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Abstract

Graph Attention Networks (GATs) that compute node repre-
sentation by its lower-order neighbors, are state-of-the-art ar-
chitecture for representation learning with graphs. In practice,
however, the high-order neighbors that turn out to be useful,
remain largely unemployed in GATs. Efforts on this issue re-
main to be limited. This paper proposes a simple and effective
high-order neighbor GAT (HONGAT) model to both effec-
tively exploit informative high-order neighbors and address
over-smoothing at the decision boundary of nodes. Two tightly
coupled novel technologies, namely common neighbor simi-
larity and new masking matrix, are introduced. Specifically,
high-order neighbors are fully explored by generic high-order
common-neighbor-based similarity; in order to prevent severe
over-smoothing, typical averaging range no longer works well
and a new masking mechanism is employed without any extra
hyperparameter. Extensive empirical evaluation on real-world
datasets clearly shows the necessity of the new algorithm in
the ability of exploring high-order neighbors, which promis-
ingly achieves significant gains over previous state-of-the-art
graph attention methods.

Introduction
Deep neural networks such as Convolutional Neural Net-
works (CNNs) have achieved great success in various
tasks (LeCun, Bengio, and Hinton 2015; Zhou, Jin, and Li
2024; Ge et al. 2024; Zhu et al. 2024; Wei et al. 2022; Jia
et al. 2024; Shi, Wei, and Li 2024). However, architectures in
CNNs are typically designed for grid-like structures, which
can not process graph-structured data that widely exist in
real applications. For example, social networks are natu-
rally graphs, where people are represented by nodes and
friendships or interactions between them are represented by
edges. Models that are able to exploit the rich information
encoded in graph-structured data are highly desirable. There-
fore, Graph Neural Networks (GNNs) (Gori, Monfardini,
and Scarselli 2005; Scarselli et al. 2008) are introduced to
provide powerful frameworks for encoding arbitrarily struc-
tured graphs by iteratively aggregating node representations.
Nowadays, GNNs have been widely applied in various fields
such as knowledge graphs (Hamaguchi et al. 2017), protein
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prediction (Fout et al. 2017), language processing (Yao, Mao,
and Luo 2019), social networks (Wu et al. 2020), etc.

Recently, graph attention network (GAT) shows a promis-
ing framework by combining GNNs with attention mecha-
nism in handling graphs with arbitrary structures (Veličković
et al. 2018; Zhang et al. 2020). The attention mechanism al-
lows dealing with variable sized input while focusing on
the most relevant parts, and has been widely used in se-
quence modelling (Bahdanau, Cho, and Bengio 2015; Devlin
et al. 2019; Vaswani et al. 2017), machine translation (Luong,
Pham, and Manning 2015), and visual processing (Xu et al.
2015). The GAT model further introduces attention module
into graphs, where the hidden representations of the nodes
are computed by repeatedly attending over the features of
their neighbors, and the weighting coefficients are calculated
inductively based on a self-attention strategy. State-of-the-art
performance has been obtained on tasks of node embedding
and classification.

The attention in GAT is computed mainly based on the
content of the nodes; the structures of the graph, on the other
hand, are simply used to mask the attention, e.g., only one-
hop neighbors will be attended. However, rich structural in-
formation revealed by high-order neighbors should provide
a more valuable guidance on learning node representations.
For example, in social networks or biological networks, a
community or pathway is oftentimes composed of nodes that
are densely inter-connected with each other but several hops
away. Therefore, it can be quite beneficial if a node can at-
tend to high-order neighbors from the same community, even
if they show no direct connections. To achieve this, simply
checking k-hop neighbors would seem insufficient; on the
other hand, simply exploring high-order information with
increased model layers would also cause performance de-
generation (over-smoothing phenomenon (Li, Han, and Wu
2018; Oono and Suzuki 2020), where the increased GNN lay-
ers lead to an overbroad average of neighbor representations
for each node (Xu et al. 2018)). A thorough exploration of
structural landscapes of the graph becomes necessary.

In order to fully exploit rich, high-order structural details
in graph attention networks, we propose a new model called
HONGAT. The key idea is to first adaptively augment the
high-order neighbor similarity calculation with a general
framework, and then learn valuable high-order neighbors
through masking in the aggregation stage, so as to increase
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Figure 1: The framework of our proposed HONGAT model.
High-order neighbor utilization is achieved by common
neighbor similarity and improved by masking mechanism.

the information that is helpful to the generalization perfor-
mance. To this end, two tightly coupled novel technologies,
namely common neighbor similarity and new masking matrix
are introduced. Specifically, high-order neighbors are fully
explored by generic high-order common-neighbor-based sim-
ilarity; in order to prevent potential feature over-smoothing,
typical averaging range no longer works well and a new mask-
ing mechanism is employed without any extra hyperparame-
ter. To our best knowledge, it is the first work to generalize
and encode common neighbor topology that is critical for
neighbor exploration into GATs, and we innovatively adjust
averaging range to improve neighbor utilization. Extensive
empirical evaluation on real-world datasets clearly shows the
strength of our new algorithm in its ability to explore high-
order neighbors, which leads to significant improvements
over previous state-of-the-art graph attention methods.

Exploring High-Order Neighbors in GATs
Limitation of One-Hop Attention
We first briefly review the one-hop attention mechanism and
discuss the limitation of it in handling with high-order neigh-
bors, which sheds light on the motivation of our work.

Given a graph G = (V,E) where V denotes the set of
nodes and E denotes the set of edges. The input feature ma-
trix to the convolutional layer can be written as X ∈ RN×d

where N indicates the node count and d is the feature dimen-
sion. The i-th row vector of X, namely xi = Xi:, represents
the input feature of the i-th node. The attention mechanism
allows nodes to aggregate the most relevant information by
calculating a weighted average of their neighbors’ feature
representations. To obtain the averaging weights, we first
compute an attention coefficient for every node pair (i, j),
which indicates the importance of the node j to the node i:

ei,j = LeakyReLU(αT [xT
i || xT

j ]), (1)

where α ∈ R2d′
are learned. xi = xiW is the hidden

state feature of node i where W ∈ Rd×d′
are parameters to

transform input features into a new space of d′ dimension.
The operation || indicates vector concatenation. The scores
are then normalized by softmax across neighbors j ∈ N (i)
to obtain the final weighting coefficient ai,j :

ai,j = softmaxj(ei,j) =
exp(ei,j)∑

j′∈N (i) exp(ei,j′)
. (2)

Then, a weighted aggregation operation is taken (followed
by a nonlinearity σ) to update the representation of node i:

x′
i = σ(

∑
j∈N (i)

ai,jxj), (3)

This attention is calculated mainly based on the content
of the nodes and only one-hop neighbors will be attended.
It can be quite beneficial if a node can attend to high-order
neighbors from the same community, even if they show no di-
rect connections. However, the high-order neighbors that turn
out to be useful, remain largely unemployed. To achieve this,
simply checking k-hop neighbors would seem insufficient; on
the other hand, simply exploring high-order information with
increased model layers would also cause performance de-
generation, i.e., over-smoothing phenomenon (Li, Han, and
Wu 2018; Oono and Suzuki 2020). Therefore, a thorough
exploration of high-order neighbors of the graph becomes
necessary.

Inspired by this, we propose a HONGAT framework as
shown in Figure 1 to exploit informative high-order neigh-
bors by introducing two technologies: (a) neighbors are fully
explored by generic high-order common neighbor similar-
ity matrix SK , which is topology-based and ensures that
HONGAT conducts a more comprehensive exploration of
neighbor information compared to GAT, which only em-
ploys the content-based semantic similarity matrix S̃; (b)
the typical averaging range is further adjusted by a masking
matrix M to prevent feature over-smoothing and learn most
valuable high-order neighbors, so as to promote high-order
neighbor exploration. Overall, high-order neighbor utilization
is achieved by common neighbor similarity and improved
by masking mechanism. Figure 1 and experimental results
clearly illustrate the tight coupling and non-removability of
these two components. In the following, we demonstrate the
detailed construction of HONGAT framework.

Exploiting High-Order Neighbors with Common
Neighbor Similarity
To fully exploit rich, high-order structural details in graph
attention networks, we introduce common neighbor similar-
ity to enable the exploration of high-order neighbors. The
main idea is to adaptively adjust the importance of neighbor
information of both low- and high-orders. In this way, the
high-order neighbors can be explored while the advantages of
low-order neighbors remain to be preserved. To achieve this,
we introduce common-neighbor-based similarity to measure
the importance of different orders of neighbors and allow
them to be jointly attended within a single layer.

Specifically, we first define the similarity between nodes
based on the neighbor distribution. One classic and popular
way is common neighbors index (CN), which assumes that
nodes with more common neighbors are more likely to be rel-
evant. More formally, given two nodes i and j with neighbor
sets N (i) and N (j), their similarity score can be computed
by SCN

i,j = |N (i) ∩N (j)| =
∑

n∈N (i) I(n ∈ N (j)), where
I(n ∈ N (j)) equals to 1 when n ∈ N (j) and 0 otherwise.

Obviously, the CN index reveals the importance of a node’s
second-order neighbors to it. To further explore high-order
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Figure 2: Comparison of attention employed by (a) GAT and
(b) HONGAT. Conventional GATs only focus on one-hop
neighbors each layer (revealed by gray arrows). As a result,
nodes A and B, although highly inter-connected, fail to coop-
erate with each other. The proposed HONGAT, by contrast,
exploits information of distant neighbors and structural de-
tails within a single step. By this, node B can be reached by
node A through their high-order common neighbors (e.g., the
red arrow).

information, we generalize the CN index to K-order com-
mon neighbors index (KCN), which aims to measure the
importance of a node’s Kth-order neighbors:
Definition 1 (K-order Common Neighbors). Given two
nodes i and j with neighbor sets N (i) and N (j), their K-
order common neighbors index (K ≥ 2) is defined as:

(SKCN
i,j )K =

∑
n1∈N (i)

1√
didn1

∑
n2∈N (n1)

1√
dn1

dn2

· · ·

︸ ︷︷ ︸
K−2∑

nK−1∈N (nK−2)

I(nK−1 ∈ N (j))√
dnK−2

djdnK−1

, (4)

where N (k) and dk indicate the neighbor set and degree
of node k. n0 is defined as the node i itself.

The K-order common neighbors is a generic high-order
similarity metric with the same form as CN (remind that
SCN
i,j =

∑
n∈N (i) I(n ∈ N (j)). Intuitively, rather than di-

rectly considering the common neighbors between node i
and node j, we take the common high-order neighbors be-
tween node i and node j into account. Therefore, the node i
is allowed to explore a “chain” of high-order neighbors when
reaching node j, instead of being second-order limited. Ad-
ditionally, node degree centrality (Salton and McGill 1984;
Zhou, Lü, and Zhang 2009) is considered in denominators
for numerical stability.

Let (SKCN
i,j )0 = δ(i− j) where δ (·) denotes an impulse

function, which maps 0 to 1 and other values to 0; and let
(SKCN

i,j )1 =
Aij√
di

√
dj

where A indicates the adjacency ma-

trix of nodes without self-loop. We then jointly attend to
all the K-order neighbors within a single layer by simply
ranging KCN indices from order 0 to K. Specifically, the
representation of node i is updated as:

x′
i =

∑
j∈NK(i)

[

K∑
k=0

αk(S
KCN
i,j )k + βai,j ]xj , (5)

where NK(i) indicates all the K-order neighbors of node
i and xj = xjW is the hidden state feature of node j.

{αk}Kk=0, β and W are learned. Remind in GAT, ai,j indi-
cates the feature-based importance score defined in Equation
(2), which can be viewed as the semantic similarity. Different
from GAT that only considers the semantic similarity, HON-
GAT introduces topological similarity revealed by high-order
common neighbor indices {(SKCN

i,j )k}Kk=0. In this way, node
importance is measured both topologically and semantically,
as well as being adaptively learned by trainable parameters
{αk}Kk=0 and β to capture different high-order neighbors.

Figure 2 illustrates the benefit. Conventional GATs only
focus on one-hop neighbors each layer. Thus, nodes A and
B, although highly inter-connected, fail to cooperate with
each other. The proposed HONGAT, by contrast, exploits
information of distant neighbors and structural details within
a single step. Thus, node B can be reached by node A through
their high-order common neighbors.

Matrix Implementation. The K-order KCN index de-
fined in Equation (4) can be expressed in the following matrix
form (proof is covered in Appendix B):

SKCN
K = ÂK = (D− 1

2AD− 1
2 )K , (6)

where matrix SKCN
K is composed of K-order KCN indices,

namely (SKCN
K )ij = (SKCN

i,j )K . A indicates the graph ad-
jacency matrix without self-loop and Â represents its sym-
metrically normalized form. D represents a diagonal degree
matrix, namely Dii =

∑
j Aij . By this, the HONGAT layer

can be formalized as:

X′ = (ΣK
k=0αkÂ

k + βS̃)X, (7)

where X = XW is the hidden feature matrix and X′ is
the aggregated feature matrix. SK = ΣK

k=0αkÂ
k denotes the

proposed common neighbor similarity matrix which intro-
duces topological information to enable high-order neighbor
exploration. S̃ denotes the feature similarity matrix used
in GAT, where only values of K-order neighbors are non-
zero and only node content is considered. By Equation (7),
HONGAT layer is actually a polynomial-like filter, which
therefore enjoys well-studied properties of polynomial fil-
ters (Shuman et al. 2013).

Optimizing High-Order Neighbor Exploitation with
New Masking Matrix
Till now, we have achieved high-order neighbor utilization
with generic common neighbor similarity. The exploration of
high-order neighbors, on the other hand, leads to a broader
range of averaged neighbors for each node (Xu et al. 2018),
yielding the previously mentioned performance issues (over-
smoothing phenomenon (Li, Han, and Wu 2018; Oono and
Suzuki 2020), where the overbroad average of neighbors’
feature representations for each node leads to harmful feature
loss). To this end, we propose to improve the exploitation
of high-order neighbors by adjusting the typical averaging
range, so as to learn the most valuable high-order neighbors
and increase the information that is helpful to the model
generalization performance.

To achieve this, we introduce a new masking mechanism.
The key idea is that, by eliminating neighbor weights in the
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aggregation stage, part of the neighbors are “masked” and the
averaging range is adjusted. We start by introducing a novel
learnable masking matrix as following:

M = ΣK
k=0γkMk, (8)

In this equation, Mk ∈ {0, 1}N×N where (Mk)ij = 1 if
j ∈ Nk(i) and (Mk)ij = 0 otherwise. This is achieved by
calculating the k-order polynomial of adjacency matrix and
binarizing it:

(Mk)ij =

{
1, (M̃k)ij ̸= 0;

0, (M̃k)ij = 0.
(9)

where M̃k = Σk
l=0A

l. Specifically, in Mk, elements cor-
responding to neighbors other than the ones of order 0 to
k are set to 0. Therefore, by applying Mk to the aggrega-
tion operator with an element-wise Hadamard product, the
weights corresponding to neighbors of order (k + 1) to K
are eliminated. In this way, the aggregation is restricted to
include only k-order neighbors and the averaging range is
implicitly adjusted.

Based on this, trainable parameters {γk}Kk=0 aim to ad-
just the ratio of different discrete averaging ranges defined
by {Mk}Kk=0. In this way, the averaging range can be con-
tinuously tuned. For example, when γk with a larger k is
increased, the averaging range is encouraged to include more
nodes and otherwise, more concentrated nodes. The model
learns the most suitable averaging range for high-order neigh-
bor exploration according to the property of graphs and there-
fore increases the information that is helpful to the general-
ization performance by this, which is quite desirable. The
following experiments clearly shows the improvement of
high-order neighbor utilization and prediction performance
with averaging range adjusted by new masking.

Finally, we deploy this masking matrix in HONGAT layer
defined in Equation (7):

X′ = [M⊙ (SK + βS̃)]X, (10)

where ⊙ indicates the element-wise Hadamard product,
X = XW denotes hidden feature matrix and SK =
ΣK

k=0αkÂ
k. Equation (10) defines the full layer of HON-

GAT . In practice, we employ a single HONGAT layer and
obtain hidden features with X = fθ(X), where fθ denotes
a neural network with parameter set {θ}. We train {θ} and
other parameters together in an end-to-end fashion.

Overall Algorithm Description of HONGAT
The framework figure and pseudocode of the proposed HON-
GAT method are shown in Figure 1 and Algorithm 1, where
SK represents the common neighbor similarity matrix and
M the masking matrix, S̃ is the feature similarity matrix
following the work of GAT. Overall, in HONGAT frame-
work, common neighbor indices are generalized to explore
high-order neighbors and the masking matrix aims to fur-
ther improve information utilization. In this way, high-order
neighbors are well exploited.

Algorithm 1: Training Phase of HONGAT

Input: Normalized adjacency matrix Â, feature matrix X,
maximum order of common neighbors K
Output: Neural network fθ(·), aggregation operator
S

1: while not convergence do
2: Generate the common neighbor similarity matrix via

SK = ΣK
k=0αkÂ

k

3: Compute the feature similarity matrix S̃ via Eq. (2).
4: Generate the masking matrix M via Eq. (8).
5: Obtain aggregation operator: S = M⊙ (SK + βS̃)
6: Obtain the hidden features: X = fθ(X)
7: Compute Loss via aggregated features X′ = SX
8: Optimize parameters according to Loss.
9: end while

10: return fθ(·) and S =0

Calculation Details. To generate polynomials of adjacency
matrix in common neighbor similarity and masking, K it-
erations: S(k) = S(k−1)Â + αK−kI are employed where
S(0) = αKI. The computational cost is O(K|E|n + Kn)

due to sparsity of Â and I. Then, computational cost of bi-
narization and Hadamard product is O(n2). Although all
operations can be further accelerated by distributed com-
puting infrastructures such as Apache Spark, HONGAT is
available to be recommended for large graphs where opera-
tors are pre-calculated. A detailed analysis of this is covered
in Appendix D.

Experiments
In this section, we conduct experiments on diverse real-world
datasets to validate the performance of the proposed HON-
GAT. We try to give answers to the following three questions.

RQ 1. Does the proposed method, with high-order neigh-
bors, outperform GATs and other baseline models?

RQ 2. Does over-smoothing hinder the exploration of high-
order neighbors in GAT and can HONGAT alleviate it?

RQ 3. Does the adjusted averaging range benefit general-
ization performance and the high-order graph details?

Experimental Datasets
We conduct experiments on three real-world benchmarks
tested in the work of GAT (Veličković et al. 2018) — Cora,
Citeseer and Pubmed (Sen et al. 2008). For all datasets, 20
nodes per class are used for training, 500 nodes are used for
validation and 1000 nodes are used for testing. We follow the
transductive setup in (Yang, Cohen, and Salakhudinov 2016)
and use random splits. The characteristics of all datasets are
summarized in Appendix C. Additional results on large and
heterophilic datasets are also reported there.

Implementation Details
We employ Pytorch (Paszke et al. 2017) to implement HON-
GAT. Following GAT (Veličković et al. 2018), we adopt
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Adam optimizer (Kingma and Ba 2015) with learning rate
0.005 and L2 regularization with λ = 0.0005 for Cora and
Citeseer. For Pubmed, we strengthen the learning rate to 0.01
and the L2 regularization with λ = 0.001. For all datasets,
we use early stopping with a window size of 100 and report
mean ± std accuracy over 10 runs.

To construct HONGAT, we choose K = 10. For all
datasets, we preprocess the input features by a 2-layer MLP
with 64 hidden units and employ a single HONGAT layer,
followed by a softmax activation. Dropout (Srivastava et al.
2014) with p = 0.6 is applied to each layer’s input. For
weights in Equation (5), we initialize {αk}Kk=0 with random
initialization in Pytorch and initialize β to 0. For weights in
Equation (8), we initialize γK to 1 and others to 0. The above
setting is equivalent to beginning training without using the
masking matrix.

Compared Methods
HONGAT is firstly compared with state-of-the-art GAT
and its variants, including SPAGAN (Yang et al. 2019),
ADSF (Zhang et al. 2020), GAT3 and GAT10. SPAGAN and
ADSF are state-of-the-art GAT variants, which are also de-
signed for full exploration of graph information. Specifically,
SPAGAN introduces a path-based attention when updating
node features. ADSF encodes structural details into GAT
layers with an adaptive fingerprint. GAT3 and GAT10 are re-
spectively a 3-layer and 10-layer GAT. In particular, GAT10

has the same receptive field size as we apply in HONGAT,
which ensures a fair comparison.

We also compare HONGAT with strong baseline models,
including i) MLP, which uses the attribute information of
nodes; ii) DeepWalk (Perozzi, Al-Rfou, and Skiena 2014), a
graph embedding method based on random walk; iii) Cheby-
shev (Defferrard, Bresson, and Vandergheynst 2016), a spec-
tral method which defines graph convolution using Cheby-
shev polynomials; iv) JKNet (Xu et al. 2018), which incor-
porates the outputs of different layers to preserve the locality
of node features; v) GCN (Kipf and Welling 2017), which
employs a predefined propagation matrix to approximate the
first-order Chebyshev and can be thought of as a special
case of attention, where the attention score for each neighbor
mainly depends on the fixed adjacency matrix; vi) SGC (Wu
et al. 2019), a simplified version of graph convolution archi-
tecture which removes all the nonlinearities between GCN
layers; vii) APPNP (Klicpera, Bojchevski, and Günnemann
2019) and GPR-GNN (Chien et al. 2021), which combine
GNNs with PageRank techniques. Moreover, S2GC (Zhu and
Koniusz 2021) which aggregates diffusion matrices over K
steps and SIGN (Frasca et al. 2020) which employs multi-
sized convolutional operators, are also compared.

Comparison Results
In this section, we answer the three questions we raise via
the experimental comparisons.

RQ 1. Does the proposed method, with high-order neigh-
bors, outperform GATs and other baseline models?

Table 1 summarizes the comparison of HONGAT and other
compared methods. From the results, we observe that HON-

Method Cora Citeseer Pubmed

MLP 56.7±2.1% 55.4±2.2% 73.9±0.8%
DeepWalk 65.4±2.0% 52.0±1.8% 67.7±0.7%
Chebyshev 76.3±1.6% 66.7±1.6% 77.5±0.3%
JKNet 76.4±2.5% 62.6±3.4% 77.3±0.6%
SGC 78.3±1.0% 69.0±0.9% 75.4±1.7%
GCN 80.0±1.7% 68.1±1.8% 78.5±0.6%
APPNP 82.1±1.4% 69.2±1.3% 79.6±1.7%
GPR-GNN 82.1±1.0% 68.7±1.8% 79.4±2.1%
S2GC 82.1±0.4% 68.9±0.9% 79.8±0.6%
SIGN 81.7±1.0% 69.1±0.8% 79.6±1.5%
GAT 81.2±0.7% 68.4±1.4% 78.9±0.6%

GAT3 80.1±1.7% 67.3±2.6% 76.9±2.0%
GAT10 66.3±2.5% 20.8±5.0% 42.3±3.4%

SPAGAN 82.0±0.7% 69.0±1.5% 79.5±0.5%
ADSF 82.3±0.8% 69.1±1.8% 80.0±0.7%

HONGAT 83.1±1.0% 69.5±1.2% 81.1±0.8%

Table 1: Comparison of classification (mean accuracy ± std
(%)) on real datasets. The best results are shown in bold.

GAT consistently outperforms all the baseline models and
achieves an average accuracy improvement of 2.2% com-
pared to GAT, which is non-marginal. Specifically, HONGAT
achieves a 2.3%, 1.6% and 2.7% accuracy improvement on
Cora, Citeseer and Pubmed. Besides, baseline models gen-
erally do not work as good as GATs and HONGAT. This
confirms the necessity and promising results of exploring
informative high-order neighbors.

RQ 2. Does over-smoothing hinder the exploration of high-
order neighbors in GAT and can HONGAT alleviate it?

When focusing on the results of GAT3 and GAT10 in Ta-
ble 1, we find that the increased attention layers always lead
to worse performance. This indicates GAT’s failure to ex-
plore high-order neighbors caused by the over-smoothing
issue. To further study the over-smoothing effect and the
validity of our method in alleviating it, we provide a spec-
tral analysis as shown in Figure 3. Specifically, the first row
shows the spectrums of the graph signals output by GAT,
HONGAT and GAT10 on the Cora, Citeseer and Pubmed
datasets. The second row shows the corresponding frequency
responses h(λ̃) recovered from the output signals and the
original ones. We employ symmetrically normalized Lapla-
cian Lsym = D− 1

2LD− 1
2 . From Figure 3, we find that the

differences between the components of the graph signals out-
put by GAT10 are significantly eliminated, which reflects the
over-smoothing issue caused by multi-layer stacking and ex-
plains the degraded performance of GAT10. Nevertheless, the
outputs of HONGAT remain distinguishable, which validates
its ability to escape from the over-smoothing risk and explore
high-order-neighbor information.

Another observation is that, when compared with GAT,
HONGAT suppresses high-frequency noises better as well
as preserves more informative low-frequency components.
Specifically, when focusing on the spectrums of output sig-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16754



0.0 0.5 1.0 1.5 2.0

Graph frequency ̃λ

0

5

10

15
|x
|

Cora

GAT
HONGAT
GAT10

0.0 0.5 1.0 1.5 2.0

Graph frequency ̃λ

0

5

10

15

|x
|

Citeseer

GAT
HONGAT
GAT10

0.0 0.5 1.0 1.5 2.0

Graph frequency ̃λ

0

5

10

15

|x
|

Pubmed

GAT
HONGAT
GAT10

0.0 0.5 1.0 1.5 2.0

Graph frequency ̃λ

0

50

100

h(
̃ λ)

GAT
HONGAT
GAT10

0.0 0.5 1.0 1.5 2.0

Graph frequency ̃λ

0

50

100

h(
̃ λ)

GAT
HONGAT
GAT10

0.0 0.5 1.0 1.5 2.0

Graph frequency ̃λ

0

50

100

h(
̃ λ)

GAT
HONGAT
GAT10

Figure 3: Spectral analysis for GAT, HONGAT and GAT10. The first row shows the spectrums of graph signals output by the
three models. The second row shows the corresponding frequency responses h(λ̃) recovered from the output signals and the
original ones.

Dataset Model Acc Ratio1 / Ratio2 / Ratio3

Cora HONGAT† 82.1±1.5% 8.9% / 18.0% / 27.2%
HONGAT 83.1±1.0% 9.3% / 18.5% / 27.9%

Citeseer HONGAT† 69.3±1.4% 9.0% / 18.0% / 27.0%
HONGAT 69.5±1.2% 9.5% / 17.9% / 27.4%

Pubmed HONGAT† 80.7±1.3% 9.5% / 18.7% / 27.3%
HONGAT 81.1±0.8% 9.8% / 19.1% / 28.0%

Table 2: Comparison of classification (mean accuracy
± std (%)) and high-order KCN index ratios (Ratio1
/Ratio2/Ratio3 (%)) obtained by HONGAT and HONGAT
with the removed mask. The best results and highest ratios
are shown in bold.

nals and the recovered frequency responses, the red lines cor-
responding to HONGAT are always higher than the blue ones
corresponding to GAT in the range of low frequency, which
means, by leveraging high-order neighbors, HONGAT fur-
ther amplifies the useful low-frequency components. While in
high frequency range, the red lines are always lower than the
blue ones, which means the harmful high-frequency noises
have been well attenuated by our method.

RQ 3. Does the adjusted averaging range benefit general-
ization performance and the high-order graph details?

To validate the benefits of the proposed new masking ma-
trix, we compare the classification performance of HONGAT
and HONGAT with the removed mask. We use HONGAT†

to describe the latter. The results are shown in Table 2, where
the full HONGAT model consistently achieves better perfor-

mance. This implies that HONGAT, by learning a suitable
averaging range, is more powerful in identifying valuable
high-order neighbors. In addition, we compare the ratios of
the highest order, the highest two order and the highest three
order KCN indices employed (Ratio1, Ratio2 and Ratio3
for short) to examine the effect of new masking in exploring
high-order graph details. A higher ratio of the high-order
KCN indices used implies a more global utilization of graph
information because a longer “chain” of high-order neighbors
is explored when computing averaging weights. The results
are shown in Table 2, where we find that Ratio1, Ratio2 and
Ratio3 are clearly improved, which shows the effectiveness
of proposed masking mechanism in exploiting high-order
graph information.

We further confirm this result in Figure 4. Specifically, for
each dataset, we set K = 10 and increase order of averaged
neighbors (described by Ka) from 1 to 10. We then record
how Ratio1, Ratio2 and Ratio3 change with Ka. The values
of Ratio2 and Ratio3 are scaled and maximum values are
marked with stars. As can be seen, when Ka is close to or
equal to K, Ratio1, Ratio2 and Ratio3 are usually lower
than those in the cases of Ka < K. This means by adjusting
the averaging range with the proposed new masking matrix,
the exploration of high-order graph details can be improved.

Ablation Study
An ablation study is also conducted to validate the signif-
icance of the proposed common-neighbor-based topologi-
cal similarity. Specifically, the classification performance of
HONGAT with only semantic similarity considered, namely
{αk}Kk=0 = 0 (described by HONGAT w/o TOPO1), and the
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Figure 4: Verification of improved graph exploration with adjusted averaging range. The curves in different colors reveal that
when K = 10, how the ratios of the highest order, the highest two order and the highest three order KCN indices employed
change with order of aggregated neighbors Ka.

Method Cora Citeseer Pubmed

HONGAT w/o TOPO1 20.5±4.9% 27.9±6.1% 43.6±5.4%
HONGAT w/o TOPO2 18.0±6.5% 18.6±1.8% 30.1±4.1%
HONGAT w/o SEM 82.7±0.9% 69.2±1.1% 80.7±0.9%

HONGAT 83.1±1.0% 69.5±1.2% 81.1±0.8%

Table 3: Comparison of classification (mean accuracy ± std
(%)) of HONGAT with only semantic or topological similar-
ity and full HONGAT. The best results are shown in bold.

full HONGAT model is reported. In this case, masking matrix
provides adaptive weights for different orders of neighbors.
Another way to utilize semantic information is also compared
where {αk}Kk=0 = 0 and the masking matrix is removed (de-
scribed by HONGAT w/o TOPO2). The results are shown
in Table 3. It can be seen that although having the same re-
ceptive field, HONGAT with only semantic similarity fail
to maintain the effectiveness of HONGAT. This suggests
the necessity of using the topological similarity revealed by
common neighbors.

Furthermore, it is natural to think that whether the seman-
tic similarity can be ignored via letting β = 0 in Equation
(5). Therefore, the results of the HONGAT model that only
contains topological similarity are also compared, which is
described by HONGAT w/o SEM. As shown in Table 3,
HONGAT without semantic similarity considered usually
performs worse than the full HONGAT model, which con-
firms the positive impact of semantic information.

Relationship with Existing Methods
Our algorithm is discussed and compared with existing GNN
methods (mainly divided into attention-based and spectral-
based methods).

Attention-Based Methods. By attending to most relevant
neighbors, GAT methods have shown great success in various
tasks (Song et al. 2019; Huang and Carley 2019; Wang et al.
2019a; Park et al. 2020; Rong et al. 2020; Wang et al. 2020;
Dong et al. 2022). Some works adopt attention mechanisms
other than the standard one used in GAT (Zhang et al. 2018;
Busbridge et al. 2019; Wang et al. 2019b; Zeng et al. 2021).
However, high-order neighbors are still largely unemployed

in GATs. Recently, there are works trying to incorporate
global graph details into graph attention networks. For ex-
ample, SPAGAN (Yang et al. 2019) conducts path-based
attention and ADSF (Zhang et al. 2020) encodes structural
information into an adaptive fingerprint. Our method is differ-
ent in two ways. First, common-neighbor-based similarity is
employed as a new way to introduce graph topology and en-
able the exploration of high-order neighbors, which ensures
a polynomial-like frequency response for HONGAT. Second,
the averaging range is explicitly adjusted in HONGAT to
further optimize the high-order neighbor utilization. Experi-
ments demonstrate the performance gains of HONGAT over
these methods.

Spectral-Based Methods. Let β = 0 in Equation (5) and
remove the mask, the proposed HONGAT layer will degen-
erate to a polynomial filter with free coefficients, which im-
plies popular spectral methods like SGC (Wu et al. 2019),
APPNP (Klicpera, Bojchevski, and Günnemann 2019) and
GPR-GNN (Chien et al. 2021) can be seen as special cases of
HONGAT. As demonstrated by the above empirical results,
HONGAT conducts a more informative exploration of graphs
and achieves improved performance on all benchmarks. Be-
sides, S2GC (Zhu and Koniusz 2021) aggregates diffusion
matrices over K steps and SIGN (Frasca et al. 2020) em-
ploys multi-sized convolutional operators for extending the
neighborhood size. HONGAT is notably different in that it is
derived from GATs and it can exploit similarity information
embedded in feature space. In addition, we find that, under
the common-neighbor-based attention framework, other poly-
nomial filters can also be interpreted as attention networks
without consideration of the semantic similarity ai,j , which
is further discussed in Appendix E.

Conclusion
In this paper, we tackle a crucial issue of GAT, that is, the fail-
ure to explore high-order neighbors. We propose a simple and
effective HONGAT model to explore high-order neighbors
for GAT, which adopts two tightly coupled novel technolo-
gies: common neighbor similarity and new masking matrix.
Empirical results on real-world benchmark datasets show
that, by utilizing high-order neighbors, HONGAT always
performs better than GAT and other baseline methods.
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