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Abstract

Multi-source domain adaptation (MSDA) aims to trans-
fer knowledge from multiple source domains to the unla-
beled target domain. In this paper, we propose a cycle self-
refinement domain adaptation method, which progressively
attempts to learn the dominant transferable knowledge in
each source domain in a cycle manner. Specifically, several
source-specific networks and a domain-ensemble network
are adopted in the proposed method. The source-specific
networks are adopted to provide the dominant transferable
knowledge in each source domain for instance-level ensem-
ble on predictions of the samples in target domain. Then
these samples with high-confidence ensemble predictions are
adopted to refine the domain-ensemble network. Meanwhile,
to guide each source-specific network to learn more dominant
transferable knowledge, we force the features of the target do-
main from the domain-ensemble network and the features of
each source domain from the corresponding source-specific
network to be aligned with their predictions from the cor-
responding networks. Thus the adaptation ability of source-
specific networks and the domain-ensemble network can be
improved progressively. Extensive experiments on Office-31,
Office-Home and DomainNet show that the proposed method
outperforms the state-of-the-art methods for most tasks.

Introduction
Recently, deep learning has achieved great success in multi-
ple applications, such as image recognition (He et al. 2016),
sentiment analysis (Vaswani et al. 2017), and audio process-
ing (Purwins et al. 2019). However, powerful deep-learning
techniques typically depend on abundant labeled data. Ac-
quiring such data often involves significant costs, making it
inefficient to gather new labeled data for each new scenario.
Unsupervised domain adaptation addresses the problem by
transferring knowledge from the labeled source domain to
the unlabeled target domain. At present, many unsupervised
domain adaptation methods (Ganin et al. 2016; Saito et al.
2018; Yang et al. 2023a) that adapt a single source domain
to a single target domain have been proposed and achieved
great success. Generally, the source domains usually can be
collected from multiple environments or sources (Ren et al.
2022). Hence, it is necessary to consider the diversity of
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Figure 1: Comparison of previous and the proposed method.
S1, S2 are two source domains and T is the target domain.
Light and dark blocks represent small and large values, re-
spectively. wk

i and pki are the weight and prediction proba-
bility of ith source domain on xt

k, respectively.

multiple source domains to guarantee the adaptation per-
formance on the target domain, which is a popular learning
strategy called Multi-Source Domain Adaptation (MSDA).

To take full advantage of the knowledge from multi-
source domains, many strategies have been developed by
aggregating the source domains or source models for tar-
get adaptation (Li et al. 2021a; Wilson, Doppa, and Cook
2023). For the methods to aggregate the source domains,
they usually ensure that the target-relevant source domains
are given more importance for feature alignment and classi-
fication in a single shared adaptation network (Wen, Greiner,
and Schuurmans 2020; Turrisi et al. 2022). Another main-
stream paradigm attempts to aggregate multiple source mod-
els. These methods adapt each source domain to the target
domain separately and then weigh the predictions of multi-
ple source models for inference (Venkat et al. 2020; Shen,
Bu, and Wornell 2023). Although previous methods have al-
ready achieved competitive results on MSDA, they mainly
focus on measuring the importance of each source domain to
the samples in the target domain at the domain level, result-
ing in the partial dominant transferable knowledge of source
domains with poorer adaptation ability to the whole target

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17096



domain are ignored, limiting the performance of MSDA. As
shown in Figure 1, the source domain with poorer adap-
tation ability can also provide high-confidence predictions
for a part of target samples. However, these predictions can
not dominate the target prediction due to the domain’s small
weight for aggregation in previous methods.

To capture the dominant transferable knowledge in each
source domain, we propose a cycle self-refinement domain
adaptation method by aggregating dominant transferable
knowledge of source domains at the instance level for each
target sample, termed CSR. The method consists of sev-
eral source-specific networks that separately learn specific
knowledge for each source domain. Then an instance-level
ensemble strategy is adopted to aggregate the predictions of
each source-specific network based on their confidence in
the target samples. For a target sample, the ensemble strat-
egy assigns a large weight to the source-specific network
that provides confident and consistent predictions on sim-
ilar samples to the sample. Thus the source-specific net-
work with high-confidence predictions can dominate the en-
semble prediction of the target sample. We use these tar-
get samples with high-confidence pseudo-labels to train a
domain-ensemble network. The domain-ensemble network
can not only preserve the high-confidence predictions of
the target samples in each source-specific network but also
provide more confident pseudo-labels than each source-
specific network. Hence, the pseudo-labels provided by
the domain-ensemble network are adopted to improve the
adaptation ability of source-specific networks. We employ
these pseudo-labels of the target domain from the domain-
ensemble network and predictions of the source domain
from the source-specific network to force the conditional
feature alignment between features from their correspond-
ing networks. This creates a cycle mechanism where the
domain-ensemble network and the source-specific networks
refine each other. The source-specific networks can provide
more high-confidence pseudo-labels to improve the domain-
ensemble network, while the domain-ensemble network can
guide the source-specific networks to adapt more discrimi-
natively. The main contributions can be summarized as:
• We propose a cycle self-refinement method for multiple

source domain adaptation. The source-specific networks
and the domain-ensemble network are adopted to refine
each other by accumulating the adaptation ability of each
source domain during the cycle refinement.

• We propose an instance-level ensemble method for target
domain pseudo-labeling with multiple source domains.
It can discover the dominant transferable knowledge in
each source domain and achieve optimal aggregation for
each target sample effectively.

• Extensive experiments on Office31, Office-Home and
DomainNet show that the proposed method outperforms
most of the state-of-the-art methods.

Related Works
Unsupervised Domain Adaptation
Motivated by the theoretical error bound proposed by (Ben-
David et al. 2010), many unsupervised domain adaptation

methods try to minimize the distribution distance between
source and target domain. Some methods minimize the dis-
tance measured by data statistics, such as MMD (Long et al.
2018; Zhang et al. 2022) and CORAL (Sun and Saenko
2016). While other methods propose to minimize the dis-
tribution distance by adversarial learning (Tzeng et al. 2017;
Chen et al. 2022b; Chhabra, Venkateswara, and Li 2023).
Some methods also consider fine-grained feature mapping
between two domains (Zhou et al. 2023). Although these
methods are useful in single-source domain adaptation, they
are unsuitable to be applied directly in multi-source domain
adaptation due to the gaps among multiple source domains.

Multiple Source Domain Adaptation
With the consideration of the diversity of source domains,
most MSDA methods attempt to find a better knowledge
aggregation of source domains or models. Some methods
(Wen, Greiner, and Schuurmans 2020; Shui et al. 2021;
Chen and Marchand 2023) try to exclude less relevant source
domains to combine a target-like source domain for eas-
ier alignment. But they only consider the weight of source
domain at the domain level. While some methods (Zhu,
Zhuang, and Wang 2019; Xu et al. 2022) force the prediction
consistency between different source models, they overlook
the transferability discrepancy of source domains. (Nguyen
et al. 2021) adopts a teacher-student framework to distill
knowledge of source models to target domain to find the re-
lationship between source models and target samples, but it
lacks correction from student to teacher. Recently, the con-
cept of dynamic network has been introduced into this task,
which uses a embed machining that changes with samples
into the whole model (Li et al. 2021b; Deng et al. 2022).
They also embrace dynamic mapping, but the use of extra
modules increases the burden of training and inference time.

Self-Training
Self-training is a competitive technique for semi-supervised
learning. They always use unlabeled data to regularize the
model by training on pseudo-labels. Some methods (Zhang
et al. 2021; Sun, Lu, and Ling 2023) generate the pseudo-
labels from the current model while other methods (Pham
et al. 2021) generate labels from the teacher network. These
pseudo-labels are usually used by forcing the strongly aug-
mented samples to have the same pseudo-labels as the
weakly augmented ones (Yang et al. 2023b). Recently, a cy-
cle self-training method (Liu, Wang, and Long 2021) and
a debiased self-training method (Chen et al. 2022a) use an
extra target classifier to train unlabeled data and debias the
source model. The proposed method departs from them by
circularly refining source-specific networks and a domain-
ensemble network with guidance from each other.

The Proposed Method
MSDA adapts the knowledge from multiple labeled source
domains to the unlabeled target domain. For convenience,
we denote the source domains as S = [s1, s2, ..., sm],
where si is the ith source domain and m is the number
of source domains. While the target domain is denoted as
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Figure 2: The flowchart of the proposed method. The pro-
posed method uses an instance-level ensemble strategy to
aggregate the predictions of source-specific networks for
each target sample. These samples with high-confidence
pseudo-labels are used to train the domain-ensemble net-
work. The domain-ensemble network is adopted to guide the
source-specific networks.

T . The number of categories is denoted as C. In the pro-
posed framework, we employ one backbone network fc to
extract the common features, which can save time and space
cost-effectively compared with adopting multiple backbone
networks. Then a residual network ϕi is used to extract
domain-specific features of ith source domain. Thus we use
fsi = ϕi ◦ fc to represent ith source-domain feature extrac-
tor, where f1 ◦ f2(x) represents f1(f2(x)). While for target
domain to learn the ensemble knowledge from all source do-
mains, we adopt fe = fc to exploit the common knowledge
of all source domains. Then ith source classifier hsi and a
domain-ensemble classifier he are used for classification.
Thus {fsi , hsi} is denoted as ith source-specific network,
which is trained with ith source domain. And {fe, he} is de-
noted as domain-ensemble network. After training, we only
adopt domain-ensemble network for inference.

Based on the model architecture, we propose an instance-
level cycle self-refinement method for multi-source domain
adaptation as shown in Figure 2. The proposed method
uses the instance-level ensemble strategy to aggregate the
predictions of source-specific networks to provide high-
confidence pseudo-labels for the training of the domain-
ensemble network. While the domain-ensemble network is
adopted to guide the refinement of the source-specific net-
works. In the following, we will introduce the proposed
method with instance-level ensemble strategy and the cycle
self-refinement learning respectively.

Instance-level Ensemble Strategy
It is still a challenge for MSDA to aggregate the transferable
knowledge from multiple source domains for optimal adap-
tation. For the traditional methods, they measure the adap-
tation ability of each source domain to the target domain at
the domain level and the weight of each source domain for
each target sample is the same. In this way, some dominant

transferable knowledge in the poor-adaptation source do-
main may be ignored, since the poor-adaptation source do-
main usually has a small weight for aggregation. Hence we
propose an instance-level ensemble strategy to discover the
dominant transferable knowledge from multiple source do-
mains for the prediction of the target sample, which mainly
considers the adaptation ability for a target sample not the
adaptation ability for the whole target domain.

Inspired by the fact that the good model should have not
only high-confidence prediction but also high category pre-
diction diversity on target domain (Cui et al. 2020), we con-
sider the prediction confidence and diversity to estimate the
importance of each source-specific network for prediction
ensemble. Inspired by cross-entropy, we calculate the pre-
diction confidence of a sample with the prediction of the
sample and its similar samples in the target domain. Specifi-
cally, for the ith source-specific network, given a target sam-
ple xt, the prediction confidence of xt with the ith source-
specific network can be represented as

cx
t

ici = −H(px
t

i ,
1

|Nxt |
∑

x∈Nxt

pxi ), (1)

where H(p1, p2) = −
∑

i∈C(p
1
i logp

2
i + p2i logp

1
i )/2, which

measures the similarity and confidence of two predictions si-
multaneously. pxi = σ(hsi ◦ fe(x)), where σ is the softmax
function. Nxt

is the similar sample set for xt, which is ob-
tained by clustering the target domain into C clusters with
the features from the domain-ensemble network based on
K-means and then choosing the cluster including xt as Nxt

.
Thus the confidence estimation of xt can be more precise by
cx

t

ici
, due to that the similar samples of xt are considered.

While for the prediction diversity, it is mainly used to in-
dicate whether the network predicts diversely. Since the tar-
get domain lacks labels, we discover the category structure
at the feature level. When the target domain is divided into
C clusters, the samples with the same category are assumed
to be within the same cluster. Hence, we can average the
predictions of the samples in the same cluster to represent
the prediction distribution of a category. Then for a sample,
we can estimate its prediction diversity by comparing the
prediction distribution of all clusters and the cluster that it
belongs to. For a sample xt, its prediction diversity from the
ith source-specific network can be represented as:

cx
t

cdi
= H(

1

|Nxt |
∑

x∈Nxt

pxi ,
1

C

∑
k∈[C]

1

|Nk|
∑
x∈Nk

pxi ), (2)

where Nk is the kth cluster when we divide the target do-
main into C clusters with K-means. We should note that if
the source-specific network can predict diversely and have a
low preference to the category of xt, cx

t

cdi
is large. The cx

t

ici

and cx
t

cdi
are essential to estimate whether the prediction of

xt by the ith source-specific network is reliable.
Moreover, in MSDA, there exist several domains that can

provide predictions for the ensemble. Although we attempt
to capture the dominant knowledge of each source domain,
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it is also important to provide consistent predictions with
diverse predictions for ensemble learning as indicated in
(Opitz and Shavlik 1995). Hence, we use an ensemble di-
versity regularization to measure the similarity between the
prediction of ith source-specific network and the average
prediction, which is defined as:

rx
t

di
= −H(px

t

i , px
t

avg), (3)

where px
t

avg is the average prediction of xt by all the source-
specifc networks, defined as px

t

avg = 1
m

∑m
i=1 p

xt

i . In Eq.(3),
the large rx

t

di
indicates that the px

t

i is useful for ensem-
ble learning. Thus in instance-level ensemble, the impor-
tance of ith source-specific network for xt can be calcu-
lated with the summation of prediction confidence, pre-
diction diversity and ensemble diversity regularization, i.e.
cx

t

i = cx
t

ici
+ cx

t

cdi
+ rx

t

di
. To balance the importance of the

source-specific networks for the sample xt conveniently, the
weight is normalized as

wxt

= σ(< cx
t

1 , ..., cx
t

m >). (4)

The instant-level ensemble prediction for xt can be repre-
sented as px

t

w =
∑m

i=1 w
xt

i px
t

i .

Cycle Self-Refinement Learning
In the proposed method, we use the pseudo-labels provided
by the source-specific networks with instance-level ensem-
ble strategy to refine the domain-ensemble network. Mean-
while, the domain-ensemble network is adopted to guide
the adaptation of the source-specific networks. Thus the
domain-ensemble network and the source-specific networks
are improved with each other by a cycle mechanism.

Specifically, to refine source-specific networks, we adopt
conditional feature alignment between source features from
each source-specific network and target features from
domain-ensemble network. In the conditional feature align-
ment, the pseudo-labels of the target domain are provided
by domain-ensemble network while the predictions of the
source domain are provided by the corresponding source-
specific network. Since the domain-ensemble network ben-
efits from multi-source domains with ensemble learning, it
can not only provide precise discriminative distribution in
the target domain but also preserve the dominant transfer-
able knowledge in each source domain. Thus the conditional
feature alignment between each source domain and the tar-
get domain can guide part of the poor adaptation knowledge
of one source-specific network tends to be softly consistent
with dominant adaptation knowledge from the other source-
specific networks. For the conditional feature alignment,
similar to Margin Disparity Discrepancy in (Zhang et al.
2019), we align each source domain with the target domain
by an auxiliary classifier. The auxiliary classifier is trained
with predictions of the source domain and pseudo-labels of
the target domain with an adversarial strategy, which is used
to guarantee that the samples with the same categories in
source domain and target domain can be classified with sim-
ilar predictions by the source domain classifier. The condi-
tional feature alignment loss between each source domain

and target domain can be represented as:

Li
align = min

fsi ,fe
max
h′
si

−
∑
xt∈T

CE(1− σ(h
′

si ◦ fe(x
t)), ŷx

t

)

− λ
∑

xsi∈si

CE(σ(h
′

si ◦ fsi(x
si)), ŷx

si
),

(5)

where h′
si is the auxiliary classifier for alignment with ith

source domain. ŷx
si is the prediction of xsi provided by the

ith source-specific network while ŷx
t

is the pseudo-label of
xt provided by domain-ensemble network. λ is the trade-
off hyper-parameters and set as 3 similar to (Zhang et al.
2019). With the above loss, the predictions of the ith source-
specific network and that of the domain-ensemble network
can be refined simultaneously. Meanwhile, when the source-
specific networks are refined, more high-confident pseudo-
labels can be provided with instance-level ensemble for the
domain-ensemble network training. Thus the source-specific
networks and the domain-ensemble network can be im-
proved progressively with cycle self-refinement.

Total Training Procedure
The proposed method mainly uses the cycle self-refinement
manner to train the source-specific networks and the
domain-ensemble network. For the source-specific net-
works, the cross entropy loss is adopted to train each source-
specific network. While for the domain-ensemble network,
all the source domains are adopted to train. Initially, the clas-
sification loss to train the source-specific networks and the
domain-ensemble network can be represented as:

Lcls =
∑
i

Li
cls + Le

cls =
∑
i∈[m]

∑
xsi∈si

min
fsi ,hsi

CE(px
si

i , yx
si
)

+
∑
i∈[m]

∑
xsi∈si

min
fe,he

CE(px
si

e , yx
si
),

(6)

where px
si

i = σ(hsi ◦ fsi(xsi)) and px
si

e = σ(he ◦ fe(xsi)).
ysi is the true label of xsi in the ith source domain. Then to
exploit the dominant transferable knowledge of each source
domain, we employ instance-level ensemble strategy to ag-
gregate predictions of all source-specific networks. We se-
lect the target samples with high-confidence pseudo-labels
to refine the domain-ensemble network. To further improve
the generalization ability of the domain-ensemble network
on target domain, motivated by Fixmatch (Sohn et al. 2020),
augmentation trick is adopted for consistency regularization.
Meanwhile, it is inevitable to provide noisy labels in the
pseudo-labels. Hence, for each pseudo-labeled target sam-
ple, a weight is adopted to control the classification loss of
the pseudo-labels. The domain-ensemble network can be re-
fined with pseudo-labeled target samples by

Lpsd = min
fe,he

∑
xt∈T

γxt

(CE(p̄x
t

, ŷx
t

w ) + JS(px
t

e , px
t

a )),

(7)
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where p̄x
t

= (px
t

e +px
t

a )/2, px
t

e = σ(he ◦fe(xt)) and px
t

a =
σ(he ◦ fe(T (xt))). T is a strong augmentation operation.
ŷx

t

w = argmax px
t

w . JS is the JS divergence that measures
the similarity of two predictions. γxt

is the weight based on
the confidence of px

t

w and is formulated as:

γxt

=

{
max(px

t

w )2−2τ , if max(px
t

w ) > τ

0, others,
(8)

where τ is the threshold to select the high-confidence
pseudo-labels. When τ is small, most target samples with
low confidence may be selected. With the above strategy to
weight each pseudo-labeled target sample, the noise taken
by the pseudo-labeled target samples with low confidence
can be reduced. Meanwhile, the source-specific networks are
refined with the conditional feature alignment. Thus the total
loss to refine both source-specific networks and the domain-
ensemble network is formulated as:

Lall = Lcls + Lpsd + β
m∑
i=1

Li
align, (9)

where β is the trade-off hyper-parameter. With the total loss,
the source-specific networks and the domain-ensemble net-
work can be trained in an end-to-end manner. During the
training, the pseudo-labels of the target samples to refine the
source-specific networks and the domain-ensemble network
are updated in each iteration.

Theoretical Analysis
We analyze the proposed method theoretically. We derive
the target error bound of the domain-ensemble network in
Theorem 1 to show how the source-specific networks can
refine the domain-ensemble network with the instance-level
ensemble. Then combined with the observation of (Zhu et al.
2020), which indicates that the error of one source model on
the target domain can be bounded by source classification
loss, the accuracy of target pseudo labels for conditional fea-
ture alignment, and the domain discrepancy of all categories
between two domains, we find that the proposed cycle re-
finement can bound target domain error of the whole model.

Theorem 1 Suppose there is a data augmentation set T
and Ext∈T (I(argmax px

t

e ̸= argmax px
t

a )) ≤ µ. I(c) is
1 if c is true otherwise 0. Assume T satisfies (q, ϵ)-constant
expansion hypothesis, i.e. q, ϵ ∈ (0, 1), for any A ⊂ T
and q < P(A) < 1

2 , when N (A) = {x′||T (x) − x′| <
r, x ∈ A}, we have P(N (A)\A) ≥ min{P(A), ϵ}. Given∑

j∈[m] wj = 1, we have the classification error of domain-
ensemble network as:

εT (he, fe) = Ext∈T (I(argmax px
t

e ̸= yx
t

))

≤
∑
j∈[m]

wjεT (hsj , fe) + lT (pe, pw)

+
µ

min{ϵ, q}
+ 2q,

(10)

The assumption in Theorem 1 is proved in (Wei et al. 2020).
In Theorem 1, yx

t

is the true label of xt and lT (pe, pw) =

Standards Methods → A → D → W Avg
Single
Best

DANN 68.2 99.4 96.8 88.1
MCD 69.7 100.0 98.5 89.4

Source
Combine

DANN 67.6 99.7 98.1 88.5
MCD 68.5 99.4 99.3 89.0

Multi-
Source

MFSAN 72.7 99.5 98.5 90.2
SImpAI 70.6 99.2 97.4 89.0
SSG 71.3 100.0 95.5 90.3
DCA 55.1 99.6 98.9 91.2
PTMDA 75.4 100.0 99.6 91.7
CSR(ours) 78.6 100.0 99.6 92.7

Table 1: Classification accuracy(%) on Office-31 dataset.

Ext∈T (I(argmax px
t

e ̸= argmax px
t

w )). The theo-
rem shows that the generalization error of the domain-
ensemble network can be bounded by the weighted er-
ror of all source-specific networks

∑
j∈[m] wjεT (hsj , fe),

the distance between predictions of he and ensemble pre-
dictions lT (pe, pw), and the consistency between differ-
ent augmented outputs of the samples µ. Given the fixed
source-specific networks, the first term can be further re-
duced with instance-level ensemble, and the last two terms
can be reduced with Lpsd. Suppose domain-level weight
can get by averaging the weights of all samples and the
covariance between the error and weight of the source-
specific network is negative, i.e wj = Ex∈T (w

x
j ) and

Covx∈T (w
x
j , εx(hsj , fe)) < 0, based on E(XY ) =

E(X)E(Y ) + Cov(X,Y ), we have

Ex∈T (w
x
j εx(hsj , fe)) <

∑
j∈[m]

wjεT (hsj , fe) (11)

Hence, the proposed instance-level strategy can provide
lower error of ensemble predictions from the source-specific
networks than the ensemble predictions at the domain level.

Experiments
Implementation Details
Three popular benchmark datasets are adopted in the exper-
iments, i.e. Office-31, Office-Home and DomainNet. Office-
31 (Saenko et al. 2010) is a classical domain adaptation
dataset that has 31 categories and contains threes domains,
i.e. Amazon(A), Webcam(W) and Dslr(D); Office-Home
(Venkateswara et al. 2017) consists of 65 categories and
contains 4 domains, which are Art(Ar), Clipart(Cl), Prod-
uct(Pr), and Real-World(Rw); DomainNet (Peng et al. 2019)
is a larger and more difficult dataset, which contains 0.6
million images with 345 categories in 6 domains, i.e. Cli-
part(Clp), Infograph(Inf), Painting(Pnt), Quickdraw(Qdr),
Real(Rel) and Sketch(Skt). In MSDA experiments, for each
dataset, we regard one domain as the target domain while
the remaining domains are used as the source domains.

We compare our method with several state-of-the-art
methods, such as DANN(Ganin et al. 2016), MCD(Saito
et al. 2018), MFSAN(Zhu, Zhuang, and Wang 2019),
DCA(Li et al. 2022), PTMDA(Ren et al. 2022), DRT(Li
et al. 2021b), WADN (Shui et al. 2021), SImpAI(Venkat
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Standards Methods →
Ar

→
Pr

→
Cl

→
Rw

Avg

Single
Best

DANN 67.9 80.4 55.9 75.8 70.0
MCD 69.1 79.6 52.2 75.1 69.0

Source
Combine

DANN 68.4 79.5 59.1 82.7 72.4
MCD 67.8 79.2 59.9 80.9 71.9

Multi-
Source

MFSAN 72.1 80.3 62.0 81.8 74.1
DCA 72.1 80.5 63.6 81.4 74.4
SImpAI 70.8 80.2 56.3 81.5 72.2
WADN 73.4 86.3 70.2 87.3 79.4
BDT 72.6 85.9 67.4 83.6 77.4
CSR(ours) 76.7 86.8 71.4 85.5 80.1

Table 2: Classification accuracy(%) on Office-Home dataset.

Methods →
Clp

→
Inf

→
Pnt

→
Qdr

→
Rel

→
Skt

Avg

SImpAI 66.4 26.5 56.6 18.9 68.0 55.5 48.6
SSG 68.7 24.8 55.7 18.4 68.8 56.3 48.8
DRT+ST 71.0 31.6 61.0 12.3 71.4 60.7 51.3
MRF-MSDA 63.9 28.7 56.3 16.8 67.1 54.3 47.9
PTMDA 66.0 28.5 58.4 13.0 63.0 54.1 47.2
CSR(ours) 73.0 28.1 58.8 26.0 71.1 60.7 52.9

Table 3: Classification accuracy(%) on DomainNet dataset.

et al. 2020), SSG(Yuan et al. 2022), MRF-MSDA(Xu,
Wang, and Ni 2022) and BDT(Kundu et al. 2022). Following
previous works, we report the experimental results in three
aspects: (1)Single Best(SB) shows the highest accuracy
among single-source domain adaptation results; (2)Source
Combine(SC) shows the accuracy on single-source domain
adaptation and the source domain is a combination of all
source domains; (3)Multi-Source(MS) shows the perfor-
mance of multi-source domain adaptation methods.

In the experiments, we use Resnet-50 pre-trained on
ImageNet as the backbone for Office31 and Office-Home
datasets. The pre-trained Resnet-101 is adopted for Domain-
Net dataset. When only the source domains are trained (ex-
periments of Figure 3), the Resnet-50 is used for training
stability. We utilize the same learning rate and schedule as
(Zhu, Zhuang, and Wang 2019). Meanwhile, for trade-off
parameters β and filtering threshold τ , we set (0.7, 0.9) for
Office31 and Office-home, and (0.7, 0.6) for DomainNet.
The RandAugment(Cubuk et al. 2020) is adopted as data
augmentation for T . We report the public results for the
compared methods. Experiments are done on Nvidia V100.
Code is released at https://github.com/zcy866/CSR.

Experimental Results
In the experiments, we run 5 times on each task for the
proposed method and report the average results of Of-
fice31, Office-Home, and DomainNet in Table 1, Table 2
and Table 3, respectively. We can observe that the perfor-
mance of single best methods is usually worse than that
of the source combined methods. This indicates that differ-
ent source domains may contain different dominant transfer-
able knowledge. Hence, it is necessary to aggregate transfer-

Methods →
Ar

→
Pr

→
Cl

→
Rw

Avg

Lcls 68.5 80.3 59.6 81.4 72.4
Lcls + Lpsd 76.1 84.6 70.2 84.4 78.8
Lcls + Lpsd + Lalign 76.7 86.8 71.4 85.5 80.1

Table 4: Contribution of each component in the proposed
method on the Office-Home dataset.

Methods →
Clp

→
Pnt

→
Qdr

→
Rel

Avg

w/o cic 72.8 58.0 24.6 70.6 56.5
w/o ccd 72.8 58.4 25.6 70.7 56.9
w/o rd 72.9 58.2 25.9 70.9 57.0
pavg 72.4 57.4 24.3 70.2 56.1
pw 73.0 58.8 26.0 71.1 57.2

Table 5: Contribution of each component in the instance-
level ensemble strategy with four tasks in DomainNet.

able knowledge of source domains at instance level to im-
prove the adaptation ability. For the compared multi-source
domain adaptation methods, DCA and WADN attempt to
use a domain classifier to measure the similarity between
each source domain and target domain, and weight multi-
ple source domains for adaptation at domain level. MFSAN
and SImpAI adopt predictions to align the source models
and then averagely aggregate the multiple source domains
for prediction directly. These methods are related to the pro-
posed method. Compared with these state-of-the-art meth-
ods, the proposed method has achieved the best performance
on all benchmark datasets. This demonstrates that the pro-
posed method can exploit the dominant transferable knowl-
edge from each source domain effectively at instance level
and the cycle self-refinement can effectively boost the domi-
nant transferable knowledge learning of all source domains.

Ablation Study
To demonstrate the importance of each component in the
proposed method, we show the ablation studies about the
variants of the proposed method in Table 4 and Table 5 on
Office-Home and DomainNet respectively.

From Table 4, we can observe that when the self-training
loss Lpsd and the conditional feature alignment loss Lalign

are adopted in sequence, the average accuracy increases
6.4% and 1.3% respectively. From the results, we can ob-
serve that each component is essential to the proposed cy-
cle mechanism, where the source-specific networks pro-
vide highly confident pseudo-labels to improve the domain-
ensemble network with Lpsd while the domain-ensemble
network guides the source-specific networks to adapt more
discriminative features with Lalign.

In Table 5, we show the effectiveness of the instance-level
ensemble prediction and report the results of its variants.
pavg represents the performance with an averaging weight-
ing strategy. pw represents the performance with instance-
level ensemble. From the results, we note that when we re-
place the instance-level ensemble strategy with the average
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(a) → Clp (b) → Skt

Figure 3: The performance with the proposed instance-level
ensemble strategy and other domain-level ensemble strate-
gies by subtracting their accuracy and the accuracy of the
average-weighted strategy.

weighting ensemble strategy, the average accuracy decreases
indicating that the instance-level ensemble successfully ex-
ploits knowledge of multiple source-specific networks. Be-
sides, when cic is removed, the accuracy is reduced, which
shows that our confidence measure can capture the dominant
predictions of each source-specific network. The accuracy
is also reduced when ccd or rd is removed, indicating the
importance of considering the prediction category diversity
and ensemble diversity. Hence, the instance-level ensemble
strategy is very effective in estimating the confidence of the
target sample at the instance level.

To verify the motivation, we show an example of epoch 4
on → Clp task in the DomainNet dataset where {Qdr, Inf ,
Skt, Rel, Pnt } are used as the source domains. The adap-
tation accuracies are {31.2%, 31.8%, 47.0%, 49.1%, 37.3%
} by using {Qdr, Inf , Skt, Rel, Pnt } to train source-
specific networks. Then we report the proportions of the
target samples that are classified correctly by one source-
specific network and misclassified by other source-specific
networks. The results are {2.7%, 2.0%, 3.1%, 4.3%, 1.5%
} when {Qdr, Inf , Skt, Rel, Pnt } are adopted to train
source-specific networks. We can observe that although Qdr
has poor adaptation ability, its source-specific network still
has 2.7% target samples that can only be classified correctly
by the network. Meanwhile, we also report the proportion
of the target samples that are correctly classified by both
the proposed instance-level ensemble prediction and only
one source network. The results are {6.6%, 8.7%, 36.8%,
46.1%, 31.7% } for the source-specific networks with {Qdr,
Inf , Skt, Rel, Pnt } respectively. While the proportions of
the target samples classified correctly by both the domain-
level ensemble prediction with the weight based on adver-
sarial domain discrepancy (Ganin et al. 2016) and only one
source network are {1.9%, 8.4%, 36.0%, 37.0%, 25.8% }.
Furthermore, we also compare the proposed instance-level
ensemble strategy with the entropy-weighted ensemble and
adversary-weighted ensemble at the domain level in Figure
3. In Figure 3, the results show that instance-level ensem-
ble strategy performs better than entropy-weighted ensem-
ble and adversary-weighted ensemble at the domain level.
These results indicate that the instance-level ensemble strat-
egy can keep the adaptation ability of each source domain

(a) (b)

Figure 4: The analysis of hyper-parameters β and τ on Cli-
part task(→ Clp) of in DomainNet dataset and RealWorld
task(→ Rw) in Office-Home dataset.

well and is effective in the ensemble of the dominant trans-
ferable knowledge in multiple source domains.

Parameters Analysis

In the proposed method, there are two important parameters
β and τ . We report the parameters analysis on → Rw task
of the Office-Home dataset and on → Clp task of the Do-
mainNet dataset in Figure 4. We choose β from candidates
{0.1, 0.4, 0.7, 1.0} and τ from candidates { 0.7, 0.8, 0.9,
0.95 } for Office-Home and from candidates { 0.0, 0.3, 0.6,
0.9 } for DomainNet. The results show that a large value of
β can improve the adaptation performance effectively. It is
better to be set as 0.7 in real-world applications. While for
τ , it is very different on the Office-Home dataset and Do-
mainNet dataset. The main reason is that the number of cat-
egories and samples in DomainNet is much larger than that
of Office-Home. When these numbers are small, we can use
a large value to choose the high-confidence samples; other-
wise, a small value can be adopted.

Conclusion

In this paper, an instance-level cycle self-refinement method
for MSDA is proposed by refining the source-specific net-
works and domain-ensemble network in a cycle manner
to aggregate the dominant transferable knowledge in each
source domain for adaptation. In the proposed method, an
instance-level ensemble strategy is designed to estimate the
adaption ability of each source domain for each target sam-
ple and is effective in providing high-confidence pseudo-
labels to train the domain-ensemble network. Since the
domain-ensemble network is trained by the ensemble pre-
dictions of the source-specific networks, it can refine the
source-specific networks with much more useful knowl-
edge than the knowledge of each source-specific network.
With the cycle manner, the domain-ensemble network can be
more and more effective for target domain inference. Exten-
sive experiments on the popular benchmark datasets show
that the proposed method can outperform most of the state-
of-the-art methods.
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B. 2021. Aggregating from multiple target-shifted sources.
In International Conference on Machine Learning, 9638–
9648.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17103



Sohn, K.; Berthelot, D.; Carlini, N.; Zhang, Z.; Zhang, H.;
Raffel, C. A.; Cubuk, E. D.; Kurakin, A.; and Li, C.-L. 2020.
Fixmatch: Simplifying semi-supervised learning with con-
sistency and confidence. Advances in Neural Information
Processing Systems, 33: 596–608.
Sun, B.; and Saenko, K. 2016. Deep coral: Correlation
alignment for deep domain adaptation. In Computer Vision–
ECCV 2016 Workshops, 443–450.
Sun, T.; Lu, C.; and Ling, H. 2023. Domain adaptation with
adversarial training on penultimate activations. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 37, 9935–9943.
Turrisi, R.; Flamary, R.; Rakotomamonjy, A.; and Pontil, M.
2022. Multi-source domain adaptation via weighted joint
distributions optimal transport. In Uncertainty in Artificial
Intelligence, 1970–1980.
Tzeng, E.; Hoffman, J.; Saenko, K.; and Darrell, T. 2017.
Adversarial discriminative domain adaptation. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 7167–7176.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in Neural Information Pro-
cessing Systems, 30.
Venkat, N.; Kundu, J. N.; Singh, D.; Revanur, A.; et al.
2020. Your classifier can secretly suffice multi-source do-
main adaptation. Advances in Neural Information Process-
ing Systems, 33: 4647–4659.
Venkateswara, H.; Eusebio, J.; Chakraborty, S.; and Pan-
chanathan, S. 2017. Deep hashing network for unsupervised
domain adaptation. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 5018–5027.
Wei, C.; Shen, K.; Chen, Y.; and Ma, T. 2020. Theoretical
Analysis of Self-Training with Deep Networks on Unlabeled
Data. In International Conference on Learning Representa-
tions.
Wen, J.; Greiner, R.; and Schuurmans, D. 2020. Domain
aggregation networks for multi-source domain adaptation.
In International Conference on Machine Learning, 10214–
10224.
Wilson, G.; Doppa, J. R.; and Cook, D. J. 2023. Calda:
Improving multi-source time series domain adaptation with
contrastive adversarial learning. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 1–14.
Xu, M.; Wang, H.; and Ni, B. 2022. Graphical modeling
for multi-source domain adaptation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 1–1.
Xu, Y.; Kan, M.; Shan, S.; and Chen, X. 2022. Mutual learn-
ing of joint and separate domain alignments for multi-source
domain adaptation. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, 1890–
1899.
Yang, J.; Liu, J.; Xu, N.; and Huang, J. 2023a. Tvt: Transfer-
able vision transformer for unsupervised domain adaptation.
In Proceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, 520–530.

Yang, L.; Qi, L.; Feng, L.; Zhang, W.; and Shi, Y. 2023b. Re-
visiting weak-to-strong consistency in semi-supervised se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, 7236–
7246.
Yuan, J.; Hou, F.; Du, Y.; Shi, Z.; Geng, X.; Fan, J.; and Rui,
Y. 2022. Self-supervised graph neural network for multi-
source domain adaptation. In Proceedings of the 30th ACM
International Conference on Multimedia, 3907–3916.
Zhang, B.; Wang, Y.; Hou, W.; Wu, H.; Wang, J.; Oku-
mura, M.; and Shinozaki, T. 2021. Flexmatch: Boosting
semi-supervised learning with curriculum pseudo labeling.
Advances in Neural Information Processing Systems, 34:
18408–18419.
Zhang, Y.; Liu, T.; Long, M.; and Jordan, M. 2019. Bridg-
ing theory and algorithm for domain adaptation. In Interna-
tional Conference on Machine Learning, 7404–7413.
Zhang, Z.; Chen, W.; Cheng, H.; Li, Z.; Li, S.; Lin, L.; and
Li, G. 2022. Divide and contrast: Source-free domain adap-
tation via adaptive contrastive learning. Advances in Neural
Information Processing Systems, 35: 5137–5149.
Zhou, Q.; Gu, Q.; Pang, J.; Lu, X.; and Ma, L. 2023. Self-
adversarial disentangling for specific domain adaptation.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 45: 8954–8968.
Zhu, Y.; Zhuang, F.; and Wang, D. 2019. Aligning domain-
specific distribution and classifier for cross-domain classi-
fication from multiple sources. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, 5989–5996.
Zhu, Y.; Zhuang, F.; Wang, J.; Ke, G.; Chen, J.; Bian, J.;
Xiong, H.; and He, Q. 2020. Deep subdomain adaptation
network for image classification. IEEE Transactions on
Neural Networks and Learning Systems, 32: 1713–1722.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17104


