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Abstract

Discrimination can occur when the underlying unbiased la-
bels are overwritten by an agent with potential bias, resulting
in biased datasets that unfairly harm specific groups and cause
classifiers to inherit these biases. In this paper, we demon-
strate that despite only having access to the biased labels, it
is possible to eliminate bias by filtering the fairest instances
within the framework of confident learning. In the context
of confident learning, low self-confidence usually indicates
potential label errors; however, this is not always the case.
Instances, particularly those from underrepresented groups,
might exhibit low confidence scores for reasons other than
labeling errors. To address this limitation, our approach em-
ploys truncation of the confidence score and extends the con-
fidence interval of the probabilistic threshold. Additionally,
we incorporate with co-teaching paradigm for providing a
more robust and reliable selection of fair instances and effec-
tively mitigating the adverse effects of biased labels. Through
extensive experimentation and evaluation of various datasets,
we demonstrate the efficacy of our approach in promoting
fairness and reducing the impact of label bias in machine
learning models.

Introduction
In recent decades, we have observed a shift towards an AI-
driven society, where machine learning techniques have pro-
foundly affected various aspects of our lives, including fi-
nance (Khandani, Kim, and Lo 2010), recruitment (Faliagka
et al. 2012) and law (Dressel and Farid 2018). When algo-
rithmic decisions have a significant impact on our lives, it is
crucial for decision-makers or regulators to have confidence
in the algorithm’s performance. While deep neural networks
possess the capability to learn complex patterns from input
data, they encounter a fundamental challenge in the data
they learn from: the labels can be influenced by sensitive
information, causing the neural networks to capture and re-
produce these undesirable associations. Therefore, to ensure
fairness in decision-making, it becomes essential to mitigate
the impact of such undesirable relationships.

Research on training fair machine learning models has
then received a lot of attention. To achieve fairness, one
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can incorporate fairness constraints into the learning objec-
tives (Bilal Zafar et al. 2015; Cotter, Jiang, and Sridharan
2019; Donini et al. 2018; Rezaei et al. 2020; Roh et al.
2020), or modify the model’s predictions using threshold
adjustments and calibration to align them with fairness con-
straints (Hardt, Price, and Srebro 2016; Kim, Ghorbani, and
Zou 2019; Lohia et al. 2019; Petersen et al. 2021), or use
data manipulation or representation learning methods before
model training (Calmon et al. 2017; Choi et al. 2020; Jiang
and Nachum 2020; Kamiran and Calders 2012). Nonethe-
less, the aforementioned methods primarily focus on mod-
ifying the machine learning model to tackle the bias prob-
lem. There has been limited effort, as indicated by Jiang and
Nachum (2020), in directly addressing the biased data itself,
despite the fact that often the training data itself exhibits bi-
ased features and corresponding labels.

To combat the influence of label bias, numerous ap-
proaches have been proposed. For instance, Jiang and
Nachum (2020) addressed the biased data problem by for-
mulating the label bias as a constrained optimization frame-
work and using a re-weighting method to learn an equivalent
unbiased labeling function. On the other hand, Wang, Liu,
and Levy (2021) established fairness constraints by linking
ground truth distribution and observed biased distribution.
In this paper, we present another effective method that fo-
cuses on data selection. Intuitively, if we can select exam-
ples with labels less influenced by sensitive information, the
network learned from such data will be more robust, leading
to a fairer decision-making process.

The previous works aimed at mitigating label bias within
the data itself using confidence scores generally encompass
two phases (Northcutt, Jiang, and Chuang 2021; Cordeiro
et al. 2023). In the first phase, these approaches obtain confi-
dence scores from the trained model and subsequently elim-
inate erroneous instances through a probabilistic threshold.
The second phase involves model retraining using the re-
maining clean examples from the previous step to enhance
model robustness. Nevertheless, when utilizing probability
thresholds to determine the true labels, such methods heav-
ily rely on self-confidence, of which instances with low self-
confidence scores are often considered to contain label er-
rors. However, this assumption does not always hold, partic-
ularly in scenarios of imbalanced data within the protected
group. In these cases, individuals often face disadvantages

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

16917



and receive negative labels, causing deep networks to as-
sign relatively low confidence scores to such instances due
to their underrepresented nature (Yang et al. 2020).

To tackle the challenges mentioned earlier, we delve into
the uncertainty of the sample selection process to combat
biased labels. To alleviate the uncertainty linked with low-
confidence examples, we suggest expanding the confidence
intervals of the probabilistic threshold using a truncation
function. Unlike previous methods that use the average con-
fidence score to determine the probabilistic threshold, our
approach reduces the impact of examples with extremely
high confidence scores on the threshold. This adjustment fa-
cilitates the selection of examples with relatively lower con-
fidence scores, which are often due to their association with
disadvantaged groups, resulting in underrepresentation. Ad-
ditionally, to further improve robustness, we employ the co-
teaching paradigm, which involves training different models
from subsets of data with varying demographic information.
This allows us to cross-validate the selected fair instances
from different demographic groups, enhancing the overall
robustness and fairness of the approach. Our contributions
are four-fold:
• We introduce a data selection method that leverages con-

fidence scores to tackle the issue of label bias. Notably,
this approach is model-agnostic, thereby enabling its ap-
plication with a wide range of models. This stands in con-
trast to many fairness-aware learning techniques aimed
at addressing biased labels, which tend to be tightly inte-
grated with specific models and the training process.

• We present an extension of confidence intervals using a
robust mean estimator, aimed at minimizing uncertainty
in the process of data filtering.

• We integrate the concept of co-teaching to enhance the
robustness and reduce uncertainty by cross-validating
selected fair instances originating from distinct demo-
graphic groups.

• We assess the effectiveness of our approach across a
range of benchmark datasets. The results highlight the
benefits of our method in comparison to alternative base-
line techniques.

Preliminaries
In this section, we briefly review the method addressing the
biased label problem based on confidence measures. Let
X be the input variable, Y be the observed output vari-
able and Z be the true labels. Consider a k-class classifica-
tion problem, we denote the observed dataset as (x, y)N ∈
(Rd, [k])N , where d is the dimensionality of the input space
and N is the number of examples. In the context of confi-
dent learning, an instance with low self-confidence (as stated
in Definition 1) indicates a higher likelihood of being a la-
bel error (Northcutt, Jiang, and Chuang 2021). Unlike tradi-
tional confidence measures that focus on model predictions,
leveraging this assumption, confident learning aims to iden-
tify examples with label errors by directly estimating the
joint distribution between corrupted labels and true labels
with a class-conditional noise process. To achieve this, the
whole framework of confident learning combines principles

of pruning noisy data, using probabilistic thresholds to esti-
mate noise, and ranking examples to train with confidence.
Definition 1 (Self-Confidence). The predicted probability
for some model θ that an instance x belongs to its given
label y = i, i.e., p(y = i;x, θ).

The confident learning process typically consists of three
steps: estimation, pruning, and re-training. During the es-
timation process, we follow four steps to estimate the joint
distribution between corrupted labels and true labels. Firstly,
we compute the predicted probability of the n-th sample be-
longing to j, denoted as p̂jn = P (yn = j;xn, θ), where
j is the observed label and j ∈ [k]. We then use tj =

1
|Xy=j |

∑
xn∈Xy=j

p̂jn for the n-th sample with observed la-
bel j as the probabilistic threshold for class j. Next, for each
n-th sample, we determine its true label zn is argmaxj p̂

j
n

and we have p̂jn > tj . Upon obtaining zn, we keep a count of
the label information in the count matrix Cy,z . For example,
if Cy=1,z=0 = 40, it means there are 40 examples that were
labeled as 1 but should have been labeled as 0. To partition
and count label errors, we then introduce the confident joint
C̄y=j,z=i, which is given by:

C̄y=j,z=i =
Cy=j,z=i∑

i∈[k] Cy=j,z=i
× |Xy=j |. (1)

Using C̄y=j,z=i instead of Cy=j,z=i offers the advantage
of mitigating the sensitivity arising from class imbalance
and distribution heterogeneity. This is achieved because
C̄y=j,z=i employs per-class thresholding as a form of cal-
ibration (Northcutt, Jiang, and Chuang 2021). Then the joint
distribution of y and z can be estimated using the confident
joint, and the formula is expressed as:

Qy=j,z=i =
C̄y=j,z=i∑

j∈[k],i∈[k] C̄y=j,z=i
. (2)

The numerator ensures that the sum of Qy=j,z=i over all
possible values of i is calibrated to match the observed
marginals for all j in [k]. This calibration ensures that the
row sums align with the observed distributions. On the other
hand, the denominator calibrates the sum of Qy=j,z=i to be
equal to 1, ensuring that the overall distribution is calibrated
to sum up to 1. The estimations of C̄y=j,z=i and Qy=j,z=i

are primarily aimed at facilitating the subsequent pruning
of corrupted data. As the dataset size grows larger, this es-
timation method gradually approximates the true distribu-
tion more accurately (Northcutt, Jiang, and Chuang 2021).
In other words, as we gather more data, the estimates be-
come more reliable and better reflect the underlying relation-
ships between the observed labels and the true labels, which
enhances the effectiveness of identifying and handling cor-
rupted data points.

In the pruning step, the objective is to identify and fil-
ter out erroneous examples. This can be achieved by vari-
ous pruning approaches. For instance, we can directly re-
move the sets of examples that constitute the count in the
off-diagonals (where true labels and observed labels are dif-
ferent) of C̄y=j,z=i and use the rest for training. Or we can
employ N · Qy=j,z=i to estimate the number of examples
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with label errors, which is denoted as Ñ , and then select top
Ñ examples based on the rank of predicted probability. Once
the erroneous examples are filtered out, the class weights of
the remaining examples can be readjusted, and the model
can be retrained.

Methodology
In this section, we introduce our design for the data selection
framework to eliminate label bias. We begin with a mathe-
matical expression of the notions of label bias, and we then
present the formulation of the data selection function.

Notion of Label Bias
Let D represent the true underlying distribution defined by
the variables (X,S,Z), and D̃ represent the observed cor-
rupted distribution defined by (X,S, Y ). Here, X refers to
the non-protected attributes, S represents the sensitive at-
tributes, and Z = 1 indicates the desirable outcome (typ-
ically considered the positive class). The privileged group
is identified as S = A, while the disadvantaged group is
labeled as S = B. In the subsequent sections, we denote
the observed subset with membership S = A as DA, and
the observed subset with membership S = B as DB . The
entire observed dataset is denoted as D. We assume there
exists a function G that involves flipping the labels of certain
subsets of D based solely on the values of S and Z. Accord-
ingly, the process of generating biased labels is represented
as Y = G(X,S,Z). In line with previous work, we con-
sider the scenario where negative examples in the privileged
group might have been labeled as positive, while positive ex-
amples in the disadvantaged group could have been labeled
as negative (Wick, Panda, and Tristan 2019; Dai 2020). With
this context, we introduce the following definitions:

ρA = P (Y = 1 | S = A,Z = 0),

ρB = P (Y = 0 | S = B,Z = 1).

The above expressions demonstrate that negative instances
from the privileged group A are subject to flipping with a
probability of ρA, while positive instances from the disad-
vantaged group B are flipped with a probability of ρB . In
Blum and Stangl (2020), the assumption is made that ρA =
0, meaning no flipping occurs for negative instances in the
privileged group. On the other hand, in Fogliato, Choulde-
chova, and G’Sell (2020), they set ρB = 0, implying no
flipping for positive instances in the disadvantaged group.
In Wick, Panda, and Tristan (2019), flipping occurs for both
groups, and the flip rate is symmetric, i.e., ρA = ρB ̸= 0.

Selecting Unbiased Labels
To improve the selection of unbiased examples, inspired
by Han et al. (2018), we train two models sharing the same
architecture, denoted as θA and θB , on separate subsets of
the dataset: DA and DB , respectively. Afterward, we evalu-
ate each model on the entire dataset D and obtain the con-
fidence measure w.r.t. both θA and θB . Following the defi-
nition of demographic parity, that predictions should be in-
dependent of sensitive attributes, we consider a model to be

Net A

Net B

𝐷!

𝐷"

𝐷

Selected 
Samples

𝜇!

𝜇"𝐷

Figure 1: Our method involves training two identical mod-
els on separate datasets, DA and DB , and then evalu-
ates the entire dataset D to derive a probabilistic thresh-
old, which guides the selection of the fairest instances.
Though our approach is motivated by co-teaching, the train-
ing procedure diverges from co-teaching. During training,
co-teaching evaluates the selected samples to help identify
the most challenging instances. In contrast, we evaluate the
entire dataset to validate that the selected samples are not af-
fected by label bias.

unbiased if its predictive performance, when trained on ei-
ther DA or DB , is the same from the results obtained on the
entire dataset D. Then, to find the instances with label bias,
we use the examples that lie in the off-diagonals of the confi-
dent joint in Eq. (1). We denote the confident joint measured
on θA as C̄A and the one measured on θB as C̄B . C̄A and
C̄B are constructed by the comparison of tAj and tBj where

tAj =
1

|Xy=j |
∑

xn∈Xy=j

p̂(yn = j;xn, θA),

tBj =
1

|Xy=j |
∑

xn∈Xy=j

p̂(yn = j;xn, θB).

(3)

Unlike conventional methods that identify biased instances
assuming true labels are determined by:

zn = argmax
j∈[k]

p̂(yn = j;xn, θ),

we adopt the assumption that the true label is determined by:

zAn = argmax
j∈[k]:p̂(yn=j;xn,θA)≥tAj

p̂(yn = j;xn, θA),

zBn = argmax
j∈[k]:p̂(yn=j;xn,θB)≥tBj

p̂(yn = j;xn, θB).

Consider the following example: if DA is primarily com-
posed of positively labeled instances, while the majority of
instances in DB are labeled negative, then for a given in-
stance with observed positive label that measured on θA, it
is likely to have a higher p̂n due to θA being overly con-
fident about the positive class, resulting in a proportionally
larger tAj , and vice versa. Therefore, by setting the proba-
bilistic threshold as outlined in Eq. (3), we can mitigate the
class imbalance issue.

In addition to addressing the class imbalance problem, we
account for the uncertainty associated with the probabilis-
tic threshold, which arises from using the average of confi-
dence scores to select instances belonging to a specific class.
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Such selection criteria can introduce biases, particularly for
instances within the disadvantaged group. These instances
may exhibit relatively lower confidence scores that are both
beneath tAj and tBj , resulting in their exclusion from the se-
lection process. However, these instances may be correctly
labeled and could be valuable for generalization. To provide
these instances with a chance, following the approach in Xia
et al. (2022) and Chen et al. (2020), we extend a classical
M-estimator (Catoni 2011) to truncate tAj and tBj as follows:

t̄Aj =
1

|Xy=j |
∑

xn∈Xy=j

ψ(p̂(yn = j;xn, θA)),

t̄Bj =
1

|Xy=j |
∑

xn∈Xy=j

ψ(p̂(yn = j;xn, θB)),

(4)

where ψ : R −→ R is a non-decreasing influence function,
such that the widest possible choice is ψ(x) = log(1 +

x + |x|2
2 ) for x ≥ 0. The selection of ψ is motivated by

the Taylor expansion of the exponential function, aiming to
enhance the robustness of estimation results by mitigating
the impact of extreme values. As a result, instances with ex-
tremely high confidence scores will have a limited effect on
the probabilistic threshold, creating an opportunity for ex-
amples with relatively lower confidence scores that could
still be correctly labeled to be included in the selection pro-
cess. To achieve this, we derive the concentration inequali-
ties for instances with low confidence scores based on The-
orem 1. The derivation of Theorem 1 follows the standard
process in Xia et al. (2022) and we include the proof in the
Appendix for completeness.
Theorem 1. Consider an observation setXN = x1, · · · , xn
with mean µ and variance ν. We utilize the non-decreasing
influence function ψ(x) = log(1 + x + x2

2 ). For any given
ϵ > 0, with a probability of at least 1 − 2ϵ, we have the
following inequality:∣∣∣∣∣ 1N

N∑
n=1

ψ(xn)− µ

∣∣∣∣∣ ≤ ν(N + ν log(ϵ−1)
N2 )

N − ν
.

Let NA
s and NB

s represent the number of instances se-
lected with respect to C̄A and C̄B , respectively, where NA

s
and NB

s are both less than or equal to the total number of
instances N . Let’s consider ϵ = 1

2N . Now, the threshold can
be expressed as follows:

µA
j = t̄Aj −

Q

NA
s − ν

,

µB
j = t̄Bj −

Q

NB
s − ν

,

(5)

where Q = ν(N + ν log(2N)
N2 ). These inequalities help us

understand the behavior of the estimation when dealing with
less certain or less reliable instances.

Training and Optimization
The overall training process of the proposed approach is il-
lustrated in Fig. 1 and Algorithm 1. Initially, two networks,

Algorithm 1: Training Algorithm

1: Input: training set D, model θA, θB and θ, epoch T ,
hyperparameter Ns and ν, loss function ℓ, learning rate
η.

2: for t = 0, · · · , T do
3: Obtain mini-batch Dt from D and split it into Dt

A
and Dt

B .
4: θA ← θA − η∇ℓ(Dt

A; θB).
5: θB ← θB − η∇ℓ(Dt

B ; θB).
6: Obtain µA

j and µB
j using Eq. (5)

7: if p̂(yn = j;xn, θA) ≥ µA
j then

8: ẑn ← argmaxj∈[k] p̂(yn = j;xn, θA)

9: else if p̂(yn = j;xn, θB) ≥ µB
j then

10: ẑn ← argmaxj∈[k] p̂(yn = j;xn, θB)
11: end if
12: Compute the count joint using Eq. (1).
13: Fetch the example sets D̃t

A, D̃t
B in the off-diagonal

of the confident joint C̄A and C̄B .
14: Dt

S ← Dt\(D̃t
A ∪ D̃t

B)
15: θ ← θ − η∇ℓ(Dt

S ; θ)
16: end for

denoted as θA and θB , and sharing identical architectures,
are established. Unlike the original co-teaching framework
proposed in the previous literature (Han et al. 2018), θA and
θB do not share the selected subset to update parameters;
instead, they jointly evaluate the same dataset to identify
biased data and enhance fairness. During each iteration, a
mini-batch Dt is drawn from the dataset D. This batch is
subsequently divided into two separate batches based on the
grouping factor S, yielding Dt

A and Dt
B . We independently

train θA and θB using Dt
A and Dt

B , respectively. Follow-
ing this, Dt is evaluated using θA and θB to obtain µA

j and
µB
j , calculated via the selection criteria specified in Eq. (5).

Through comparison with the acquired probabilistic thresh-
old, instances residing in the off-diagonal elements of the
joint count are identified. These instances are denoted as D̃t

A

and D̃t
B . The union set encompassing D̃t

A and D̃t
B is then re-

moved, yielding the selected examples for model training. In
experiments, we set NA

s = NB
s = Ns. To find the optimal

values for Ns and ν, hyperparameter tuning on the valida-
tion set is employed.

Experiments
In this section, we demonstrate the effectiveness of our
methods by comparing them with several baseline models
on the benchmark datasets.

Datasets
We use the synthetic data for verification and four sets of
real-world data for comparison.

Synthetic We use the same setting for synthetic data gen-
eration as described in the work of Bilal Zafar et al. (2016).
We generate 95,750 fair examples with 2-dimensional non-
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Dataset N |SA| |SB |
Synthetic 95,750 72,025 23,725

Adult 46,032 31,113 14,919
COMPAS 7,214 3,518 3,696

Credit Loan Data 30,000 11,888 18,112
Law 20,798 17,491 3,307

Table 1: Dataset Description

sensitive attribute space and a 1-dimensional sensitive at-
tribute space.

Adult (Kohavi 1996) The objective of this dataset is to
predict whether a person’s income exceeds $50k per year.
We consider two demographic groups based on gender.

ProPublica COMPAS (Brennan, Dieterich, and Ehret
2009) This dataset contains information about criminal jus-
tice. The task is to predict recidivism based on various fac-
tors. We consider two demographics based on race.

Credit Loan Data (Yeh 2016) The dataset comprises
credit card default records for 30,000 applicants from April
to September 2005. We consider gender as the target demo-
graphic information.

Law School Admissions (Wightman 1998) The objective
of this dataset is to predict whether or not a student will pass
the bar. We form two demographic groups based on gender
and use the pass bar as the ground-truth label.

Baselines
For all the methods, we construct a simple neural net-
work using ReLU activation functions. Our method is
evaluated against several baselines, including confident
learning (CL) (Northcutt, Jiang, and Chuang 2021), Lon-
gReMix (Cordeiro et al. 2023), label bias correction
(LC) (Jiang and Nachum 2020), and the group peer loss
(GPL) method as described in Wang, Liu, and Levy (2021).
Consistent hyperparameters are maintained across all exper-
iments for all methods. Additional implementation details
can be found in the Appendix.

Fairness Violation
We assess our performance on various datasets and methods
with respect to diverse fairness metrics, which encompass
(1) the demographic parity distance metric, (2) the differ-
ence of equal opportunity (DEO), and (3) the p%.

Demographic parity distance metric (Creager et al.
2019): The definition of demographic parity is that the rate
of positive predictions for S = A should be equivalent to
that for S = B. This metric is formulated as |E(Ŷ = 1 |
S = A)− E(Ŷ = 1 | S = B)|.

Difference of equal opportunity (DEO) (Hardt, Price,
and Srebro 2016): The concept of equal opportunity states
that the true positive rates for S = A should be identical
to those for S = B. The difference can be quantified as:
|P (Ŷ = 1 | S = A, Y = 1)− P (Ŷ = 1 | S = B, Y = 1)|.

p% (Biddle 2005): This measure closely resembles the
demographic parity distance metric and can be formulated

as: min(P (Ŷ=1|S=A)

P (Ŷ=1|S=B)
, P (Ŷ=1|S=A)

P (Ŷ=1|S=B)
).

Due to page limit, we present the DEO as our fairness vi-
olation metric in the table, while the outcomes pertaining to
other fairness violation metrics like the demographic parity
distance metric and the p% are provided in the Appendix.

Generating Biased Labels
We address two distinct categories of label bias: (1) symmet-
ric bias, as defined by Wick, Panda, and Tristan (2019), and
(2) asymmetric bias, as outlined in Blum and Stangl (2020).
For the symmetric bias case, we configure ρA = ρB with
values chosen from the set {20%, 40%}. Regarding asym-
metric bias, we set ρA ̸= ρB , where ρA = 0 and ρB is
selected from {20%, 40%}. To ensure robust results, we per-
form 10 rounds of random shuffling on the training set, while
retaining 10% of the biased training examples as a validation
set for hyperparameter optimization.

Mean v.s. Truncation
We utilize the influence function ψ(x) as a truncation mech-
anism for the probabilistic threshold, deviating from the
original averaging-based approach. This modification allows
for a meaningful comparison between the two metrics. Syn-
thetic data is employed for assessment. We label the meth-
ods using Eq. (3) as “M” with hyperparameters Ns = 0.6
and ν = 10−2 fixed and we label the method using Eq. (5)
as “T”. Analysis of Table 3 reveals that adopting the trun-
cated probabilistic threshold for data selection outperforms
the conventional mean estimator approach, both under sym-
metric and asymmetric bias. Discrepancies between “M”
and “T” widen with increasing bias, leading to a 3.60% er-
ror for “M”, while the increase is marginal for the “T” under
symmetric bias. In asymmetric bias, “T” still outperforms
“M”, despite higher overall accuracy. Minimal disparity is
observed in fairness violation between the two methods on
synthetic data. The truncated method consistently exhibits
lower fairness violations, often achieving zero violations.

Comparison Results
We present the results in Table 2 and Table 4. It is evident
that our approach consistently produces fair classifiers, of-
ten achieving the lowest accuracy errors and fairness vio-
lations across all methods on the four real-world datasets.
Table 2 presents the results under the symmetric bias set-
ting, where we observe that the test errors increase when the
bias magnitude is 40% compared to when it’s 20%. How-
ever, our method exhibits only a marginal increase in test
errors and fairness violations with an elevated bias level, in-
dicating more stable performance. It is important to high-
light that while LongReMix exhibits the lowest fairness vi-
olation (measured by DEO) on the compas dataset, its test
error rate is high. This outcome stems from LongRemix pre-
dominantly predicting negative outcomes for the majority
of examples, resulting in a minimal DEO. However, upon
reviewing the outcomes as presented in the Appendix, it
becomes evident that when evaluated using alternate fair-
ness metrics, the fairness violations are notably high. Com-
paring the outcomes in Table 4, it is apparent that all the
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Adult Compas

20% 40% 20% 40%

Metric Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓)
CL 22.61±0.79 0.17±0.01 25.13±1.30 0.24±0.04 32.69±1.64 0.20±0.02 49.75±7.29 0.19±0.02

LongReMix 19.66±3.09 0.18±0.06 21.03±1.21 0.19±0.03 40.89±2.39 0.09±0.02 43.21±1.61 0.09±0.02

LC 18.89±0.37 0.17±0.02 20.10±0.11 0.18±0.03 34.21±0.42 0.15±0.03 35.19±0.23 0.16±0.01

GPL 23.50±2.40 0.18±0.05 24.25±2.36 0.16±0.02 44.88±3.18 0.18±0.03 46.81±3.01 0.17±0.02

Ours 15.75±0.62 0.12±0.02 16.83±1.48 0.15±0.02 30.75±0.25 0.15±0.02 31.86±1.61 0.17±0.02

Law Credit

20% 40% 20% 40%

Metric Err.(↓) Vio.(↓) Err.(↓) Vio.(↓) Err.(↓) Vio.(↓) Err.(↓) Vio.(↓)
CL 15.49±3.56 0.28±0.05 16.01±2.15 0.26±0.03 21.10±1.02 0.04±0.02 20.50±0.03 0.03±0.01

LongReMix 10.25±1.40 0.13±0.09 9.55±0.45 0.11±0.02 20.10±0.99 0.03±0.02 21.97±1.99 0.04±0.01

LC 9.54±0.07 0.05±0.01 9.67±0.05 0.06±0.01 19.58±0.27 0.02±0.01 20.49±0.11 0.02±0.01

GPL 10.44±0.56 0.06±0.01 10.26±0.46 0.05±0.01 21.70±1.06 0.02±0.01 22.82±1.03 0.03±0.02

Ours 9.09±0.50 0.05±0.01 9.31±0.30 0.09±0.02 19.13±0.77 0.01±0.01 19.33±0.68 0.02±0.01

Table 2: Experiment Results (Symmetric Bias Scenario): Each row pertains to a specific method. The table illustrates the test
errors (%) and fairness violations of Confident Learning (CL), LongReMix, Label Correction methods (LC), Group Peer Loss
(GPL), and our proposed approach.

methods have better performance than the results displayed
in Table 2. Despite this, our method maintains superior or
comparable predictive accuracy when contrasted with other
approaches, and it consistently exhibits the lowest levels of
fairness violations. An interesting observation is that the re-
sults of confident learning itself do not consistently yield
fair classifiers compared to label bias correction methods for
fairness. This is due to its reliance on class-dependent noise,
leading to higher test errors and fairness violations. The rea-
son for this lies in the fact that confident learning does not
incorporate demographic information, unlike the label bias
correction methods, resulting in less effective performance.

Hyperparameter Analysis

We explore the impact of hyperparameters ν in the range
of {10−4, 10−3, 10−2, 10−1} and Ns in the range of
{0.5, 0.6, 0.7, 0.8, 0.9} to examine their impact using syn-
thetic data. The experiment’s focus is on assessing the in-
fluence of these two hyperparameters. In Fig. 2, we conduct
an experiment by keeping Ns = 0.75 fixed and varying the
value of ν from 10−4 to 10−1. Fig. 2 demonstrates that the
overall test error when ρA = ρB = 0.4 is higher compared
to the error rate when ρA = ρB = 0.2 as we change Ns

and ν. We do not report the fairness violation since they are
overall very small (close to 0) and consistently exhibit no
apparent variation when we change the value of ν and Ns.
Regarding Ns, we hold ν = 10−2 constant and change the
value from 0.5 to 0.9. The graphical representation of how
Ns and ν influence the probabilistic threshold is presented in
Fig. 2. The plot reveals that the influence function smooths
higher confidence scores. Additionally, bothNs and ν play a
role in regulating the deviation from the initial value. Larger
values of ν result in greater deviations from the original

value, while smaller values of Ns lead to more substantial
deviations from the original value.

Symmetric

20% 40%

Err.(%) Vio. Err.(%) Vio.

M 1.51±0.26 0.01±0.01 3.60±1.59 0.02±0.01

T 0.77±0.17 0.00±0.00 0.91±0.37 0.01±0.00

Asymmetric

20% 40%

Err.(%) Vio. Err.(%) Vio.

M 0.45±0.08 0.01±0.01 0.55±0.36 0.01±0.01

T 0.36±0.06 0.00±0.00 0.38±0.10 0.00±0.00

Table 3: Comparisons between the mean estimator and the
truncation method under symmetric and asymmetric bias.

Related Work
In this study, we introduced a data selection framework to
mitigate label bias and achieve fairness. Existing data se-
lection techniques (Loshchilov and Hutter 2017; Kawaguchi
and Lu 2019; Jiang et al. 2019; Coleman et al. 2019;
Loshchilov and Hutter 2015; Killamsetty et al. 2020; Min-
dermann et al. 2022) successfully address biased labels
based on loss, but they are not well-suited for fairness. Our
approach is loss-agnostic and specifically designed for fair-
ness. Though FairBatch (Roh et al. 2021) introduces adap-
tive data selection to achieve fairness, the entire frame-
work neglects label bias. Regarding the research on miti-
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Adult Compas
20% 40% 20% 40%

Metric Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓)
CL 19.70±0.49 0.14±0.01 21.48±0.76 0.16±0.01 33.00±0.20 0.19±0.01 32.08±0.74 0.19±0.01

LongReMix 19.86±1.33 0.15±0.06 18.84±0.98 0.16±0.01 33.35±1.01 0.18±0.07 42.80±0.83 0.15±0.03

LC 16.36±0.05 0.13±0.01 17.53±0.12 0.10±0.02 37.20±0.23 0.11±0.01 41.16±0.20 0.04±0.00

GPL 18.87±0.99 0.07±0.02 18.72±0.64 0.11±0.02 39.28±1.10 0.10±0.02 41.44±1.11 0.08±0.01

Ours 17.76±0.36 0.07±0.01 17.46±0.66 0.09±0.01 30.75±0.20 0.14±0.02 30.06±0.17 0.16±0.01

Law Credit
20% 40% 20% 40%

Metric Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓) Err.(%)(↓) Vio.(↓)
CL 18.12±4.16 0.31±0.05 22.32±6.01 0.31±0.03 20.43±1.06 0.02±0.02 20.27±0.96 0.02±0.01

LongReMix 9.61±0.51 0.13±0.04 10.15±0.80 0.14±0.08 21.41±0.45 0.03±0.01 21.46±0.40 0.02±0.01

LC 9.33±0.07 0.01±0.00 9.39±0.07 0.01±0.00 20.43±0.09 0.02±0.00 21.39±0.05 0.02±0.00

GPL 10.69±0.50 0.05±0.01 11.00±0.60 0.06±0.01 21.18±0.56 0.03±0.01 20.80±0.61 0.02±0.01

Ours 8.99±0.53 0.07±0.03 9.23±0.75 0.08±0.01 18.77±0.21 0.02±0.01 18.93±0.39 0.01±0.00

Table 4: Experiment Results (Asymmetric Bias Scenario): Each row pertains to a specific method. The table illustrates the test
errors (%) and fairness violations of Confident Learning (CL), LongReMix, Label Correction methods (LC), Group Peer Loss
(GPL), and our proposed approach.
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Figure 2: The illustration of the impact of ψ(x): Plot (a) - (c), for (b), we set Ns

N = 0.65, for (c), we set ν = 0.5; Influence of
Hyperparameters on Probabilistic Threshold: Plot (d) - (g). Plot (d) and (e) are under the symmetric bias setting, while Plot (f)
and (g) are under the asymmetric bias setting. The impact of hyperparameters ν and Ns is investigated using synthetic data.

gating biased label problems in fairness, Fogliato, Choulde-
chova, and G’Sell (2020) present experimental findings that
even minor biases in observed labels can cast uncertainty
on the reliability of analyses that depend on the biased out-
comes. Blum and Stangl (2020) explored the impact of bi-
ased training data on classification and revealed the potential
to recover the Bayes Optimal Classifier by combining Em-
pirical Risk Minimization with the equal opportunity con-
straint under various bias models. Building on these stud-
ies, Dai (2020) introduced a comprehensive framework ad-
dressing label bias and data distribution shift for fairness.
Wang, Liu, and Levy (2021) introduced bias using group-
dependent label noise and proposed a surrogate loss function
to handle various fairness constraints in the presence of cor-
rupted data with biased labels. Notably, they incorporated
insights from Peer loss (Liu and Guo 2020) to formulate
the group peer loss, addressing group-dependent label noise.
Conversely, Jiang and Nachum (2020) approached label bias
through a constrained optimization framework, proposing a
re-weighting method to correct instances affected by label
bias. In contrast to previous approaches modifying the ob-

jective function during training, our focus is on data selec-
tion for explicit label bias mitigation.

Conclusion
This paper demonstrates that bias can be eliminated by im-
plementing confident learning and filtering the fairest in-
stances, even with access to biased labels. However, chal-
lenges arise with instances of low self-confidence, especially
for underrepresented groups, which may still contain biased
labels and remain unselected. To address this, the proposed
approach utilizes the lower bound of confidence intervals,
significantly enhancing the robustness and reliability of con-
fidence score thresholding compared to traditional mean es-
timation methods. Leveraging interval estimation effectively
mitigates the adverse effects of biased labels, promoting fair-
ness in machine learning models. Furthermore, incorporat-
ing co-teaching enhances fair instance selection, contribut-
ing to the overall effectiveness of the framework. Extensive
experimentation and evaluation on various datasets under-
score the proposed method’s efficacy in reducing the impact
of label bias and promoting fairness.
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