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Abstract

This paper explains the generalization power of a deep neu-
ral network (DNN) from the perspective of interactions. Al-
though there is no universally accepted definition of the con-
cepts encoded by a DNN, the sparsity of interactions in a
DNN has been proved, i.e., the output score of a DNN can
be well explained by a small number of interactions between
input variables. In this way, to some extent, we can con-
sider such interactions as interactive concepts encoded by the
DNN. Therefore, in this paper, we derive an analytic expla-
nation of inconsistency of concepts of different complexities.
This may shed new lights on using the generalization power
of concepts to explain the generalization power of the en-
tire DNN. Besides, we discover that the DNN with stronger
generalization power usually learns simple concepts more
quickly and encodes fewer complex concepts. We also dis-
cover the detouring dynamics of learning complex concepts,
which explains both the high learning difficulty and the low
generalization power of complex concepts. The code will be
released when the paper is accepted.

Introduction
Although deep neural networks (DNNs) have achieved
remarkable success nowadays, the essence for the supe-
rior generalization power of a DNN is still unclear. Peo-
ple usually explained DNNs via the flatness of the loss
landscape (Keskar et al. 2016) and theoretical bounds for
the generalization (Dziugaite and Roy 2017; Neyshabur,
Tomioka, and Srebro 2015), or by proposing new metrics for
the representation power (Fort et al. 2019; Weng et al. 2018).
In recent years, analyzing the capacity or blind spots of en-
coding specific concepts represents an emerging direction in
explaining DNNs (Deng et al. 2021; Cheng et al. 2021a).

Therefore, unlike previous studies, we revisit the gener-
alization of a DNN from a new perspective of concepts. If
the inference score of a DNN can be attributed to a set of
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Figure 1: Interactions encoded by the DNN. Each interac-
tion S represents an AND relationship between a set of input
variables (e.g., image regions). Masking any patches in Sface
will deactivate the interaction, making I(Sface|x) = 0.

countable concepts, then the generalization power of a DNN
would be explained by the generalization power of elemen-
tary concepts encoded by the DNN. This will be a new in-
sight into the generalization power of the DNN.

Can we really define concepts encoded by a DNN?
How to define concepts encoded by a DNN is still an open
problem, and there is no formal and universally-accepted
definition so far. To this end, given a trained DNN, Ren et al.
(2023a) quantified Harsanyi interactions (Harsanyi 1963)
encoded by a DNN as concepts in the DNN. Each Harsanyi
interaction represents an AND relationship between a set of
input variables. For example, in the natural language pro-
cessing, a Harsanyi interaction may represent the AND rela-
tionship between words. In the face detection, as Figure 1
shows, a Harsanyi interaction may consist of patches of
S = {eyes, nose,mouth} to represent the AND relationship
between image patches for the face. Only if all patches in S
are present in the image, the face interaction S is activated
and makes a numerical effect I(S|x) on the detection score.

Although Ren et al. (2023a) did not convince us that
the above interaction really represented a concept that fits
human cognition, they did provide mathematical supports
for such interactions. (1) Li and Zhang (2023); Ren et al.
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(2023a) discovered and Ren et al. (2023b) mathematically
proved that a well-trained DNN usually encoded just a few
interactions between different input variables. (2) We can
use these interactions to explain the output of a DNN. (3)
Besides, Li and Zhang (2023) found the high transferability
of these interactions across samples and across models.

Above findings partially guarantee that Harsanyi interac-
tions can be roughly taken as sparse primitives responsible
for the network output. Thus, these interactions provide
us a more straightforward way to redefine the represen-
tation power of a DNN. As in (Ren et al. 2023a), let us
just call such sparse interactions as interactive concepts en-
coded by the DNN. Let an interactive concept be frequently
extracted by the DNN from training samples, e.g., a com-
mon face concept S = {eyes, nose,mouth} shared by different
images. If this concept also frequently appears in testing
samples, then this concept is considered generalizable;
otherwise, not generalizable. Because the network output
is proved to be the sum of effects of different interactive con-
cepts, the generalization of concepts can be a deep insight
into the generalization of the entire DNN. Consequently, an
out-of-the-distribution (OOD) sample will be explained to
contain some non-generalizable interactive concepts1.

Although there is a common intuition that more complex
representations usually lead to over-fitting, this study uses
an analytic inconsistency of concepts to explain the connec-
tion between the complexity of interactive concepts and their
generalization power. The complexity of an interactive con-
cept S is defined as the number of input variables in S, which
is also termed as the order of the concept, i.e., order(S) = |S|.
Therefore, a high-order interactive concept contains a large
number of input variables, and represents a complex con-
cept. In this way, we use the high inconsistency to noises of
high-order concepts to explain the high over-fitting risk of
high-order concepts.

Besides, the high over-fitting risk of high-order concepts
can also be explained by the detouring dynamic of learning
high-order concepts. I.e., we find that a high-order concept
is more likely to be mistakenly represented by the DNN as
a mixture of low-order concepts. We also find the following
four phenomena to explain the high over-fitting risk of high-
order concepts.

• For each concept, we compute the distribution of its
effects on training samples and such a distribution on test-
ing samples. We find that compared to the distribution of
high-order concepts, the distribution of low-order concepts
in training samples and that in testing samples are usually
more similar to each other. This indicates the strong gener-
alization power of low-order concepts.

• Under adversarial perturbations, high-order concepts
are more likely to make inconsistent interaction effects than
low-order concepts.

• Let us focus on a set of DNNs with the same archi-
tecture, which are trained at different over-fitting levels. We
find that over-fitted DNNs usually encode stronger high-
order interactive concepts than normal DNNs.

1Please see Section 1 in supplemental materials for details.

• Besides, normal DNNs usually learn low-order interac-
tive concepts faster than over-fitted DNNs.

Interactive concepts vs. cognitive concepts and other
interaction metrics. Although the Harsanyi interactive con-
cept seems partially aligned with humans’ cognition to some
extent (Cheng et al. 2021b), we do not think such interactive
concepts exactly fit humans’ cognition. More crucially, the
mathematical generalization power of a concept (defined in
Equation (3)) does not depend on whether the concept fits
human cognition. To this end, Ren et al. (2023a) have proved
that the Harsanyi interaction could represent primitives of
inference logic of a DNN, which was already sufficient for
our research. Please see Section 2 in supplemental materials
for detailed comparisons between the Harsanyi interaction
and other interaction metrics.

In general, a DNN’s representation complexity is differ-
ent from the cognitive complexity. For example, let us con-
sider a small ball concept consisting of a few pixels (low-
order concept) and a large ball concept consisting of massive
pixels (high-order concept) in images. These two balls have
similar cognitive difficulty. However, from the perspective
of a DNN, a large ball has more pixels, so that the DNN has
to examine whether all pixels within the large ball share the
same color without exceptions. This is more difficult than
examining a few pixels within a small ball.

Explaining Generalization Using Concepts
Currently, there is no formal and universally-accepted defi-
nition for concepts encoded by DNNs. In this paper, we fol-
low Ren et al. (2023a) to take the Harsanyi interaction as a
simplified definition of concepts or primitives encoded by a
DNN. These interactions are proved to well mimic network
outputs under different input variations, so we can roughly
consider such concepts as primitives to analyze the DNN.
Our analysis does not require the exact fitness between the
concept and human cognition.

Preliminaries: Sparse Interactive Concepts
Li and Zhang (2023), Ren et al. (2023a) discovered and Ren
et al. (2023b) mathematically proved that a well-trained
DNN usually only encoded a small number of interac-
tions between input variables. Specifically, given a well-
trained DNN v and an input sample x = [x1, x2, . . . , xn]

⊤

with n input variables, let N = {1, 2, . . . , n} denote the in-
dices of all n input variables in x, and let v(x) ∈ R denote
the scalar output of the DNN or a certain output dimension
of the DNN2. Then, the Harsanyi dividend (or Harsanyi in-
teraction) (Harsanyi 1963) is used to quantify the effect of
the interaction between a set S ⊆ N of input variables.

∀S ⊆ N, I(S|x) =
∑

T⊆S
(−1)|S|−|T | · v(xT ), (1)

where xT represents a sample whose input variables in N \T
are masked by baseline values3.

2Note that people can apply different settings for v(x). In
particular, for multi-category classification tasks, we set v(x) =

log p(y=ytruth|x)

1−p(y=ytruth|x)
∈ R by following (Deng et al. 2021).

3The baseline value of each input variable is usually imple-
mented as the mean value of this input variable over all sam-
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Each interaction with considerable effect I(S|x) repre-
sents the AND relationship between input variables in S. For
example, in Figure 1, the face interaction consists of image
patches in the set Sface = {eyes,mouth, nose}. Only when all
three image patches in Sface are present in the input sample
x, the face interaction Sface is activated, and makes a numeri-
cal effect I(Sface|x) on the network output. Otherwise, if any
image patch in Sface is masked in the input image x, then we
can no longer measure a numerical effect of the interaction,
i.e., getting I(Sface|xmasked) = 0 based on Equation (1).

Sparsity & universal matching. Ren et al. (2023b)
have proved that although there are 2n different combina-
tions of variables S ⊆ N , as Figure 2 shows, most well-
trained DNNs4 only encode a small number of interactions
(combinations) S ∈ Ωsalient with salient effects I(S|x), sub-
ject to |Ωsalient| ≪ 2n. All other interactions measured in
Equation (1) have almost zero effects, I(S|x) ≈ 0, which
represent noisy patterns.
Theorem 1. An input sample x can be masked in 2n ways by
sampling different T ⊆ N . For any randomly masked sample
xT , Ren et al. (2023a) have proved that

v(xT ) =
∑

S⊆T
I(S|x) ≈

∑
S⊆T :S∈Ωsalient

I(S|x) (2)

Based on the proved sparsity, Theorem 1 further indi-
cates that network outputs on all 2n randomly masked sam-
ples {xT : T ⊆ N} can be universally approximated by
a small number of salient interactions in Ωsalient, subject to
|Ωsalient| ≪ 2n. According to Occam’s Razor (Blumer et al.
1987), if the inference score can be explained as just a small
number of concepts, then the concept is more likely to re-
flect the essential knowledge encoded by a DNN, instead of
a mathematical trick without clear meanings. In this way,
interactive concepts can be defined as follows.

Definition of interactive concepts. Considering the
proved sparsity, an interactive concept is defined as a salient
interaction. Given a threshold τ , the set of interactive con-
cepts are defined as Ωsalient = {S ⊆ N : |I(S|x)| > τ}.

Mathematical and experimental supports for interac-
tive concepts. (1) First, although there is no theory to
ensure such a simplified definition exactly fits concepts in
human cognition, it is proved that this definition mathemat-
ically guarantees that the output of DNNs can be approx-
imated by sparse interactive concepts. (2) Besides, Li and
Zhang (2023) observed that interactive concepts also had
certain transferability across samples and across models,
i.e., concepts in one sample could also appear in another
sample in the same category, and concepts encoded by a
DNN were usually also encoded by other DNNs. (3) Finally,
a salient interactive concept also exhibited strong discrim-
ination power, i.e., if a set of samples all have the same
salient concept, then this concept will probably push these
samples towards the same category in classification.

Complexity (order) of interactive concepts. The
complexity of the interactive concept S is defined as the

ples (Dabkowski and Gal 2017).
4Please see Section 4 in supplemental materials for detailed

common conditions for the emergence of sparse interactions.

number of input variables contained in the concept, which is
also termed as the order of the concept, i.e., order(S) = |S|.
A low-order (simple) interactive concept represents interac-
tions between a small number of input variables. A high-
order (complex) interactive concept represents a complex in-
teraction between a large number of input variables.

High-Order Concepts Are More Over-Fitted
Although there is a common heuristic that complex concepts
are usually more likely to be over-fitted, people still do not
know the exact definition of concepts with an analytic con-
nection to their generalization power. Because we also find
the low generalization power of complex (high-order) in-
teractive concepts, in this study, we make the first attempt
to clarify the high inconsistency of complex (high-order)
concepts, i.e., complex concepts are more sensitive to small
noises in the data than simple concepts, which is responsi-
ble for the low generalization power of complex (high-order)
concepts. Various experiments have verified our findings.
This may shed new lights on how to evaluate the general-
ization power in terms of concepts.

Illustrating Concepts of Different Orders. Before in-
vestigating the relationship between the complexity of con-
cepts and the generalization power of a DNN, let us first
visualize concepts extracted from a DNN. Specifically, we
trained a seven-layer MLP (MLP-7-census) on the census
dataset (Asuncion and Newman 2007) and a seven-layer
MLP (MLP-7-TV) on the TV news dataset (Asuncion and
Newman 2007), respectively. Each layer of the MLPs con-
tained 100 neurons. We also trained AlexNet (Krizhevsky,
Sutskever, and Hinton 2017), ResNet-20 (He et al. 2016),
and VGG-11 (Simonyan and Zisserman 2014) on the
MNIST dataset (LeCun et al. 1998) (AlexNet-MNIST,
ResNet-20-MNIST, VGG-11-MNIST) and the CIFAR-10
dataset (Krizhevsky, Hinton et al. 2009) (AlexNet-CIFAR-
10, ResNet-20-CIFAR-10, VGG-11-CIFAR-10).

Although we only analyzed concepts in above DNNs in
this very preliminary study, our findings could actually gen-
eralize to more diverse network architectures and datasets.
It is because the proof for the sparse interactive concepts is
agnostic to both network architectures and datasets.

Given a DNN and an input sample x ∈ Rn, we com-
puted numerical effects I(S|x) of all 2n potential interac-
tions, S ⊆ N . We found a common phenomenon that inter-
actions encoded by a DNN were usually very sparse, which
ubiquitously existed in different DNNs. As Figure 2 shows,
numerical effects of 80%-95% interactive concepts were al-
most zero, |I(S|x)| ≈ 0, and only a small number of in-
teractive concepts had relatively significant effects |I(S|x)|.
This finding was also consistent with the conclusion found
by Ren et al. (2023b). The sparsity of interactive concepts
ensured the trustworthiness of such a concept definition.

Moreover, for each DNN, we compared the number of
salient concepts of different orders. Given a threshold τ ,
we defined the set of salient concepts Ωsalient as interactive
concepts whose strengths were greater than τ , i.e., Ωsalient =

{S ⊆ N : |I(S|x)| > τ}. Accordingly, Ω(s)
salient = {S ⊆ N :

|I(S|x)| > τ and |S| = s} represented all salient concepts of
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Figure 3: (a) Histogram5 of salient concepts of different orders, |Ω(s)
τ -salient|. (b) Visualization of salient concepts of different

orders. Salient concepts are usually made up by image patches that contain discriminative parts of the object.

the s-th order. Figure 3 (a) shows the number of salient con-
cepts of different orders, |Ω(s)

salient|, where the threshold was
set to be τ = 0.05 · maxS |I(S|x)|. This figure illustrats
that there were more middle-order salient concepts than low-
order salient concepts and high-order salient concepts.5

Finally, in Figure 3 (b), we visualized several salient con-
cepts, covering middle-order and high-order concepts. We
used the aforementioned experimental settings of AlexNet-
CIFAR-10 and VGG-11-CIFAR-10, and we set τ = 0.05 ·
maxS |I(S|x)|. We found that salient concepts of different
orders were usually made up by image patches that con-
tained discriminative parts of the object.

Generalization to Testing Samples. Before the analytic
explanation for the generalization power of a DNN, let us
first experimentally verify that compared to high-order
interactive concepts, low-order interactive concepts are
more likely to have the distribution in training sam-
ples being similar to the distribution in testing sam-
ples. To this end, previous studies used the gap of the
loss (Neyshabur et al. 2017; Bousquet, Klochkov, and Zhivo-
tovskiy 2020; Deng, He, and Su 2021; Haghifam et al. 2020,
2021) or the smoothness of the loss landscape (Keskar et al.
2016; Li et al. 2018; Foret et al. 2021; Kwon et al. 2021) to
investigate the generalization power of a DNN.

In comparison, the decomposition of interactive concepts
provides us a more straightforward way to define the gener-
alization power of a DNN. I.e., if an interactive concept is
frequently extracted by the DNN from training samples, then
it is also supposed to frequently appear in testing samples.
Otherwise, this interactive concept is not considered to be

5This conclusion does not conflict with, but actually supports,
the representation bottleneck found by Deng et al. (2021), because
that work used a different type of interaction. Please see Section 2
and Section 3 in the supplementary material for more discussion.

well generalized.
In this way, we can define the generalization power

of m-order interactive concepts w.r.t. the category c as
the similarity between the distribution of m-order interac-
tive concepts in training samples of category c and that
in testing samples of category c. Let the vector I

(m)
train,c =

[I
(m)
train,c(S1), I

(m)
train,c(S2), ..., I

(m)
train,c(Sd)]

⊤ ∈ Rd represent the dis-
tribution of m-order interactive concepts over training sam-
ples in the category c, which enumerates all d =

(
n
m

)
possible m-order interactive concepts. The i-th dimension
I
(m)
train,c(Si) = Ex∈Dtrain,c [I(Si|x)] represents the average effect

of the interactive concept Si over different training samples
in the category c. Accordingly, the vector I

(m)
test,c denotes the

distribution of m-order concepts over testing samples in the
category c. Then, the similarity of the concept distribution
between training samples and testing samples is given as the
Jaccard similarity between Ĩ

(m)
train,c and Ĩ

(m)
test,c,

sim(Ĩ
(m)

train,c, Ĩ
(m)
test,c) =

∥min(Ĩ
(m)

train,c, Ĩ
(m)
test,c)∥1

∥max(Ĩ
(m)

train,c, Ĩ
(m)
test,c)∥1

, (3)

where we extend the d-dimensional vector I
(m)
train,c into a 2d-

dimensional vector Ĩ
(m)
train,c = [(I

(m),+
train,c )⊤, (−I

(m),−
train,c )⊤]⊤ =

[(max(I
(m)
train,c, 0))

⊤, (−min(I
(m)
train,c, 0))

⊤]⊤ ∈ R2d with non-
negative elements. Similarly, Ĩ

(m)
test,c is constructed on I

(m)
test,c

to contain non-negative elements. Thus, a high similarity
sim(Ĩ

(m)
train,c, Ĩ

(m)
test,c) indicates that most m-order interactive con-

cepts in the category c can be well generalized to testing
samples in the category c.

Furthermore, we conducted experiments to check whether
high-order interactive concepts were more likely to be
over-fitted. Specifically, we trained a seven-layer MLP for
the census dataset and the TV news dataset, respectively.
We also trained AlexNet, VGG-11 and ResNet-20 on the
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Figure 4: Average similarity between interactive concepts from training samples and those extracted from testing samples.
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Figure 5: Comparison of the ratio r(m) of inconsistent con-
cepts over different orders. High-order interactive concepts
are usually more likely to make inconsistent effects on given
noisy data, which verifies Theorem 2.

MNIST dataset. Given each DNN, we computed interactive
concepts of each order m. For each category c, we measured
the above conceptual similarity for m-order interactive con-
cepts, and Figure 4 reported the average similarity over dif-
ferent categories, i.e., similarity = Ec[sim(Ĩ

(m)
train,c, Ĩ

(m)
test,c)]. We

found that low-order interactive concepts usually had more
similar distributions between training data and testing data
than high-order interactive concepts. This meant that com-
pared to high-order concepts, the DNN was more likely to
extract similar low-order concepts from the training data and
testing data. In other words, low-order concepts in training
data could be better generalized to testing data.

Inconsistency of High-Order Concepts. In this study,
we try to use the inconsistency of high-order concepts to
explain their low generalization power. Before the proof,
this subsection first verifies that high-order concepts usu-
ally make inconsistent interactive effects on noisy data, i.e.,
the same high-order concept may push a sample towards a
category, but pull another sample away from this category.
Intuitively, such inconsistent effects over different samples
usually makes an interactive concept perform like a noisy
pattern, rather than a generalizable concept.

Specifically, the inconsistency of a concept over differ-
ent samples can be measured as follows. Given a normal
sample x, we select a set of salient concepts of each m-
th order, Ω

(m)
x = {S ⊆ N : |S| = m ∧ |I(S|x)| > τ},

the threshold is set to be τ = 0.05 · maxS |I(S|x)|. Then,
by adding the adversarial perturbation generated by Madry
et al. (2018), we get an adversarial example x̃ = x + δ.
I(S|x̃) denotes the interaction effect of the originally salient
concepts S ∈ Ωsalient on the adversarial example x̃. If I(S|x)
and I(S|x̃) have the same sign, i.e., I(S|x) ·I(S|x̃) > 0, we
consider that the interactive concept S is consistent in adver-
sarial attacking; otherwise not. Thus, we compute the ratio
of inconsistent concepts to all the m-order salient concepts
as r(m) = Ex∈D

|{S⊆N :S∈Ω
(m)
x ∧ I(S|x)·I(S|x̃)<0}|

|Ω(m)
x |

.
To compare the inconsistency over different orders, we

follow experimental settings in the Section 2.2.1 to train

AlexNet and VGG-11 on the CIFAR-10 dataset, and to train
seven-layer MLPs on the census dataset and the TV news
dataset. Figure 5 shows that the ratio r(m) of inconsistent
salient concepts increases along with the order m.

Analytic Inconsistency of Concepts. All above experi-
mental findings on the generalization power of concepts are
related to the phenomenon of the inconsistency of high-
order concepts, i.e., high-order concepts are more sensitive
to small noises in the input sample than low-order concepts.
Therefore, we aim to prove that the interaction effect’s
variance of the concept increases with the concept’s or-
der exponentially under a simple setting. Let us add a
Gaussian perturbation ϵ ∼ N (0, δ2I) to the input sample
x and obtain x′ = x + ϵ. The added perturbation represents
noises/variations that inevitably exist in the data. We admit
that there are other types of noises, such as texture varia-
tions and the shape deformation in object classification. In
this study, we just use the Gaussian perturbation to represent
the noises/variations in the data. Our conclusion may still
provide conceptual insights into real-world applications.
Lemma 1. Given a neural network v and an arbitrary per-
turbed input sample x′ = x + ϵ, the neural network output
v(x′) can be rewritten by following the Taylor series expan-
sion at the baseline point b = [b1, . . . , bn]

⊤,

v(x′) = v(b) +
∞∑
k=1

∑
κ∈Ok

C(κ) · ∇v(κ) · π(κ|x′), (4)

including the coefficient C(κ) = 1
(κ1+···+κn)!

(
κ1+···+κn
κ1,...,κn

)
∈ R, the partial derivative ∇v(κ) = ∂κ1+···+κnv(b)

∂κ1x1...∂κnxn
∈ R,

and the expansion term π(κ|x′) =
∏n

i=1(x
′
i − bi)

κi . Here,
κ = [κ1, . . . , κn] ∈ Nn denotes the non-negative integer de-
gree vector of each Taylor expansion term. Correspondingly,
Ok = {κ ∈ Nn|κ1 + · · · + κn = k} represents the set of all
expansion terms of the k-th order.

As a prerequisite, Lemma 1 gives the Taylor series ex-
pansion when the network output v(x′) is expanded at the
baseline point b = [b1, . . . , bn]

⊤. We use the baseline value bi
to represent the masking state of the input variable xi. Nor-
mally, we can set the input variable xi as the average value
of xi over different samples to remove the information (An-
cona, Oztireli, and Gross 2019), i.e., bi = µi = Ex[xi]. How-
ever, pushing the input variable xi a big distance α ∈ R to-
wards µi is usually enough to remove the information in real
applications. Thus, we temporarily set bi = xi+α, if xi < µi;
and set bi = xi − α, if xi > µi, to simplify the proof.
Theorem 2. Given a neural network v and an arbitrary per-
turbed input sample x′ = x+ϵ by adding a Gaussian pertur-
bation ϵ ∼ N (0, δ2I), the interactive effect I(S|x′) is defined
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log V(s)

order of concepts S

Figure 6: Logarithm of the variance. The interactive effect’s
variance increased along with the order exponentially. It ver-
ifies the inconsistency of high-order concepts in Theorem 2.

by setting (x′
T )i = x′

i if i ∈ T and setting (x′
T )i = bi if i ̸∈ T .

Then, we obtain

I(S|x′) =
∑

κ∈QS

C(κ) · ∇v(κ) · π(κ|x′)

=
∑

κ∈QS

Z(κ) · π̂(κ|x′),
(5)

where π̂(κ|x′) =
∏n

i=1(
sign(xi−bi)

α
)κi · π(κ|x′) is a standard

AND interaction of the degree vector κ, and it is normal-
ized to satisfy ∀κ ∈ QS ,Eϵ[π̂(κ|x′ = x + ϵ)] = 1 + O(δ2).
In addition, Z(κ) =

∏n
i=1(

α
sign(xi−bi)

)κi · C(κ) · ∇v(κ) de-
notes the scalar coefficient for π̂(κ|x′). QS = {κ ∈ Nn|∀i ∈
S, κi ∈ N+; ∀i /∈ S, κi = 0} denotes the set of degree vectors
corresponding to all Taylor expansion terms involving only
variables in S. Furthermore, the second-order moment of
the standard AND interaction π̂(κ|x+ ϵ) w.r.t. the Gaussian
perturbations ϵ is derived as follows.

∀κ ∈ QS ,Eϵ[π̂
2(κ|x+ ϵ)] =

∏
i∈S

[1 +

κi∑
m=1

cmU2m(ϵi)],

(6)
where U2m(ϵi) = E[ϵ2mi ] > 0, and cm =

(
2κi
2m

)
1

α2m > 0.
Theorem 2 reformulates the interactive effect I(S|x′)

into elementary standard interactions π̂(κ|x′). Specifi-
cally, Equation (6) tells us that for a specific standard inter-
action π̂(κ|x′) subject to κ ∈ QS , its second-order moment
increases along with the order |S| in a roughly exponential
manner, but its mean value Eϵ[π̂(κ|x+ϵ)] ≈ 1 is independent
with the order. Therefore, we can roughly consider that its
variance Varϵ[π̂(κ|x+ϵ)] = Eϵ[π̂

2(κ|x+ϵ)]−E2
ϵ[π̂(κ|x+ϵ)]

also increases along with the order |S| exponentially.
Moreover, according to Equation (5), the interactive effect

I(S|x′) of the concept S is the weighted sum of all elemen-
tary terms π̂(κ|x+ ϵ) satisfying κ ∈ QS , and different terms
of π̂(κ|x+ϵ) w.r.t. the same set S are roughly positively cor-
related to each other. Thus, in the simple setting of adding
Gaussian perturbations to the input, we can consider that the
variance of I(S|x′) has approximately an exponent relation
with the order |S| of the concept S. Therefore, Theorem 2
shows that high-order concepts usually make more in-
consistent effects than low-order concepts. Although there
are other types of noises in the real data, our theory may still
provide conceptual insights into real-world applications.

Experimental verification of Theorem 2. We conducted
experiments to verify the exponential relation of the inter-
active effect’s variance with the order of the concept, which
is predicted by Theorem 2. To this end, given a well-trained
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Figure 7: Interaction strength of DNNs trained with differ-
ent noise levels ρ. We normalized the strength of interactive
concepts Ex∈DES:|S|=m[ |I(m)(S|x)|

Ex∈D [|v(N|x)−v(∅|x)]
].

DNN and an input sample x, we added a Gaussian pertur-
bation ϵ ∼ N (0, δ2I) to the input sample. Then, we used
V (s) = Ex[E|S|=s[Varϵ[I(S|x + ϵ)]]] to measure the average
variance of s-th order concepts w.r.t. the Gaussian perturba-
tion ϵ. In experiments, we used DNNs introduced in Section
2.2.1 for testing. Figure 6 shows that the interactive effect’s
variance V (s) increased along with the order s in a roughly
exponential manner. The inconsistency of high-order con-
cepts in Theorem 2 is verified.

An Over-Fitted DNN Usually Encodes Strong
High-Order Interactive Concepts
In this subsection, we further analyze and explain the gener-
alization power of the entire DNN based on the generaliza-
tion power of the encoded interactive concepts.

To this end, we need to construct DNNs with different
generalization power for investigation. In fact, the general-
ization power of a DNN is usually affected by various fac-
tors, such as the network architecture and training data. In
this study, we consider a typical case, i.e., random labels in
training data usually push the DNN to be over-fitted to non-
generalizable features for classification (Bae et al. 2022).
Therefore, in experiments, we trained DNNs by applying
different ratios of noise data. Specifically, we trained a DNN
on training samples with a ρ (0 ≤ ρ ≤ 1) ratio of incorrect
labels, which was termed a DNN with ρ noise. We consid-
ered that a DNN trained with more incorrect labels (a high
ρ value) was more over-fitted. We trained AlexNet, ResNet-
20 and VGG-11 with ρ = 0, 0.05, 0.1, 0.2, 0.3 noise on the
MNIST dataset and the CIFAR-10 dataset.

Claim 1: More label noise usually makes DNNs to en-
code stronger high-order interactive concepts. To ver-
ify this claim, for each DNN trained with a ρ ratio of incor-
rect labels, we computed the average interaction strength of
m-order interactive concepts over different training samples,
i.e., Ex∈DES:|S|=m[ |I(m)(S|x)|

Ex∈D [|v(N|x)−v(∅|x)]
]. Figure 7 shows that

the DNN trained with more incorrect labels (a high ρ value)
usually encoded more significant high-order concepts than
the DNN trained with fewer incorrect labels. In other words,
DNNs trained with more label noise (with poorer generaliza-
tion power) usually encoded stronger high-order concepts.
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Figure 8: Average similarity Sim(m=1,t) between low-order
interactive concepts encoded after the t-th epoch and those
encoded after all epochs. We compare Sim(m=1,t) between
DNNs trained with different noise levels ρ. More results can
be found in supplemental materials.

Claim 2: Less label noise usually makes DNNs to learn
low-order interactive concepts more quickly. To ver-
ify this claim, for each DNN trained with a ρ ratio of in-
correct labels, we examined the learning progress of inter-
active concepts of a specific order m. We used the met-
ric Sim(m,t) = Ex∈D[sim(Ĩ

(m)
t (x), Ĩ∗(m)(x))] to measure the

learning progress of m-order interactive concepts at the t-
th epoch, which was defined as the average Jaccard simi-
larity between all m-order interactive concepts Ĩ∗(m)(x) en-
coded by the finally trained DNN and all m-order interactive
concepts Ĩ

(m)
t (x) encoded by the DNNs v(t) trained after t

epochs. Here, sim(·) and the two vectors Ĩ∗(m)(x), Ĩ(m)
t (x)

were defined in Equation (3). In this way, if a DNN ob-
tained a high similarity Sim(m,t) (i.e., achieved a high learn-
ing progress) in early epochs, then we considered that this
DNN learned m-order interactive concepts quickly.

Then, we conducted experiments to compare the learn-
ing speeds of interactive concepts between aforementioned
DNNs with different ratios of label noise. Figure 8 shows
that a DNN trained with less label noise usually exhibited a
higher Sim(m,t) for low-order interactive concepts. It meant
that DNNs trained with less label noise usually learned low-
order interactive concepts more quickly.

Detouring Dynamics of High-Order Concepts
In this section, we analyze the learning dynamics of con-
cepts with a simple experimental setting, i.e., using a DNN
to fit a boolean polynomial. We find that a high-order con-
cept is not directly learned, but is likely to be mistakenly en-
coded as a mixture of low-order concepts in early epochs. In
spite of the simplicity of experiments, this finding may still
provide conceptual insights into the reason why high-order
concepts are more likely to be over-fitted.

We trained a DNN v to fit a random concept S∗ ⊆ N
of the m-th order, m = |S∗|. Given an arbitrary input sam-
ple x, if the input variable xi was set to the original value,
then we set Ai = 1; if the input variable was masked, then
we set Ai = 0. Thus, the m-order target concept was for-
mulated as uS∗(x) =

∏
i∈S∗ Ai. We trained the DNN to

fit the function of the concept uS∗(x) based on the Loss =

target concept S∗ = 5target concept S∗ = 4 𝑜𝑟𝑑𝑒𝑟 = 1

epoch t

target concept S∗ = 1 target concept S∗ = 2 target concept S∗ = 3

epoch t epoch t

epoch t epoch t
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𝑜𝑟𝑑𝑒𝑟 = 4

𝑜𝑟𝑑𝑒𝑟 = 5

Figure 9: Average strength Ex∈X [
∑

S:|S|=m |I(m)
t (S|x)|] of

interactive concepts of different orders.

Ex∈X [∥v(x)−uS∗(x)∥2], i.e., to fit a boolean polynomial. We
trained a five-layer MLP on the dataset X = {0, 1}n, which
contained samples corresponding to all masking states x =
[x1, x2, . . . , xn]

⊤ ∈ X, ∀i, xi ∈ {0, 1}. Here, n = 10.
If a DNN had been well trained after t epochs, then it

was supposed to only extract a single concept with non-zero
effect I(m)

t (S|x). Therefore, we examined whether the DNN
encoded concepts of different orders or a single concept.

To this end, we used Ex∈X [
∑

S:|S|=m |I(m)
t (S|x)|] to de-

note the average strength of m-order interactions after the
t-th epoch. We tracked the change of the average interaction
strength over different epochs. Figure 9 shows that when
a DNN was trained to fit a low-order concept, it usually
learned such a concept directly. In comparison, when a DNN
was trained to fit a high-order concept, the learning dynam-
ics is detouring. Specifically, the DNN usually first learned
low-order concepts. Then, the DNN shifted its attention to
concepts of higher orders, and later gradually removed mis-
takenly learned low-order concepts.

In this way, the above detouring dynamics of high-order
concepts showed that high-order concepts were more diffi-
cult to be learned. A high-order concept was likely to be mis-
takenly encoded as a mixture of low-order concepts. There-
fore, high-order concepts were less likely to be generalized
to testing data than low-order concepts.

Conclusion
In this paper, we provide a conceptual understanding of the
reason why low-order concepts in training data can usually
better generalize to testing data than high-order concepts.
Specifically, we prove that the average inconsistency of con-
cepts usually increases exponentially along with the order
of concepts. We find that DNNs with poorer generaliza-
tion power usually encode more high-order concepts, and
DNNs with stronger generalization power usually encode
low-order concepts more quickly. Moreover, we find that
low-order concepts are usually learned directly, but high-
order concepts are more likely to be mistakenly encoded as
a mixture of various incorrect low-order concepts. These all
explain the low generalization power of high-order interac-
tive concepts. Section 8 in supplemental materials will in-
troduce future practical values of this study.
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