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Abstract

Privacy-preserving Machine Learning as a Service (MLaaS)
enables the powerful cloud server to run its well-trained
neural model upon the input from resource-limited client,
with both of server’s model parameters and client’s input
data protected. While computation efficiency is critical for
the practical implementation of privacy-preserving MLaaS
and it is inspiring to witness recent advances towards effi-
ciency improvement, there still exists a significant perfor-
mance gap to real-world applications. In general, state-of-the-
art frameworks perform function-wise efficiency optimiza-
tion based on specific cryptographic primitives. Although it
is logical, such independent optimization for each function
makes noticeable amount of expensive operations unremov-
able and misses the opportunity to further accelerate the per-
formance by jointly considering privacy-preserving computa-
tion among adjacent functions. As such, we propose COIN:
Conjunctive Optimization with Interleaved Nexus, which re-
models mainstream computation for each function to con-
junctive counterpart for composite function, with a series
of united optimization strategies. Specifically, COIN jointly
computes a pair of consecutive nonlinear-linear functions in
the neural model by reconstructing the intermediates through-
out the whole procedure, which not only eliminates the most
expensive crypto operations without invoking extra encryp-
tion enabler, but also makes the online crypto complexity in-
dependent of filter size. Experimentally, COIN demonstrates
11.2× to 29.6× speedup over various function dimensions
from modern networks, and 6.4× to 12× speedup on the to-
tal computation time when applied in networks with model
input from small-scale CIFAR10 to large-scale ImageNet.

Introduction
Machine Learning as a Service (MLaaS) establishes a kind
of service pattern where the client C uploads her input to a
cloud server S which runs its well-trained neural network
and returns inference output to C. Such mode relives the
awkward requirement, to the clients, for substantial train-
ing data and powerful computational resources to train and
apply DL models for their specific needs (Najafabadi et al.
2015). However, data privacy arises as a critical challenge in
the practical implementation of MLaaS, as C needs to trans-
mit her private data to S . On the one hand, clients naturally
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wish to obtain the model output without any other parties
know their input. In fact, regulations have been in place to
prohibit the disclosure of private data in various domains,
e.g., the Health Insurance Portability and Accountability
Act (HIPAA) (Assistance 2003) for medical information and
the General Data Protection Regulation (GDPR) (Goddard
2017) for business records. On the other hand, S seeks to
maintain the confidentiality of model parameters to safe-
guard its intellectual property, and only provide the model
output in response to the client’s inference query.

Privacy-preserving MLaaS offers a promising solution
to reconcile MLaaS with data protection. It integrates
cryptographic primitives (e.g., Homomorphic Encryption
(HE) (Brakerski 2012; Fan and Vercauteren 2012; Cheon
et al. 2017) and Multi-Party Computation techniques (MPC)
such as Garbled Circuits (GC) (Bellare, Hoang, and Rog-
away 2012; Yao 1986) and Oblivious Transfer (OT) (Bras-
sard, Crépeau, and Robert 1986)) into function computa-
tion of neural networks such that the server is oblivious to
the client’s private input while the client gains no access to
the server’s proprietary model parameters beyond necessary
inference output, e.g., the predicted class (Gilad-Bachrach
et al. 2016). However, computation efficiency acts as a
fundamental challenge to make privacy-preserving MLaaS
practical, since large-size circuits and/or function approx-
imations are needed to apply cryptographic primitives to
compute all functions, which may result in much high com-
putation complexity and/or degraded prediction accuracy.

A series of recent works have made encouraging progress
towards improving system efficiency of privacy-preserving
MLaaS (Demmler, Schneider, and Zohner 2015; Liu et al.
2017; Mohassel and Zhang 2017; Juvekar, Vaikuntanathan,
and Chandrakasan 2018; Riazi et al. 2018; Rouhani, Ri-
azi, and Koushanfar 2018; Mohassel and Rindal 2018; Riazi
et al. 2019; Mishra et al. 2020; Rathee et al. 2020; Boemer
et al. 2020; Zhang, Xin, and Wu 2021; Patra et al. 2021; Tan
et al. 2021; Hussain et al. 2021; Ng et al. 2021; Huang et al.
2022). Among them, the mixed-primitive frameworks which
utilize HE to compute linear functions (e.g., convolution and
fully connection) while adopt MPC for nonlinear functions
(e.g., ReLU) have demonstrated additional efficiency advan-
tages (Liu et al. 2017; Juvekar, Vaikuntanathan, and Chan-
drakasan 2018; Rathee et al. 2020; Huang et al. 2022) and it
is noteworthy that the inference speed has been improved
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Figure 1: Comparison of basic computation logic between mainstream approaches and COIN.

by several orders of magnitude increase from early HE-
based frameworks like CryptoNets (Gilad-Bachrach et al.
2016) to recent mixed-primitive approaches such as CrypT-
Flow2 (Rathee et al. 2020) and Cheetah (Huang et al. 2022).
However, there is still a performance gap to real-world ap-
plications and this work aims to further accelerate the com-
putation efficiency of mixed-primitive schemes.

At a high level, the core logic in state-of-the-art privacy-
preserving frameworks, particularly the mixed-primitive
frameworks, revolves around the fundamental concept of
function-wise optimization: First, the output of a function is
computed based on specific cryptographic primitives, and is
shared between C and S . Second, the respective shares held
by C and S serve as the input of next function. Since a neu-
ral network consists of a stack of linear and nonlinear func-
tions, this function-wise optimization is sequentially applied
on functions from beginning to the end. Figure 1(a) shows
the basic diagram of such process.

Key observations. While the function-wise optimization
is logical and is also followed by most of privacy-preserving
frameworks, there is a need to reconsider the computational
cost associated with independently computing each function
output, particularly the overhead involved in HE-based com-
putation for each linear function. For instance, our prelim-
inary experiments show that one HE-based convolution in
VGG-19 (Simonyan and Zisserman 2014) with input size
14×14@512, kernel size 3×3@512, padding size 1×1, and
stride size 1×1 takes about 39 seconds under CrypTFlow2
framework on the Intel Core i7-11370H@3.30GHz CPU.
In contrast, computing the OT-based nonlinear ReLU with
the same input size, which is the previous function to the
convolution, only takes about 0.9 seconds, representing only
around 2.3% of the time taken by the HE-based convolu-
tion. As a neural network consists of a stack of linear and
nonlinear functions, this disparity highlights HE operations
as the main obstacle in achieving efficient model compu-
tation for practical privacy-preserving MLaaS. Since rota-
tion is the most expensive HE operation among the three ba-
sic ones (addition, multiplication, and rotation) in HE-based
computation for linear functions, minimizing the number
of involved rotations becomes crucial to improve the over-
all computational efficiency (Juvekar, Vaikuntanathan, and
Chandrakasan 2018; Rathee et al. 2020; Zhang, Xin, and Wu
2021; Huang et al. 2022).

However, function-wise optimization makes most of ex-
pensive HE operations unremovable, which limits further
efficiency improvement of privacy-preserving MLaaS. For
example, CrypTFlow2 (Rathee et al. 2020) needs rotations
with numbers proportional to filter size (e.g., output chan-
nels and filter width) to compute the encrypted convolution
output. Cheetah (Huang et al. 2022) and Zhang (Zhang et al.
2022) eliminate the rotations by either introducing other HE
operation namely Extraction (Extr) or involving intensive ci-
phertext communication at running time, with all complexi-
ties proportional to output channels. As the filter size is large
in practical models such as 3×3@512 in VGG (Simonyan
and Zisserman 2014), we are motivated to surpass the lim-
itation of computational complexity for function-wise op-
timization by jointly considering the computing process of
composite functions in a neural model. Specifically, we fo-
cus on the composite function fcfrfcfr(x) which includes
a pair of consecutive ReLU fr(·) and convolution function
fc(·), and forms a basic combination in widely-applied net-
works (Krizhevsky, Sutskever, and Hinton 2012; Simonyan
and Zisserman 2014; He et al. 2016).

Instead of separately minimizing the MPC-based cost for
getting y = fr(x) (or γ = fr(z)) with respect to x (or z), and
the HE cost for computing z = fc(y) (or fc(γ)) with respect
to y (or γ), which is the mainstream logic among state-of-
the-art frameworks, we propose a conjunctive optimization
of composite function fcfrfcfr(x) with respect to input x.
By linking two adjacent linear functions with their nonlinear
input as illustrated in Figure 1(b), we aim to reduce the num-
ber of costly and unremovable operations within the whole
procedure, which is not possible under function-wise com-
putation in mainstream works. To make such optimization
truly advantageous, we need to determine the right terms for
each party to calculate, ensuring that the overall computation
cost for fcfrfcfr(x) is significantly reduced.

Given the input-independent pregeneration of one share
of each function output, we design an online-offline assign-
ment of unfolded terms in z = fcfr(x) and subsequent
fcfr(z). With the client’s pregenerated share for fcfr(x)
and the server’s pregenerated share for fcfr(z), we con-
struct a set of specific ciphertext and masked intermediates
in an input-independent offline phase, and make the data-
dependent online computation not only escape part of MPC-
based computation, such as multiplexing, but also involve

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16795



Func.s Schemes Computation Cost for HE Operations Communication Cost
# Rot # Mult (Add) # Ciphertexts # Round

2×fcfr(x)

DELPHI O(CiCoHiWi(fh)
2) O(CiCoHiWi(fh)

2) O(CiHiWi + CoHoWo) 2 + rd{f ′
r (x),Mux(x)}

CrypTFlow2 O(CiCoHiWi(fh)
2) O(CiCoHiWi(fh)

2) O(CiHiWi + CoHoWo) 2 + rd{f ′
r (x),Mux(x)}

Cheetah 0 O(CiCoHiWi) O(CiHiWi + CoHoWo) 2 + rd{f ′
r (x),Mux(x)}

COIN 0 O(CiHiWi) O(CiHiWi) 2 + rd{f ′
r (x)}

2×fwfr(x)

HElib O(ni) O(ni) O(ni) 2 + rd{f ′
r (x),Mux(x)}

GAZELLE O(nino − log no) O(nino) O(nino) 2 + rd{f ′
r (x),Mux(x)}

Cheetah 0 O(nino) O(nino) 2 + rd{f ′
r (x),Mux(x)}

COIN 0 O(ni) O(ni) 2 + rd{f ′
r (x)}

Table 1: Running-time complexities of COIN to compute composite functions compared with DELPHI (Mishra et al. 2020),
CrypTFlow2 (Rathee et al. 2020), Cheetah (Huang et al. 2022), HElib (Halevi and Shoup 2014), and GAZELLE (Juvekar,
Vaikuntanathan, and Chandrakasan 2018). Here the fully connection (FC) is denoted as fw(·). The input of fc(·) is with size
Ci×Hi×Wi. Co and fh are the number and the size of filters, respectively. Ho and Wo are the height and width of convolution
output. The FC inputs an ni-sized vector and outputs the no-sized one. rd is the number of communication rounds for target
functions. f ′r (x) and Mux(x) are the derivative of ReLU, and the multiplexing of getting x, respectively. The communication
cost to compute f ′r (x) is excluded, and Cheetah needs HE Extr operations in O(CoHoWo) for fcfr(x) and in O(no) for fwfr(x).

filter-independent number of HE additions and multiplica-
tions. Such joint computation with interleaved share pregen-
eration, which we call COIN: Conjunctive Optimization with
Interleaved Nexus, makes it possible to surpass the complex-
ity limitation in function-wise frameworks, resulting in elim-
ination of all HE rotations, reduced communication rounds,
and light involvement of HE addition and multiplication,
without other HE operations such as Extraction. For exam-
ple, computing adjacent ReLU and convolution fcfrfcfr(x)
with COIN under aforementioned sizes shows a speedup
about 30 times compared to mainstream approaches. Such
efficiency advantage makes COIN promising to be applied
in AI-based clinical diagnosis, which has been deployed by
Ant Group, where a small clinic could obtain a timely and
more precise diagnostic analysis result from central hospi-
tals that possess more comprehensive DL models.

Our contributions. Overall, the contributions of this
work are summarized as follows.

• We initiate the comprehensive investigation of conjunc-
tive optimization for efficient privacy-preserving MLaaS
and introduce our approach called COIN, which chal-
lenges the conventional function-wise mode by remod-
eling the computation process from input to output of the
same function, to the conjunctive counterpart that goes
through consecutive functions in a neural model.

• The complexity advantages of COIN’s optimization for
composite functions are highlighted in Table 1. One no-
table benefit is that COIN eliminates the need for ad-
ditional cryptographic operations while removing rota-
tions. Besides, COIN ensures that the running-time cryp-
tographic complexity is independent of filter size, which
contributes to the overall efficiency and effectiveness to
boost the performance of computing the whole model.

• Through extensive experiments, COIN outperforms the
function-wise computation typically employed in state-
of-the-art works. Specifically, COIN exhibits a speedup
from 11.2× to 29.6× across various function dimensions
in modern networks. Furthermore, COIN achieves no-

table speed gains of 6.4× to 12× when integrated into
networks with datasets from small-scale CIFAR10 to
large-scale ImageNet.

The rest of the paper is organized as follows. First, we
introduce system setup and primitives that are adopted in
COIN. Then, the design of COIN to compute fcfrfcfr(x)
and the strategies that best adapt COIN to neural networks
are elaborated. Next, the experimental results are illustrated
and discussed. Finally, we conclude the paper.

Preliminaries
Notations. [[i]] is the set of integers {0, 1, . . . , i − 1} for
nonzero integer i. ⌈·⌉ and ⌊·⌋ are the ceiling function and
flooring function, respectively. r $

←D randomly samples a
component r from a set D. The logical XOR is ⊕. Zp =
Z ∩ [−⌊p/2⌋, ⌊p/2⌋] for p > 2, and Z2 = {0, 1}. Further-
more, +,−, and ⊠ are element-wise addition, subtraction,
and multiplication in either ciphertext or plaintext domain,
depending on whether ciphertext is involved or not.

System Model
We consider the context of cryptographic inference as shown
in Figure 2 where C holds a private input while S owns the
network with proprietary model parameters. The server pro-
cesses C’s private input through a sequence of linear and
nonlinear functions to finally classify the input into one of
the potential classes. After the inference, C learns the net-
work architecture such as the types and dimensions of in-
volved functions, and the network output, while S learns
nothing. Such learnt information is commonly assumed in

Figure 2: Overview of Cryptographic Inference.
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Figure 3: Overview of COIN to compute composite function fcfrfcfr(x).

the state-of-the-art frameworks, e.g., MiniONN (Liu et al.
2017) and Cheetah (Huang et al. 2022). Furthermore, we
target at the functions widely-applied in Convolutional Neu-
ral Network (CNN). As for the linear functions, we focus
on four types namely Convolution (Conv), Fully Connection
(FC), Batch Normalization (BN), and Mean Pooling (Mean-
Pool). As for the nonlinear functions, we mainly deal with
ReLU and Max Pooling (MaxPool).

Threat Model and Security
COIN is secure against a semi-honest adversary based on the
simulation paradigm (Lindell 2016). Specifically, a compu-
tationally bounded adversary corrupts either C or S at the
beginning of the protocol while it follows the protocol spec-
ification honestly. Security is modeled by defining two in-
teractions: a real-world interaction where C and S execute
protocol in presence of an adversary and environment, and
an ideal-world interaction where both parties send their in-
puts to a trusted third party that computes target function-
ality faithfully. Security requires that for every adversary in
real world, there is a simulator, in the ideal world, which
makes no environment be able to distinguish between real-
world and ideal-world interactions.

Cryptographic Primitives
Homomorphic Encryption (HE). HE is a primitive that
supports linear operations over encrypted vectors with-
out decryption, and the encrypted output matches the
corresponding operations on plaintext (Juvekar, Vaikun-
tanathan, and Chandrakasan 2018). The correctness of

HE is firstly guaranteed by a decryption process such
that x = D(sk, [x]) where sk is the secret key, x =
(x0, x1, . . . , xN−1) ∈ ZN

p , and the ciphertext [x] =
E(pk,x) where pk is the public key. Such process is done
by either the client or the server when attached with sub-
script C or S . Second, HE is able to securely evaluate
an arithmetic circuit consisting of addition and multipli-
cation gates based on the following homomorphic opera-
tions: (1) Addition (Add, +): D(sk, [u] + [v]) = u + v
and D(sk, [u] + v) = u + v. (2) Subtraction (Sub, −):
D(sk, [u] − [v]) = u − v and D(sk, [u] − v) = u − v.
(3) Multiplication (Mult, ⊠): D(sk, [u] ⊠ v) = u ⊠ v.
(4) Rotation (Rot,R([u], l)): D(sk,R([u], l)) = uℓ. Here
uℓ = (uℓ, . . . , uN−1, u0, . . . , uℓ−1 ) and ℓ ∈ [[N ]], u =
(u0, . . . , uN−1), v = (v0, . . . , vN−1) ∈ ZN

p , and a rotation
by (−ℓ) is the same as a rotation by (N − ℓ).

Additive Secret Sharing (ASS). ASS generates shares of
input x ∈ Zp as shr0 and shr1. The shares are randomly
sampled in Zp such that shr0 + shr1 = x mod p. In this
work, ASS is adopted to form the shares of intermediates in
computing composite functions.

Oblivious Transfer (OT). OT involves a sender that owns
multiple messages and a receiver that has the message index.
The receiver can get the desired message at the end of the
protocol without knowing sender’s other messages, and the
sender neither knows which message the receiver obtains.
OT is utilized to realize a highly efficient computation for
derivative of ReLU (Rathee et al. 2020) and COIN adopts
such module to facilitate its joint computation.
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System Description
Overview
Figure 3 illustrates the overview of COIN to compute com-
posite function fcfrfcfr(x). By considering the pregener-
ation property of one share of each function, we specifi-
cally associate the unfolded terms in fcfrfcfr(x) such that
large portion of the computation is offloaded into an input-
independent offline phase while the overall overhead is com-
parable to SOTA frameworks. Particularly, the whole pro-
cedure is divided into two phases namely online compu-
tation and offline computation, and the offline computa-
tion mainly involves in a Rot-free sharing to prepare in-
termediates based on which the online computation enables
each party to finally get the share of fcfrfcfr(x) in a much
more efficient way with reduced communication rounds and
filter-independent crypto complexity. Moreover, since a neu-
ral model also includes other functions than fcfrfcfr(x), a
series of structure adaptations are introduced to maximize
COIN’s computational advantages.

Conjunctive Optimization for fcfrfcfr(x)
Recall that we aim to optimize fcfrfcfr(x) such that the effi-
ciency is much improved than function-wise computation of
mainstream frameworks. We achieve this goal by first inves-
tigating the unfolded expression of z = fcfr(x), and then
bringing fcfr(z) into consideration. Specifically, fcfr(x) is
expressed as:

fcfr(x) = k ∗ fr(x) = k ∗ {f ′r (x)⊠ x)}
= k ∗ {h1 + r0 + h2 ⊠ g1(x) + h3 ⊠ g0(x)}+ k ∗ h4

= k ∗ h5 + k ∗ h4 + k ∗ r0 (1)

where 

h1 = x0 ⊠ g0(x)− r0
h2 = x0 ⊠ {1− 2⊠ g0(x)}
h3 = x1 ⊠ {1− 2⊠ g1(x)}
h4 = x1 ⊠ g1(x)

h5 = h1 + h2 ⊠ g1(x) + h3 ⊠ g0(x),

(2)

kernel k ∈ ZCo×Ci×fh×fh
p . x,x0,x1, r0,h1,h2,h3,h4 ∈

ZCi×Hi×Wi
p . x0 and x1 are shares at C and S satisfying

x0 + x1 = x. r0 is generated by C. g0(x) and g1(x) are
the respective Boolean shares of client and server obtained
from the OT-based module for getting derivative of ReLU
f ′r (x) (Rathee et al. 2020) where g0(x)⊕ g1(x) = f ′r (x) ∈
ZCi×Hi×Wi
2 . Here we unfold fcfr(x) by putting together the

variables that belong to either C or S .
Since k is owned by S , r0 and one of the shares of both

x and f ′r (x) could be pregenerated, we first utilize the pre-
generation of x1, g1(x) and r0 to construct necessary in-
termediates at offline phase to enable much more efficient
online computation. Specifically, S obtains plaintext k ∗ h4

in Eq. (1). It also encrypts g1(x) and h3, and sends them
to the client. Furthermore, a rotation-free computation, with
only HE addition and multiplication, is conducted to obtain
shares of k ∗ r0 at both parties. Such elimination of Rot
is inspired from the relationships among Conv, dot product

Figure 4: Relations among Conv, FC, and HE operations.

namely FC, and HE operations, as illustrated in Figure 4. As
each number of convolution output is the sum of kernel val-
ues scaled by input elements that are within the kernel win-
dow, the overall convolution is equivalent to the dot product
between a flattened kernel matrix and a re-organized input
matrix (Jia et al. 2014). Therefore, C encrypts multiple rows
of the re-organized r0 namely r̂0 which enables S to per-
form HE Mult, Add, and ciphertext sharing to finally share
the k ∗ r0 at both parties. Given the constructed shares and
the S-encrypted g1(x) and h3 formed at offline phase, the
online phase involves an OT-based module for getting share
of f ′r (x) at the client namely g0(x). Then C is able to ob-
tain encrypted h5 based on Eq. (2), which is later decrypted
by the server to obtain its share of z = fcfr(x) namely z1.
While the share of z = fcfr(x) at C namely z0 comes from
its share of k ∗ r0 at offline phase.

To efficiently enable subsequent computation for fcfr(z)
based on known z0 at C and online-formed z1 at S , we let
the client pregenerate Boolean share of f ′r (z) namely g0(z)
and rewriting Eq. (1) as

fcfr(z) = k† ∗ fr(z) = k† ∗ {f ′r (z)⊠ z)}
= k† ∗ {h†4 + h†2 ⊠ g1(z) + h†3 ⊠ g0(z)− r†0}+
k† ∗ (h†1 + r†0) = k† ∗ (h†5 − r†0) + k† ∗ (h†1 + r†0) (3)

where 

h†1 = z0 ⊠ g0(z)

h†2 = z0 ⊠ {1− 2⊠ g0(z)}
h†3 = z1 ⊠ {1− 2⊠ g1(z)}
h†4 = z1 ⊠ g1(z)

h†5 = h†4 + h†2 ⊠ g1(z) + h†3 ⊠ g0(z)

(4)

kernel k† ∈ ZC†
o×Co×f†

h×f
†
h

p . z, z0, z1,h
†
1,h
†
2,h
†
3,h
†
4, r
†
0 ∈

ZCo×Ho×Wo
p , and r†0 is randomly generated by C. g0(z) and

g1(z) are the respective Boolean shares of client and server
and g0(z)⊕ g1(z) = f ′r (z) ∈ ZCo×Ho×Wo

2 .
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Figure 5: Offline sharing of k ∗ r0 and k† ∗ (h†1 + r†0).

Given k† at S , and the obtained g0(z), z0, and r†0, we
treat (h†1 + r†0) as r0 in Eq. (1) and k† ∗ (h†1 + r†0) is thus
shared in a way similar to the sharing of k ∗ r0 at offline
phase. Figure 5 details the offline sharing as a whole. On
the other hand, (h†5 − r†0) acts similarly as h5 in Eq. (5)
which enables S to obtain plaintext (h†5 − r†0), and the con-
crete process is described in Figure 6. Then, S directly gets
k† ∗ (h†5 − r†0) in plaintext, and shares the result with C.
After that, S and C locally obtain their respective shares of
fcfrfcfr(x) namely shr†1 and shr†0, which serve as the in-
put of subsequent computation.

Additionally, we deal with composite function consisting
of ReLU and FC, fwfrfwfr(x), in a way similar to that of
computing fcfrfcfr(x) where k and convolution “ ∗ ” are
replaced by weight matrix w and dot product “ · ”, respec-
tively.

Network Adaptation for Best Usage
A neural network always contains other functions than
fcfrfcfr(x), e.g., MaxPool, MeanPool, and BN. Therefore,
we propose to do function adaptation to maximize the uti-
lization of proposed joint optimization. Firstly, we stretch
fcfrfcfr(x) into composite function including B consecu-
tive blocks of combined function fcfr(·) as

fcfr︸︷︷︸
B

· · · fcfr︸︷︷︸
2

fcfr︸︷︷︸
1

(x) (5)

Here, If B = 1, the shares of S and C namely shr1 and
shr0 serve as the input of subsequent function. If B = 2,
S sets its final share as {shroff

13 + k† ∗ (h†5 − r†0)} while
C sets the one to shroff

03. If B ≥ 3, the computation for i-
th (i ≥ 2) block works as that for fcfr(z) without the final

Figure 6: Rot-free computation for (h†5−r†0) at online phase.

sharing from S to C. It makes S always get its share for pre-
vious block online similar to z1 in Figure 3, enabling itera-
tive process in the logic of computing fcfr(z). Similar logic
is applied to composite function with hybrid fc(·) and fw(·).

Secondly, we aim to reassemble other functions in the
neural network such that fcfr(x) or fwfr(x) appears as
much as possible, enabling most optimization for compos-
ite function in form of Eq. (5). As such, we identify three
function blocks where ReLU and Conv are separated by
other functions and transform them into another compos-
ite functions where ReLU and Conv are adjacent. At a high
level, function block in ReLU→MaxPool→Conv is equiva-
lently shaped in MaxPool→ReLU→Conv. Function block
in ReLU→MeanPool→Conv is transformed into another
block with only ReLU and Conv by separating summing and
averaging in MeanPool into ReLU and Conv. Finally, func-
tion block in Conv→BN is transformed into another Conv
by combining the scalars in BN with the process for com-
puting Conv.

Evaluation
We implement COIN based on the open-sourced code from
CrypTFlow2 (Rathee et al. 2020) and all experiments are run
in LAN with gigabit bandwidth. Each machine possesses a
CPU with Intel Core i7-11370H@3.3GHz, and the system
memory is 38.9GB. We evaluate COIN over VGG-19 (Si-
monyan and Zisserman 2014) and ResNet-34 (He et al.
2016) using CIFAR10 (cif 2021) and ImageNet (Deng et al.
2009) datasets.

Online Performance
Microbenchmarks. COIN features with a light-weight on-
line complexity to compute composite function fcfrfcfr(x).
As such we demonstrate the concrete performance over
fcfr(x), which is the minimum block in fcfrfcfr(x).
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Figure 7: Performance Breakdown over VGG with ImageNet.

Hi,Wi, Ci Time (s)/Speedup Comm. (MB)
s, fh, Co COIN CF2 GZ COIN CF2
14,14,512 1.32 39.2 720× 86.8 95.41,3,512 29.6×
28,28,128 1 11.27 120× 86.9 95.621,3,128 11.2×

8,8,128 0.27 6.75 380× 7.57 9.232,3,256 24.5×

Table 2: Online computation of fcfr in various dimensions.

Data Models Time (s)/Speedup Comm. (GB)
COIN CF2 COIN CF2

CIFAR10
VGG-19 12.5 80.8 0.89 0.366.4×

ResNet-34 16.4 116.6 0.26 0.277×

ImageNet
VGG-19 235.8 2848.6 15.5 17.312×

ResNet-34 77.4 670.5 5.2 58.6×

Table 3: Online computation of various neural models.

Specifically, the goal is to output shares of fcfr(x) given the
shares of x with size of Hi ×Wi@Ci. As shown in Table 2,
COIN shows up to 29.6× speedup and up to 720× speedup
on various function sizes from modern networks compared
to CrypTFlow2 and GAZELLE (CF2 and GZ in abbrevia-
tion), respectively. Meanwhile, COIN escapes multiplexing
needed in mainstream works, enabling a lighter communi-
cation cost.
Over modern networks. Table 3 shows the performance
over different modern networks by plugging in COIN’s opti-
mization. The key takeaways are summarized as follows. As
for VGG-19 and ResNet-34 with CIFAR10, COIN shows
6.4× and 7× running-time speedup, respectively. On the
other hand, COIN transfers more data than CrypTFlow2 es-
pecially over VGG-19. The main reason behind is the inclu-
sion of offline process due to the nonpregenerated property
of shares of MaxPool, which makes the offline computation
for subsequent composite function turn to online phase, dis-
abling our offline-online division and introducing extra com-
munication load at running time. That offline inclusion has
less impact on communication cost over ResNet-34 since
there are less MaxPools. It implies that COIN is more suit-

able with less Maxpools in terms of large-size networks with
small-scale input. As for VGG-19 and ResNet-34 with Im-
ageNet, COIN shows 12× and 8.6× running-time speedup
with reduced communication cost, respectively. The main
reason is that the overall efficiency harvest of COIN’s model
adaptation towards Maxpool is more significant than the cost
of corresponding offline inclusion. This suggests that COIN
is applicable to large-size networks with large-scale input.

Offline Included Performance Breakdown
In order to concretely understand COIN’s adaptability over
different function dimensions, including the overhead in of-
fline phase, we further break down the performance of tested
networks in function wise. Figure 7 demonstrates the break
down over VGG-19 with ImageNet. It shows that COIN out-
performs CrypTFlow2 in terms of both time and communi-
cation at offline and online phases. The main reason is due to
the large size of input makes our network adaptation for the
five MaxPools more beneficial to the subsequent conjunctive
optimization, with a much smaller input size after each pool-
ing operation. The details over other networks can be sim-
ilarly analyzed. Overall, COIN is more advantageous than
function-wise computation over various CNNs with various
input sizes, and similar observations are found in the WAN.

Conclusion
In this paper, we have embarked on comprehensive inves-
tigation on conjunctive optimization for efficient privacy-
preserving MLaaS, and have proposed COIN which fea-
tures by a computation module for composite function with
a series of joint optimization strategies. COIN aims to re-
model the computation process from input to output of
the same function, to the conjunctive counterpart that goes
through consecutive functions in a neural model. Theoreti-
cally, COIN not only eliminates the most expensive crypto
operations without invoking extra encryption enabler, but
also makes the running-time crypto complexity independent
of filter size. Experimentally, COIN has demonstrated 11.2×
to 29.6× speedup over various function dimensions from
modern networks, and 6.4× to 12× speedup on the total
computation time when plugged in networks with input from
small-scale CIFAR10 to large-scale ImageNet. Additionally,
although COIN deals with adjacent ReLU and Conv, it can
be readily integrated into other complex architectures such
as the feed-forward blocks in transformers, leakyReLU and
piecewise linear functions.
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