generalization. In the following, we solve TE with ADD
(Eq. (9)) to derive its corresponding neural network.

Theorem 2 (Proved in Appendix C.3) TE with adaptive
distributional diffusion term (Eq. (9))can be solved using
the Feynman-Kac formula (Kac 1949), The result is shown
in Egs. (10) and (11), where B, represents the Brownian
motion (Uhlenbeck and Ornstein 1930).

u(x,0) = E[o(x(1)) | x(0) = ¥] (10)
dx(t) = F(x(t),0(t)) dt + G(x(t), (1)) - dBy  (11)
The result is a conditional expectation with respect to
the initial value problem of stochastic differential equation
(SDE, (Kloeden et al. 1992)) in Eq. (11). To obtain the fi-
nal functional form of our neural network, we adopt the
Euler—Maruyama method (Gelbrich and Romisch 1995) to

compute the solution of SDE numerically as follows.

u(x,0) =Efo(hr) [ he = X]

hypy =hy + f(h, 0;) + g(hy, @) -

4 PDE+ : An Neural Network Instantiation

This section is for the instantiation of our framework PDE+:
PDE with Adaptive Distributional Diffusion (PDE-ADD).

~No 12

4.1 Opverall Architecture

PDE+ is a neural network instantiation of PDE solution for-
mulated in Eq. (12), where h; 1 = h; + f (h;, 8;) is the
formulation for residual block, and g(hy, ¢;) - N(0,1) is
implemented as our adaptive distributional diffusion block,
dubbed as ADD block. As shown in Fig. 3, the residual block
is denoted as fg, parameterized by 6;, where ! € {1,..., L}
denotes the block index. ADD block is denoted as g, param-
eterized by ¢,;. The overall architecture of PDE+, denoted
as fn07 ® is the composition of L blocks, where each block
contains a residual block followed by our ADD block.

4.2 Adaptive Distributional Diffusion Block

Fig. 3 illustrates the structure of ADD block, which takes
the output from residual block h; as input, and outputs the
scale o; for diffusion (Eq. (13)). Then a reparameterization
trick (Kingma and Welling 2013) of h; and o; under the
prior of Gaussian distribution is conducted to obtain the final

output by (Eq. (14)).
o =g, () (13)
hy =h; + 0o, - N(0,1) (14)

As introduced in Section 3.3, the principle of ADD blocks
is “adaptive” and “distributional”. “Adaptive” is implemented
by replacing the fixed diffusion with the learnable o;. “Distri-
butional” means that for any input from the data space at any
given time step, the diffusion scope should encompass the po-
tential neighbors that exhibit semantic similarity. To achieve
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Figure 3: Motivation and architecture of PDE+, the upper illustrates our motivation of solving transport equation with adaptive
distributional diffusion (ADD) to derive the functional form of neural network. The lower is the neural network instantiation,
which comprises a series of blocks that contain a residual block followed by an ADD block. The architecture of the ADD block
is enclosed grey frame on the right. The learning objectives are enclosed in two blue frames.

this, semantically similar samples are utilized as guidance.
Define training dataset sy containing IV training samples of
C classes sy = {(Xn,yn) | » € 1,2... N}. Let X% repre-
sent samples that share semantic similarity with x,,, such as
augmented samples, style-transferred samples, or adversarial
attack samples. We hope the diffusion distribution scope of
Xy, Can cover Xy .

To achieve this, we let the original samples pass through
the whole block with both residual block and ADD block, and
the semantically similar samples only go through residual
block without diffusion. Denote I as the identity function
where I(x) = x. The [-th layer’s representation of original
samples and their semantically similar counterparts can be
formulated as... Egs. (15) and (16), .

h; = (99, 0 (fo,_, +1) - 0 gg, o (fo, +1))(x) (15)

= ((fo,., + D)oo (fo, +1))(x*) (16)

For every block, the diffused hidden representation h;
can be regarded as a sampling from a Gaussian distribution
N (hy, o), where the representations of semantically similar
samples h{* should be covered. This objective can be imple-
ment via maximizing the probability of h{ under N (h;, o)
denoted as py (h{ | h;), which is equivalent to minimizing its
negative log-likelihood. We named such objective as diffusion
distribution coverage objective shown in Eq. (17), guiding
only the parameters of diffusion blocks ¢.

L
m(;an Zlogqul h{ | hy)
N L 2
log g4, (h;) 7’ a7
o 2 2 |losge (he) + s

n=1[=1
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From a distributional point of view, the intuitive inter-
pretation of our adaptive distributional diffusion is treating
each sample as one distribution whose scope includes its se-
mantic similar samples. Under such view, the basic residual
block without diffusion treats each sample as a Dirac dis-
tribution (Cohen and Kirschner 1991) and our ADD block
transforms it into Gaussian distribution. To broaden the distri-
bution and enhance generalization, we advance from a single
Gaussian to a Gaussian mixture (Reynolds et al. 2009), as it
is a universal approximator of densities (Goodfellow, Bengio,
and Courville 2016). Notably , we do not model the Gaussian
mixture distribution directly. Rather, we allow both the origi-
nal sample and its augmentations to diffuse simultaneously,
effectively acting as different Gaussian centers. As a result,
the superimposition of these multiple single Gaussians man-
ifests as a mixed Gaussian from a macroscopic perspective.
This implementation can be easily achieved in one line of
code, as shown in Algorithm 1(Line 12) from Appendix D.

4.3 Learning Objectives

PDE-+ consists of two learning objectives: a diffusion distribu-
tion coverage objective for every ADD block (Eq. (17)) and
a primary task objective for the entire network. The primary
task objective ensures the correctness of learning represen-
tations under diffusion. Define the output of x,, throughout
the whole model fn as hn L = fng ¢(xn). The primary task
objective is shown in Eq. (18), where o, stands for output
layer parameterized by 1. The samples diffused throughout
fn to obtain a classification probability via softmax, guiding
the learning of all parameters, including residual blocks 6,
diffusion blocks ¢ and output 1) via cross-entropy. The algo-
rithmic pseudocode for both training and testing phase can
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CIFAR-10(C)

CIFAR-100(C)

Tiny-ImageNet(C)

Method Clean Corr. Seve. All  Corr. Seve. 5 Clean Corr. Seve. All  Corr. Seve. 5 Clean Corr. Seve. All  Corr. Seve. 5
Acc (MAcc (1) mCE () Acc (1mCE (J)Acc (1)Acc (1) mCE (1) Acc (1)mCE (})Acc ()Acc (1) mCE ({) Acc (1)mCE ({)
Std ERM 95.35 74.63 100.00 57.19 100.00 77.71 49.27 100.00 33.18 100.00 54.02 25.57 100.00 15.54 100.00
Lip GradReg 93.64 77.62 9629 6233 9152 73.80 52.16 9695 37.33 9449 52.01 2920 95.13 1991 94.86
EnResNet 83.33 74.34 13798 66.87 63.72 67.11 49.28 103.61 40.24 83.56 49.26 2583 100.18 19.01 96.55
NI RSE 95.59 77.86 94.12 63.66 89.08 77.98 53.73 94.10 38.03 92.88 53.74 27.99 96.81 18.92 96.11
NFM* 95.40 83.30 - - - 79.40 59.70 - - - - - - - -
Gaussian 92.50 80.46 100.03 68.08 87.22 71.87 5424 9834 4177 89.81 4889 3292 90.48 24.57 89.56
Mixup*  95.80 80.40 - - - 79.70 54.20 - - - - - - - -
DA DeepAug* 94.10 85.33 64.63 77.29 60.05 - - - - - 54.90 - - - -
AutoAug 95.61 8537 61.74 75.12 62.07 7634 58.72 83.12 4538 82.84 52.63 35.14 87.67 2536 88.54
AugMix 95.26 86.24 60.44 76.06 59.96 77.11 6193 77.51 4899 7752 52.82 37.74 84.06 28.66 84.69
PGD,  93.52 82.17 86.53 70.10 78.20 71.78 55.03 93.49 42.04 88.17 49.94 32.54 90.65 2347 90.63
AT PGDy,, 9391 83.07 81.06 70.97 75.17 7250 56.09 91.65 42.82 87.33 51.08 33.46 89.37 24.00 89.92
RLAT 93.23 83.67 80.98 72.73 7259 71.10 56.54 9198 4427 86.24 50.24 33.13 89.83 24.46 89.47
RLATAm 9473 8828 55.60 80.37 51.56 75.06 62.77 7738 51.60 7424 5129 3792 83.69 29.05 84.17
PDE+ 95.59 89.11 48.07 82.81 4497 78.84 65.62 69.68 54.22 69.43 53.72 3941 81.80 30.32 82.68

Table 1: Comparisons of PDE+ and baselines on CIFAR-10(C), CIFAR-100(C) and Tiny-ImageNet(C) based on ResNet-18. The
corruption is evaluated under all severity level and the severest level. The best result is highlighted in boldface.The abbreviations
means Standard (Std), Lipschitz (Lip), Noise Injection (NI), Data Augmentation (DA), Adversarial Training (AT).

Source Method Target Domain Av
Domain Photo  Art Cartoon Sketch
ERM - 2133 2231 2835 24.00
Photo  Augmix - 2690 2410 27.05 26.02
PDE+ - 2543 2858 37.69 30.57
ERM 4754 - 3451 3448 38.85
Art Augmix 51.37 - 4206 3675 43.40
PDE+ 5311 - 4390 41.28 46.10
ERM 4359 29.78 - 33.87 3575
Cartoon  Aygmix 45.74 30.81 - 3731 37.96
PDE+ 48.68 33.00 - 40.01 40.57
ERM 1874 16.16 2526 - 20.05
Sketch  Augmix 2628 2651 4534 - 32.72
PDE+ 30.05 30.90 45.43 - 3547

Table 2: Single source domain generalization comparisons
of PDE+ and baselines on PACS datasets based on ResNet-
18 (He et al. 2016). The best result is highlighted in boldface.

be found in Algorithms 1 and 2 in Appendix D.
min E —1lo <
0,¢,% (x,y)~sn 2 DP6,¢,9 (y | )
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S Experiments

In this section, we empirically evaluates PDE+ through the
following questions. Due to the space limitations, more com-
prehensive experiments including full results on corruptions
and diffusion scale analysis are provided in Appendix E.

* (Q1) Does PDE+ improve generalization compared to
SOTA methods on various benchmarks?
(Q2) Does PDE+ learns appropriate diffusion distribu-
tion coverage?
(Q3) Does PDE+ improve generalization beyond ob-
served (training) distributions?

(18)

Yn

Experiments Settings A brief introduction of datasets,
baselines and metrics is provided here, details can be found in
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Appendix F. (1) Datasets: Our experiments primarily focus
on two types of datasets: (i) The original and 15 shift corrup-
tion distributions provided by CIFAR-10(C), CIFAR-100(C)
and Tiny-ImageNet(C) (Krizhevsky, Hinton et al. 2009; Le
and Yang 2015; Hendrycks and Dietterich 2019). (ii) The
PACS dataset (Li et al. 2017) encompasses four different do-
mains: photo, art, cartoon, and sketch. (2) Baselines: we con-
sider the representative and SOTA methods as baselines: stan-
dard training; Lipschitz continuity based gradient regulariza-
tion (Drucker and Le Cun 1992); Noise injection based meth-
ods, including EnResNet (2020), RSE (2018), NFM (2022);
Data augmentation based methods, including Gaussian noise,
Mixup (2018), DeepAug (2021), AutoAug (2019) and Aug-
Mix (2020); Adversarial training based methods, including
PGD (2018) and RLAT (2022). (3) Metrics: Accuracy is
adopted as the main evaluation metric. Especially, for vari-
ous corrupted distributions, mCE (Hendrycks and Dietterich
2019) is adopted for two severity levels: severity across all
levels and the severest level 5. More comprehensive results
for other severity and metrics are in Appendix E. (4) Others:
According to Section 4.2, the semantically similar samples in
PDE+ are generated using AugMix (Hendrycks et al. 2020),
a widely adopted data augmentation strategy that combines 7
distinct types of augmentations. It is important to note that
we avoid overlap between these augmentations and the test
distributions for most experiments.

5.1 Q1: PDE+ Outperforms SOTA on Benchmarks

Table 1 illustrates the results of PDE+ on CIFAR10(C), CI-
FAR100(C) and Tiny ImageNet(C) compared to baselines. “*”
indicates that we reuse the results from Erichson et al. (2022)
and Klim, Maksym, and Nicolas (2022). “-” indicates that
this setting was not included in the paper. On original datasets,
PDE-+ achieves better performance than ERM, indicating that
our diffusion does not obtain O.0.D. generalization at the cost
of damaging performance on the original training distribu-
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Figure 4: The heatmap of performance on neural networks
with fixed diffusion (FixDiff) and PDE+ under fair compari-
son. The FixDiff scale is increasing from 0 to 2.5. The y-axis
denotes 19 different test data distributions on CIFAR-10-C.

tion. The test distributions in corrupted datasets are different
from training ones, which can be used to verify the effective-
ness of generalization. Compared to numerous representative
baselines across multiple categories, PDE+ achieves the best
performance with respect to Acc and mCE on corruptions
at the severest level and across all levels. The improvements
are up to 3.8% in Acc and 7.7% in mCE. Such significant
improvements make PDE+ stand out from other approaches
that struggle to consistently improve performance across both
original and diverse shifted distributions.

Table 2 illustrates the results of PDE+ on PACS datasets.
When training on a single source domain and testing on the
remaining 3 domains, PDE+ surpasses the baselines across
all splits. This validates its efficacy not only in handling
corruption data, where distribution shifts may be relatively
close, but also demonstrates effectiveness with cross-domain
data where distribution shifts can be significantly larger.

5.2 Q2: PDE+ Learns Appropriate Diffusion

This experiment is devoted to evaluating whether our pro-
posed approach, whose diffusion scale is guided by aug-
mented samples, can learn the appropriate diffusion scope.
For a fair comparison, we do not conduct diffusion for aug-
mented samples and only use augmented samples for the
diffusion coverage guidance of the original samples (PDE+
w/o aug). This experiment can be viewed as the ablation study
to evaluate if our learnable diffusion really works compared
to fixed-scale diffusion (FixDiff for shorthand). Two conclu-
sions can be drawn from the experimental results shown in
Fig. 4: (1) Different corruption types, i.e., different distribu-
tion, prefers different magnitude/scale of smoothness, and a
hard-to-please-everyone dilemma is caused by the fixed scale.
(2) PDE+ indeed learns the appropriate diffusion scale. As is
shown in the rightmost column, we can either achieve or be
close to, the best performance of all corruption types.

5.3 Q3: PDE+ Generalizes Beyond Observation

This subsection aims to demonstrate that our method can gen-
eralize on distributions beyond training ones. Fig. 5 presents
the changing trend of diffusion coverage for unobserved
distributions, i.e., probabilities of unobserved test samples
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Figure 5: Diffusion coverage for unobserved distributions.
Rows represent the training augmentations. Columns cor-
respond to the layers of neural network. Each sub-figure
includes three plots of distance-o ratio during training for
test samples generated by different test augmentations.
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Figure 6: Generalization performance under five test distribu-
tions across eight different methods.

within the training diffusion distribution. This experiment is
based on 2-¢ rule of Gaussian distribution, detailed descrip-
tion can be found in Appendix E.4. The results imply that
even when training occurs on a single augmentation differing
from testing, the likelihood of test samples being perceived
as normal within the training diffusion distribution increases
over time. Fig. 6 represent the experiment as an extension of
the previous one on Fig. 1. Notably, PDE+ outperforms all
other augmentations, including AugMix, demonstrating its
capability of generalization on unobserved distributions.

6 Conclusion

In conclusion, we present a novel partial differential equa-
tions (PDE)-driven approach to address the generalization
issue of neural networks across unseen data distributions,
focusing on overcoming the limitations of data-driven meth-
ods. By modeling neural networks as solutions to PDEs in
a transport equation framework, the connection between the
solution smoothness of PDEs and the generalization of neu-
ral networks is established. The introduction of an adaptive
distributional diffusion term helps improve the generaliza-
tion of neural networks. An instantiation of this framework,
called PDE+ can enhance the generalization via taking the
augmented samples as semantic similar samples to guide
the learning of adaptive distributional diffusion. Experimen-
tal results demonstrate the superior performance of PDE+
across various shifted distributions. This work opens up new
avenues for research in generalization of neural networks
from the PDE perspective and offers a promising direction
for enhancing the generalization of neural networks.
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