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Abstract

Hierarchical Multi-Label Classification (HMLC) is a well-
established problem that aims at assigning data instances to
multiple classes stored in a hierarchical structure. Despite its
importance, existing approaches often face two key limita-
tions: (i) They employ dense networks to solely explore the
class hierarchy as hard criterion for maintaining taxonomic
consistency among predicted classes, yet without leveraging
rich semantic relationships between instances and classes; (ii)
They struggle to generalize in settings with deep class lev-
els, since the mini-batches uniformly sampled from different
levels ignore the varying complexities of data and result in
a non-smooth model adaptation to sparse data. To mitigate
these issues, we present a Self-Paced Unified Representation
(SPUR) learning framework, which focuses on the interplay
between instance and classes to flexibly organize the train-
ing process of HMLC algorithms. Our framework consists of
two lightweight encoders designed to capture the semantics
of input features and the topological information of the class
hierarchy. These encoders generate unified embeddings of in-
stances and class hierarchy, which enable SPUR to exploit se-
mantic dependencies between them and produce predictions
in line with taxonomic constraints. Furthermore, we intro-
duce a dynamic hardness measurement strategy that consid-
ers both class hierarchy and instance features to estimate the
learning difficulty of each instance. This strategy is achieved
by incorporating the propagation loss obtained at each hi-
erarchical level, allowing for a more comprehensive assess-
ment of learning complexity. Extensive experiments on sev-
eral empirical benchmarks demonstrate the effectiveness and
efficiency of SPUR compared to state-of-the-art methods, es-
pecially in scenarios with missing features.

Introduction
Hierarchical Multi-Label Classification (HMLC) problems
have been extensively studied in a wide range of domains,
e.g., functional genomics (Wehrmann, Cerri, and Barros
2018), image annotation (Dimitrovski et al. 2011), and text
classification (Lewis et al. 2004). As illustrated in Figure 1a,
the general focus of HMLC task is to assign objects with
correct labels from an enormous label space, where classes
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are hierarchically constructed as a taxonomy graph or a
tree (Giunchiglia and Lukasiewicz 2020; Yu et al. 2022).

Recent decades have witnessed numerous attempts (Cesa-
Bianchi et al. 2004; Cerri et al. 2016; Wehrmann, Cerri, and
Barros 2018; Giunchiglia and Lukasiewicz 2020) to develop
plausible HMLC solutions that are trained to respect the hi-
erarchy or taxonomic constraint, i.e., any instance associ-
ated with a given set of subclasses must belong to their re-
lated superclasses (Wehrmann, Cerri, and Barros 2018). To
achieve this, most approaches require a repeated graph-level
exploration over class hierarchy at both training and infer-
ence times, thus making models hard to scale to large label
spaces (Patel et al. 2021). Furthermore, in many real-world
scenarios, the number of instances per class is highly sparse
at the bottom levels (Giunchiglia and Lukasiewicz 2020),
which inevitably causes the learning obstacles for these ap-
proaches to deliver satisfactory inference.

In this paper, we innovate new directions to tackle the
aforementioned problems, in terms of the encoding of class-
class and class-instance relations, and the prioritizing of
instances’ learning orders. We detail our research insights
from the following two perspectives.

First, most studies are solely dependent on instance fea-
tures to perform HMLC task, while treating the class-class
connectivity as hard criterion to ensure the constraint sat-
isfaction. On the contrary, we find it worthwhile to exploit
rich semantic correlations between class nodes and data in-
stance. For example, in Figure 1a, the instance “Ballet”
should be classified by the class “Dance” other than “Col-
lecting” at the second level because of their strong seman-
tic affiliation. Such affiliation can also be revealed from
their closeness in the latent space. Undoubtedly, associat-
ing “Dance” with “Ballet” can boost the success of next-
level prediction by considering both class-class connectiv-
ity (e.g., “Dance”-“Choreography”) and class-instance rela-
tionship (e.g., “Ballet”-“Dance”). To implement the above
idea, one promising solution is to incorporate graph repre-
sentation learning to project the class-class relations into la-
tent space, and then integrate with instance features for final
prediction. However, the direct adoption of popular graph
learning schemes (e.g., GCN (Kipf and Welling 2016)) is
not well qualified to (i) learn a set of expressive class rep-
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(a) Illustrative examples of HMLC problem. Green
and red arrow lines denote the groundtruth class paths
that correspond to the inputs “novel” and “ballet”, re-
spectively.

(b) The HMLC results on the
CELLCYCLE FUN dataset of C-
HMCNN(h) (Giunchiglia and Lukasiewicz
2020) that considers different hierarchies.

Figure 1: Examples and challenges of HMLC problem.

resentations that can precisely capture the topological infor-
mation of class hierarchy, and (ii) avoid the parameter ex-
plosion problem for large output spaces.

Second, the common assumption of HMLC methods
is that each instance’s learning priority remains the same
across all class hierarchies. In other words, these methods
neglect to explore the hierarchical inductive bias that varies
greatly with the growing learning complexity at deeper lev-
els. As a result, the state-of-the-art method (Giunchiglia and
Lukasiewicz 2020) fails to achieve equivalent scores at the
fourth level as it did at the first level, as depicted in Fig-
ure 1b. Inspired by the great success of Self-Paced Learning
(SPL) in improving the generalizability of classifiers (Meng,
Zhao, and Jiang 2017), we may enhance the state-of-the-art
performance at deep hierarchies by organizing the instances’
learning sequence from easy to hard. Therefore, we highly
need a robust self-paced regularizer to perform effective dif-
ficulty measurement and training data sampling.

Along these lines, we propose a Self-Paced Unified
Representation (SPUR) learning framework for general
HMLC. The core of SPUR is to model the class-class con-
nectivity and class-instance dependency into the embedding
space, and prioritize the learning sequence of instances from
the joint perspectives. Specifically, we first devise two sep-
arate encoder modules to project the graph-structured class
hierarchy and input features into latent space. Here, to re-
duce the computational cost, we pre-train the class node
embeddings via graph reconstruction loss, and only use a
parameter-free pooling function to generate the graph-level
representation of class hierarchy. Driven by the theoretical
framework that analyzes the representational power of graph
learning (Xu et al. 2019), we prove that the aggregated rep-
resentations are distinguishable to discriminate the patterns
of class topology associated with instance features using the
Weisfeiler-Lehman graph isomorphism test (Leman and We-
isfeiler 1968). To gradually increase learning complexity for
model update, we design a self-paced regularizer to adap-
tively measure the instances’ learning hardness based on
the discrepancies between historical and current level-wise
propagation losses, and adjust training mini-batches accord-

ingly. Finally, we conduct extensive experimental studies on
20 real-world HMLC datasets. The results showcase that our
approach can search hierarchical labels more accurately and
efficiently than existing methods, especially in the missing
feature scenario.

Related Work

Hierarchical Multi-Label Classification Prior studies
dedicated to HMLC problems can be roughly divided into
three categories: (i) The local methods (Radivojac et al.
2013; Cerri et al. 2016) follow the divide-and-conquer strat-
egy to decompose the main HMLC task into level-wise or
node-wise classification sub-tasks. (ii) The global methods
usually consist of a single classifier capable of aligning ob-
jects with their corresponding classes in the hierarchy at
once (Barros et al. 2013; Masera and Blanzieri 2018). (iii)
The hybrid methods (Wehrmann, Cerri, and Barros 2018)
develop the hybrid recurrent and non-recurrent neural net-
works to consider both local and global losses. One ma-
jor limitation of the above methods is that they have to
frequently process the entire class hierarchy for constraint
checking in both training and inference periods. In contrast,
our SPUR only requires a parameter-free graph-level pool-
ing operation based on the pre-trained class representations,
which improves the overall model scalability under high-
dimensional environments.

While some recent studies (Mittal et al. 2021; Zhang et al.
2021; Yu et al. 2022) also explore the easy-to-hard learning
scheme or encoding of label graphs for large output space,
our work is different from these studies. For instance, (Mit-
tal et al. 2021) applied random walks on label co-occurrence
links to obtain a label correlation graph for label encod-
ing, while we directly encode the class hierarchy into distin-
guishable class representations based on the WL test. (Zhang
et al. 2021) used a tree-based class hierarchy to generate
fixed coarse-to-fine learning schedule for transformer fine-
tuning, while our method derives an adaptive self-paced reg-
ularizer to generate the time-evolving training priorities of
instances conditioned on their learning difficulties.
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Weisfeiler-Lehman Test. The Weisfeiler-Lehman (WL)
test (Leman and Weisfeiler 1968) refers to a computational
effective algorithm that checks whether two graphs are topo-
logically identical, a.k.a., the graph isomorphism problem.
General design of WL test is to aggregate the labels of nodes
and their neighborhoods, and then hash the aggregated la-
bels into unique new labels. This enables to decide that two
graphs are non-isomorphic if the labels of the nodes between
the two graphs differ at certain iterations. Motivated by this,
(Shervashidze et al. 2011) proposed the WL subtree kernel
to estimate the similarity between graphs using the counts
of node labels at different iterations of the WL test as the
feature vector of a graph, while (Xu et al. 2019) analyzed
and characterized the expressive power of GNN variants in
capturing different graph structures through the WL test.

Self-Paced Learning By mimicking through the hu-
man learning principle, curriculum learning optimizes the
model’s learning objectives from easiness to hardness. In-
stead of designing a heuristic hardness measurement based
on manual experience (Meng, Zhao, and Jiang 2017), self-
paced learning (SPL) introduces a regularization term to the
objective functions, and formulates an ad-hoc concise pro-
tocol to dynamically measure training hardness in terms of
instance gradients. Recently, MLSPL (Li et al. 2017) adopts
SPL to regularize model learning for multi-label classifica-
tion task. However, MLSPL considers a different problem
setting from our work, since it assumes class hierarchy is
unknown, while our work follows the general HMLC meth-
ods that exploit the given class hierarchy. Also, to measure
learning hardness, MLSPL uses a bi-class SVM to classify
the label-wise losses, while our SPUR utilizes a loss-based
dynamic threshold to distinguish the level-wise losses.

Methodology
In this section, we first review the formal problem definition
of HMLC. Then we introduce one basic neural approach
for HMLC problem, discussing their strengths and weak-
nesses. To improve its performance, we later propose our
Self-Paced Unified Representation (SPUR) learning frame-
work, where (i) the structure-aware learner involves two sep-
arate encoder modules to explore the instance feature and
class hierarchy for label prediction, and (ii) the self-paced
learning paradigm smoothly updates the model from easy
samples to hard ones.

Problem Definition
Consider a set of |C| hierarchical classes C = {C1, . . . , CL}
organized as a Directed Acyclic Graph (DAG) G, where Cl

denotes the collection of classes at the l-th level of hierarchy.
For an arbitrary datapoint x ∈ Rd, d ≥ 1, and each class
i, a standard HMLC objective is to find a neural function
Fi : x → [0, 1], such that x is predicted to belong to class
i if Fi(x) is larger than or equal to a pre-defined threshold.
If there exists a path from a class i to a class j in G, then j
is considered as a subclass of i. We assume each class is a
subclass of itself. Throughout the paper, all Ws and bs are
the learnable weights and biases.

Base Learner
Inspired by recent global approaches (Senge, Coz, and
Hüllermeier 2014; Giunchiglia and Lukasiewicz 2020), we
develop a neural learner to be trained for mapping relevant
classes to each output. Specifically, the information flow in-
side the base learner traverses from J Fully-Connected (FC)
layers to reach the ultimate prediction ŷ:

ŷ = Sigmoid(WJz
F + bJ), (1)

where zF = ϕJ−1(ϕJ−2(· · ·ϕ1(x))), which stands for the
refined instance embeddings. ϕj(⋆) = ReLU(Wj ⋆ +bj),
j ∈ {1, . . . , J − 1}. W1 ∈ Rdh×d, WJ ∈ R|C|×dh .
Wj ∈ Rdh×dh , in which j ∈ {2, . . . , J − 1}, and dh is the
dimension of latent vector. Unlike conventional tree-based
classifiers (Bi and Kwok 2011; Dimitrovski et al. 2012;
Schietgat et al. 2010) that naturally respect class hierarchy,
most neural networks require additional post-processing
steps to ensure such hierarchical constraints (Cerri, Barros,
and De Carvalho 2014; Valentini 2010). Likewise, we in-
troduce a concise training trick, named max constraint loss
(MCLoss) (Giunchiglia and Lukasiewicz 2020), which adds
extra penalties when the hierarchical satisfaction is broken.
Since the classes of different hierarchies are predicted as a
whole, it would save huge memories for other neural learn-
ers (like HMLCN-F (Wehrmann, Cerri, and Barros 2018))
that need to specify extra FC layers to generate local outputs
at each hierarchical level.

While conceptually useful, such base learner reflects two
potential weaknesses without being addressed. First, total re-
liance on instance features and hard loss penalty is a risky
choice in many HMLC applications, since they suffer from
severe data-sparse or feature-absent issues at the deeper lev-
els of class hierarchy. A promising alternative is to capture
rich semantic dependencies among input features and flat-
tened class labels, with the purpose of introducing extra use-
ful information for better classification results. Second, as
illustrated in Figure 1b, the learning difficulty varies greatly
from instance to instance, and usually increases when the in-
stances are labeled as deeper hierarchical classes. In order to
better avert unreasonable local minima, it is more desirable
to embed gradual learning from simple to hard samples into
model optimization.

Self-Paced Unified Representation Learning
Now we describe how our approach SPUR addresses the
above limitations of base learner. Figure 2 presents the over-
all architecture of our SPUR. We first propose a Structure-
Aware Learner to exploit both class-to-class connectivity
and class-instance semantic dependency to perform HMLC.
Based on the level-wise classification losses, we then de-
velop a Self-Paced Learning paradigm to gradually train the
structure-aware learner from easiness to hardness.

Structure-Aware Learner Compared to the sole-input
design of base learner, our SPUR considers a joint perspec-
tive of class-class and class-instance relations for HMLC
task. To achieve this, our structure-aware learner first em-
ploys two separate encoder modules, named Enc F(·) and
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Figure 2: The framework overview of SPUR.

Enc G(·), to map the instances and class into the embed-
ding space. In particular, for Enc F(·), we apply the same
architecture as base learner to update the instance embed-
dings zF. For Enc G(·), inspired by GIN (Xu et al. 2019),
we first develop a node-wise encoding function to convolve
over the class hierarchy and output the representations of
class nodes in G:

v(m) = MLP(m)(Wmv(m−1) +
∑

u∈N (v)

u(m−1)), (2)

in which at the m-th iteration, v(m) ∈ R|C|×dh and
MLP(m)(·) denotes the embeddings of class node v and
multi-layer perceptrons, respectively. Wm ∈ Rdh×dh .
N (v) is the 1-hop neighbors of node v. Based on the learned
class embeddings, we design another parameter-free pooling
function to finalize the graph-wise representation zG ∈ Rdh :

zG = ReLU(Merge({v(m)}| v ∈ G,m ∈M)), (3)

where Merge(·) stands for the element-wise average or sum-
mation pooling (Kipf and Welling 2016), operated over the
neighborhood N (v) of any given class node v. ϵ(m) is a
learnable parameter. M = {0, 1, . . . ,M}. Afterwards, we
utilize the Eq. (1) to output the predicted classes through the
aggregation of two updated features zF and zG:

ŷ = Sigmoid(WH2
(WH1

[zF|| zG] + bH1
) + bH2

), (4)

where [⋆||⋆] denotes the concatenation operation along the
latent dimension. WH1

∈ Rdh×2dh and WH2
∈ R|C|×dh .

Loss function: Since zG encompasses entire hierarchical in-
formation, we can easily skip the post-processing step (e.g.,
MCLoss) to examine the taxonomic constraints, and directly
minimizes the classification error of the l-th level via:

Ltg = CE Loss(y(L), ŷ(L)), (5)

in which y(l), ŷ(l) denote the groundtruth and predicted
labels at all layers before the l-th layer (self-included),
l ∈ {1, . . . ,L}, respectively. CE Loss(a,b) = −a lnb −
(1 − a) ln (1 − b) represents the cross entropy loss (Zhang
and Sabuncu 2018). Notice that, the above graph-based en-
coder may cause the parameter size to explode with in-
creasing output space, and thus suffer from high compu-
tational cost. To mitigate this, we pre-train the representa-
tions of class nodes zG via the graph reconstruction loss

Lreconst = − 1
|C|2

∑
u∈C

∑
v∈C

(v(M)u(M)⊤ −Auv), which al-

lows the learned node embeddings v(M), u(M) to capture
the class-wise patterns stored in original DAG’s adjacency
matrix A. With the pre-trained class representations, we di-
rectly regard the parameter-free Eq. (3) as Enc G(·), and
enable the structure-aware learner to avoid redundant com-
putations involved in Eq. (1).

In general, producing disparate labels for distinctive
inputs is an essential property of good HMLC algo-
rithms (Sorower 2010). Since these predicted labels corre-
spond to multiple paths in G, and can be transformed into
new DAGs of different structures, we follow the graph iso-
morphism theory (McKay and Piperno 2014) to analyze how
the topology of predicted DAG is jointly influenced by the
input feature and original DAG.
Theorem 1. Given an original DAG and two training in-
stances x, x′. If Enc F (x) is distant from Enc F (x′) in
the latent space, their predicted DAGs are non-isomorphic,
which can be validated by Weisfeiler-Lehman graph isomor-
phism test.

The detailed proof is given in the Appendix A. This theo-
rem implies that the unified encoding of class hierarchy and
instance feature endows our SPUR with the above important
property, mainly because the learned graph-level representa-
tions, associated with instance features, are distinguishable
enough to discriminate the topological information of pre-
dicted DAG.

Self-Paced Optimization Another critical problem of the
base learner is regarding its tendency to arrive at an un-
satisfactory local minimum with high training and general-
ization error for a non-convex HMLC objective. As illus-
trated in Figure 1b, since the model’s learning barriers be-
come more severe with the growing hierarchical levels, we
introduce the concept of Self-Paced Learning (SPL) (Ku-
mar, Packer, and Koller 2010; Meng, Zhao, and Jiang 2017)
that iteratively selects instances from easy to hard and the
number of instances at each iteration depends on the gradu-
ally annealed weights. To better distinguish easy instances
from hard ones, we first create the level-wise loss vector
Lgd = {L(l)}l∈{1,...,L}, where L(l) = CE Loss(y(l), ŷ(l)).
Basically, this loss vector can be used to estimate how well
the model behaves for local prediction, because of the fol-
lowing good attribute:
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Proposition 1. Given one training instance x, any two dis-
tinct subgraphs Gi,Gj of hierarchies i ≥ j in the predicted
class graph G, their corresponding losses are distinguish-
able from each other.
Proof: The above result can be easily derived since Theorem
1 proves the distinguishability of the learned representations
of predicted graph, it should also apply to local hierarchies,
thus making the corresponding losses identifiable.

Therefore, such level-wise losses can reveal the unique-
ness of graph-based prediction and offer an isomorphism-
based estimation to measure the localized learning hardness
of structured classes. To globally assess the instance’s learn-
ing difficulty and adjust training mini-batches, we later de-
velop a self-paced regularizer based on the past and present
level-wise losses. In particular, we set the number of learn-
ing groups to be two, which correspond to the majority
(easy) and minor (hard) categories, respectively. Since the
model is being updated continuously, the hardness measure-
ment threshold should be altered periodically (e.g., every K
epochs) as well. To be specific, we store all loss vectors w.r.t.
previous training records as the epoch-based memory. After
every K epochs, we perform the following steps to update
the level-wise threshold of learning hardness:
• For each class c within a specific level l, we first compute

the current class-wise learning threshold L̂(l)
c by averag-

ing the losses of its associated training instances.
• These class-wise learning thresholds are then aggre-

gated to form the level-wise learning threshold L̂(l) =∑
c∈C(l)

L̂(l)
c , where C(l) represents a set of classes located

at the l-th level.
When a new instance x arrives, we compare its level-

wise losses L(l) against the corresponding learning thresh-
olds L̂(l), and retrieve the possibility wx of being assigned to
majority category, which helps control the degree of involve-
ment of this instance in the subsequent model optimization:

wx =
L∏

l=1

[1− Sigmoid(L(l) − L̂(l))]. (6)

The intuitive explanation behind Eq. (6) is that when the
current loss L(l) is much larger than the average previous
losses L̂(l) at most levels, the instance x would have a lower
probability of being assigned as “easy” sample. Later, we
follow standard SPL (Kumar, Packer, and Koller 2010) to
embed gradual learning from easy to hard samples as:

min
W∈[0,1]|C|

E(Y,X|W, λ) =
∑
x∈X

wxLtg
x − λ

∑
x∈X

wx, (7)

where X , Y stand for the sets of input features and
groundtruths in the training set, respectively. wx ∈W, and
λ is a hyper-parameter for controlling the learning pace. N
is the number of training instances. It is obvious that by in-
creasing λ throughout training, the self-paced learning algo-
rithm allows more difficult samples into the training process.
Note that, we randomly sample multiple “easy” instances
to participate in each mini-batch optimization. Due to page

Figure 3: Critical diagram for the Nemenyi’s statistical test.

limit, we put the detailed training procedure in Algorithm 1
of Appendix B.

Experiments
Experiment Setup
We evaluate the generic efficacy of our SPUR on 20
publicly-available datasets, which include protein func-
tion prediction (Ruepp et al. 2004; Ashburner et al.
2000), annotation of medical (Dimitrovski et al. 2011)
or microalgae images (Dimitrovski et al. 2012), and text
categorization (Klimt and Yang 2004). These datasets
are commonly used for comparison among HMLC ap-
proaches (Giunchiglia and Lukasiewicz 2020; Bi and
Kwok 2011; Nakano, Lietaert, and Vens 2019; Wehrmann,
Cerri, and Barros 2018). For data pre-processing, we fol-
low (Giunchiglia and Lukasiewicz 2020; Wehrmann, Cerri,
and Barros 2018) to transform its categorical features into
one-hot vectors, and replace missing values with the mean
of normalized numeric features, or with a vector of all zeros
in the categorical cases. Our SPUR1 and all baselines are
implemented with Pytorch framework (Paszke et al. 2019)
and run on a single 3090 Ti GPU. Due to the page limit, we
also include the parameter sensitivity and the efficiency test
in Appendix C.

Performance Metrics. For HMLC evaluation, we use
the mostly used metric, i.e., AU(PRC) (Bi and Kwok
2011; Wehrmann, Cerri, and Barros 2018; Giunchiglia and
Lukasiewicz 2020), to predict when a datapoint belongs to a
particular class. Formally, the AU(PRC) measures the area
under the average precision recall curve, of which points
(P ,R) are calculated as follows:

P =
∑|C|

i=1 TPi∑|C|
i=1 TPi+

∑|C|
i=1 FPi

R =
∑|C|

i=1 TPi∑|C|
i=1 TPi+

∑|C|
i=1 FNi

,

in which TPi, FPi, and FNi stand for the quantities of true
positives, false positives, and false negatives for class i, re-
spectively. |C| is the number of classes.

Baselines. We compare our SPUR with six state-of-the-
art HMLC algorithms, which include MLSPL (Li et al.
2017), C-HMCNN(h) (Giunchiglia and Lukasiewicz 2020),
HMLC-LMLP (Cerri et al. 2016), CLUS-ENS (Schiet-
gat et al. 2010), HMLCN-R (Wehrmann, Cerri, and Bar-
ros 2018), and HMLCN-F (Wehrmann, Cerri, and Bar-
ros 2018). We run SPUR, C-HMCNN(h) (Giunchiglia and
Lukasiewicz 2020), Clus-Ens (Schietgat et al. 2010), and
HMC-LMLP (Cerri et al. 2016) 10 times on each dataset

1Code released at https://github.com/yuanzx33033/SPUR/
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DATASET SPUR MLSPL C-HMCNN(h) HMCN-R HMCN-F HMC-LMLP CLUS-ENS

CELLCYCLE FUN 0.261 0.227 0.255 0.247 0.252 0.207 0.227
DERISI FUN 0.198 0.192 0.195 0.189 0.193 0.182 0.187
EISEN FUN 0.311 0.301 0.306 0.298 0.298 0.245 0.286
EXPR FUN 0.313 0.300 0.302 0.300 0.301 0.242 0.271
GASCH1 FUN 0.292 0.285 0.286 0.283 0.284 0.235 0.267
GASCH2 FUN 0.262 0.247 0.258 0.249 0.254 0.211 0.231
SEQ FUN 0.302 0.288 0.292 0.290 0.291 0.236 0.284
SPO FUN 0.221 0.197 0.215 0.210 0.211 0.186 0.211

CELLCYCLE GO 0.420 0.387 0.413 0.395 0.400 0.361 0.387
DERISI GO 0.374 0.365 0.370 0.368 0.369 0.343 0.361
EISEN GO 0.461 0.427 0.455 0.435 0.440 0.406 0.433
EXPR GO 0.456 0.431 0.442 0.450 0.452 0.373 0.422
GASCH1 GO 0.444 0.408 0.436 0.416 0.428 0.380 0.415
GASCH2 GO 0.422 0.396 0.414 0.463 0.465 0.371 0.395
SEQ GO 0.450 0.425 0.446 0.443 0.447 0.370 0.438
SPO GO 0.387 0.357 0.382 0.375 0.376 0.342 0.371

DIATOMS 0.776 0.718 0.758 0.514 0.530 - 0.501
ENRON 0.770 0.732 0.756 0.710 0.724 - 0.696
IMCLEF07A 0.960 0.872 0.956 0.904 0.950 - 0.803
IMCLEF07D 0.933 0.901 0.927 0.897 0.920 - 0.881

AVERAGE RANKING 1.10 4.70 2.25 4.20 3.10 7.00 5.65

Table 1: Performance comparison of our SPUR with all baselines. The best results are highlighted in bold.

(a) CELLCYCLE FUN. (b) EXPR FUN. (c) GASCH1 FUN. (d) SEQ FUN.

Figure 4: Learning curves of three training strategies (a-b) and three model variants (c-d) on four FunCat tasks. For each figure,
the x-axis denotes the training epochs, and the y-axis denotes the AU(PRC) metric.

to report the average AU(PRC)of those runs. For simplic-
ity, we omit the standard deviations which for SPUR vary in
a small range [0.9 × 10−3, 7.2 × 10−3], indicating its high
degree of stability.

Overall Performance
Table 1 reports the performance of our SPUR and all base-
lines on 20 different datasets of HMLC tasks. We first ana-
lyze the performance of SPUR when compared with the cur-
rent state-of-the-art methods. As can be seen, our SPUR out-
performs the state-of-the-art by achieving superior perfor-
mances on all datasets except Gasch2 GO, and obtaining
the best average ranking (1.10) with the largest number of
wins. As the runner-up model, C-HMCNN(h) is the proto-
type of base learner that applies a feedforward neural net-
work with hierarchical loss constraints. There are two im-
portant aspects overlooked by C-HMCNN(h), i.e., the mod-
eling of hierarchy information and prioritizing the training

order. Careful design of these two aspects in SPUR has
contributed significant gains relative to the C-HMCNN(h)
method. Similar to HMLCN-F (Wehrmann, Cerri, and Bar-
ros 2018) that scales up with larger class hierarchy, the intro-
duction of graph-based encoder inevitably raises the trade-
off between performance and computational cost. Further-
more, our SPUR performs much better than its closest base-
line MLSPL which purely relies on the input features to de-
termine the learning hardness. This indicates the necessity
of taxonomic modeling to regularize the SPL process.

We next perform the Friedman test (Friedman 1937) to ex-
amine the statistical significance of the above results, where
we obtain the p-value 5.71 × 10−17 showing the existence
of significant differences. We continue with the post-hoc
Nemenyi test (Nemenyi 1963), and demonstrate its corre-
sponding critical diagram in Figure 3. The diagram plots
the average rank of each approach on a horizontal axis,
and the critical difference CD = 1.686. Notice that, the
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(a) CELLCYCLE GO. (b) DIATOMS. (c) CELLCYCLE FUN. (d) SEQ FUN.

Figure 5: Performance comparisons among various difficulty estimators (a-b) and different levels of missing features (c-d).

group of methods that are connected through a horizon-
tal line do not differ significantly at the significance level
of 0.05. The results of the Nemenyi test allow us to claim
that our SPUR outweighs all the other baselines with statis-
tical significance except C-HMCNN(h). Hence, we follow
(Giunchiglia and Lukasiewicz 2020) to conduct additional
comparison between SPUR and C-HMCNN(h) based on the
Wilcoxon test (Gehan 1965), which not only considers the
performance rankings, but also quantifies the differences in
performances of two approaches. Based on the Wilcoxon
test, we reach a final conclusion that there exist a statistically
significant difference between the performance of SPUR and
C-HMCNN(h) with p-value of 1.91× 10−6.

Ablation Study
We further analyze the impact of structure-aware SPL and
DAG encoding in terms of model convergences, difficulty
estimator design, handling missing value, and time complex-
ity (Appendix C).
Convergences of different training modes. Figures 4 (a-b)
plot the learning curves of three training strategies employed
on the FunCat dataset: (i) “ours” mode, i.e., the proposed
SPUR trained with SPL, (ii) “no-spl” mode, which trains the
structure-aware learner without SPL, and (iii) “hard” mode,
which only allows hard instances to be trained. As can be
seen, for each task, the performance curves of “mixed” and
“hard” modes basically form the lower and upper bounds
on the expected result of “no-spl” strategy, indicating that a
good prioritization in the learning order would push forward
the limit of HMLC performance.
Necessity of DAG encoding. To demonstrate the useful-
ness of learned DAG representations, we report the learning
curves of three approaches (i.e., SPUR, C-HMCNN(h), and
SPUR-G) in Figures 4 (c-d). Note that, SPUR-G is a vari-
ant of SPUR, which only adopts Enc F(·) with SPL. We
observe that SPUR-G exhibits slightly better performances
than C-HMCNN(h), yet clearly outperformed by SPUR.
This is not surprising because SPL relies on the joint model-
ing of class-class connectivity and class-instance dependen-
cies, which highlights the irreplaceable role of DAG encod-
ing for generating reliable estimation of learning hardness.
Various designs on difficulty estimators. We then evaluate
the impacts of various difficulty estimators could impose on
the HMLC performances. Here, we consider four types of

estimators, including a loss-based dynamic threshold (i.e.,
ours), a non clustering-based method (i.e., linear) and two
clustering-based ones (i.e., K-Means (Hartigan and Wong
1979), MeanShift (Cheng 1995)). For the linear estimator,
we periodically update the threshold by multiplying a de-
caying coefficient γ by the average value of previous losses
after every epoch. For the rest of two clustering-based ap-
proaches, we cluster the training instances into two groups
based on their level-wise losses, where we treat the larger
and smaller groups as easy and hard samples, respectively.
We report their corresponding performances on two HMLC
tasks in Figures 5 (a-b). It is noticeable that the clustering-
based estimators are generally better than the linear method,
possibly because the variations of level-wise losses are hard
to be approximated with linear measurement. Also, our loss-
based dynamic threshold achieves significantly better values
compared to K-Means and MeanShift on two datasets. This
is because the clustering-based methods can hardly scale
with high-dimensional data.
Handling missing values. We conduct the analysis to dis-
cuss the necessity of exploiting the class-instance semantic
dependencies as supplementary knowledge for HMLC task.
Taking it into account can not only improve the overall per-
formance, but also help alleviate the influence of missing
feature problem on the final prediction. For effective evalu-
ation, we compare the performances of our model with C-
HMCNN(h) on the data of two datasets with missing fea-
tures. In particular, for each dataset, we first routinely train
the model using all instances, and report the prediction re-
sults regarding the samples of different missing levels in Fig-
ures 5 (c-d). It can be seen that the results of C-HMCNN(h)
are inferior to our SPUR on two datasets in terms of all lev-
els. This again validates the effectiveness of modeling the
class hierarchy as the second identification of datapoint.

Conclusion
We proposed a self-paced unified representation (SPUR)
learning framework, which first employs two neural en-
coders to study the semantic dependencies between input
features and class hierarchy, and then incorporates a self-
paced learning paradigm to smoothly update the model pa-
rameter from easier data to more difficult ones. Experimen-
tal results on several HMLC benchmarks demonstrate the
superiority and efficiency of our approach.
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Algorithm 1: Training procedure for SPUR framework.

1: Input: The training set {X ,Y}, structure-aware learner
F (·; θ), learning rate η, update frequency K of difficulty
measurement

2: Output: the well-trained parameters θ of structure-
aware learner

3: while not converge do
4: epoch = 1
5: for (x, y) ∈ {X ,Y} do
6: initialize Lgd = ∅
7: for l = 1, . . . , L do
8: Obtain the training loss L(l) based on the Eq. (5)
9: Lgd.add(L(l))

10: end for
11: if epoch!= 1 then
12: Compute the likelihood wx of Lgd being as-

signed to the majority category
13:
14: θ ← θ−η(

∑
x∈X wxLtg

x −λ
∑

x∈X wx) based
on Eq. (7)

15: end if
16: end for
17: if epoch == 1 or epoch%K == 0 then
18: Update L̂(l), l ∈ {1, . . . , L}
19: end if
20: epoch = epoch + 1
21: end while

A. Proof for Theorem 1
According to (Xu et al. 2019), if two graphs are projected
to different real-value vectors through a graph neural net-
work, the WL test would confirm their non-isomorphism.
Our setting is the special case where we always feed the
identical DAG to the graph-based encoder. That is, for each
class node v or u on the same graph G, if WL node labels
l
(m)
v = l

(m)
u , GNN node features v(m) = u(m) will hold for

all iteration M . The aggregation process Aggregate(·, ·) be-
tween distinct input features and class node representation is
the only factor that could discriminate the predicted DAGs.
This actually creates a input-conditioned mapping Φ such
that v(M) = Φ(l

(M)
u ;x) for any v ∈ G:

{(v(M), {u(M) : u ∈ N (v)})} =

{(Φ(l(M)
v ), {Φ(l(M)

u ;x) : u ∈ N (v)})} (8)

Note that such aggregation function is permutation invariant
w.r.t. the set of graph nodes. Hence we conclude that if the
input features are distinguishable in the latent space, the WL
test would have obtained different collections of node labels
at the final iteration.

B. Algorithm of Model Optimization
The whole training routine is detailed in Algorithm 1. In

the lines 5-10, we generate the level-wise loss for each train-
ing instance. To smoothly regularize the training procedure,
lines 11-14 prioritize the weights of those easier instances

Dataset Model Total training
time (min)

CELLCYCLE FUN
SPUR 7.2

MLSPL 7.3
C-HMCNN(h) 7.4

DERISI FUN
SPUR 3.2

MLSPL 4.3
C-HMCNN(h) 4.5

CELLCYCLE GO
SPUR 8.2

MLSPL 4.7
C-HMCNN(h) 4.8

DERISI GO
SPUR 6.2

MLSPL 5.9
C-HMCNN(h) 4.7

DIATOMS
SPUR 20.1

MLSPL 22.7
C-HMCNN(h) 21.6

Table 2: Total training time.

to be trained by introducing the likelihood of instance being
assigned to the majority (easy) category. Lines 17-19 update
the loss-based threshold of learning hardness based on all
stored loss vectors at every K epochs. An interesting finding
is that, the size of majority category becomes larger as the
training continues, which demonstrates the success of SPL
teaching our SPUR to gradually learn useful knowledge by
studying simpler instances.

C. Supplementary Results
Sensitivity test. Table 3 summarizes the AU(PRC) scores
of SPUR under various λ during training on five different
datasets. As can be seen, the model achieves the optimal
performance when we set a faster model learning speed with
λ = 0.0. This indicates that taking small learning pace can
smooth out the model learning process, which enables our
SPUR to efficiently capture rich semantics of input features
and taxonomic information for HMLC tasks.
Efficiency test. We also check the total training times
of SPUR and two other baselines (i.e., MLSPL and C-
HMCNN(h)) on five different datasets. As reported in Ta-
ble 2, the training time of our SPUR is comparable to the
ones of other graph-free baselines on most of the datasets.
This implies that the training time and model latency do not
change substantially with larger output spaces.
Complexity analysis. We compare time complexity of our
SPUR and SOTA methods on HMLC tasks with different
number of classes and instances. First, we report the average
training time of all models in Figures 6 (a-b). As can be seen,
with a larger class number or feature size, the training time
of HMLCN-F is increasing much faster than our SPUR and
C-HMCNN(h), as HMLCN-F adopts level-wise neural units
to output local prediction for each hierarchical level, hav-
ing the amount of parameters scale with the number of
classes or feature dimensions. In contrast, both SPUR and
C-HMCNN(h) utilize the post-hoc, parameter-free loss to
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(a) The number of classes. (b) The number of features. (c) The number of classes. (d) The number of features.
Figure 6: Analysis of time complexity. We plot the average (i) training time per instance in Figures (a-b), and (ii) inference time
per instance in Figures (c-d). 46, 96, 499, 4122 denote the class number of IMCLEF07D, IMCLEF07A, SPO FUN, CELLCYCLE
GO datasets, while 77, 173, 551, 1000 represent the feature number of CELLCYCLE FUN, GASCH1 FUN, EXPR GO, ENRON
datasets, respectively.

Dataset λ AU(PRC)

CELLCYCLE FUN

0.8 0.249
0.4 0.255
0.2 0.257
0.0 0.260

DERISI FUN

0.8 0.190
0.4 0.196
0.2 0.195
0.0 0.198

CELLCYCLE GO

0.8 0.410
0.4 0.415
0.2 0.418
0.0 0.420

DERISI GO

0.8 0.360
0.4 0.360
0.2 0.364
0.0 0.374

DIATOMS

0.8 0.761
0.4 0.763
0.2 0.768
0.0 0.776

Table 3: Sensitivity test on λ of SPUR.

impose the global hierarchy violation. Besides, the intro-
duction of pre-trained class node representations does fa-
cilitate improving the overall performances of our SPUR,
while slightly burdening the computational cost compared
to C-HMCNN(h). Similar observations can also be found in
the average inference time cases, as depicted in Figures 6
(c-d). Notably, the time discrepancy between SPUR and C-
HMCNN(h) becomes negligible, which indicates that such
graph-based self-paced learning protocol will not incur high
latency for real-life scenarios with large output space.
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Münsterkötter, M.; et al. 2004. The FunCat, A Functional
Annotation Scheme for Systematic Classification of Proteins
from Whole Genomes. Nucleic Acids Research, 32(18):
5539–5545.
Schietgat, L.; Vens, C.; Struyf, J.; Blockeel, H.; Kocev, D.;
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