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Abstract
Estimating the individuals’ potential response to varying
treatment doses is crucial for decision-making in areas such
as precision medicine and management science. Most recent
studies predict counterfactual outcomes by learning a covari-
ate representation that is independent of the treatment vari-
able. However, such independence constraints neglect much
of the covariate information that is useful for counterfactual
prediction, especially when the treatment variables are con-
tinuous. To tackle the above issue, in this paper, we first the-
oretically demonstrate the importance of the balancing and
prognostic representations for unbiased estimation of the het-
erogeneous dose-response curves, that is, the learned rep-
resentations are constrained to satisfy the conditional inde-
pendence between the covariates and both of the treatment
variables and the potential responses. Based on this, we pro-
pose a novel Contrastive balancing Representation learning
Network using a partial distance measure, called CRNet, for
estimating the heterogeneous dose-response curves without
losing the continuity of treatments. Extensive experiments are
conducted on synthetic and real-world datasets demonstrating
that our proposal significantly outperforms previous methods.

Introduction
Causal inference is crucial for individual decision-making,
particularly in answering counterfactual questions such as
”What would the individual’s potential response have been
had the person received a different dose of treatment” (Raita
et al. 2021). For example, precision medicine is developed
by studying the response of drug doses (i.e., continuous
treatment) to the potential health state (i.e., potential out-
come) of patients (with various medical history information,
i.e., covariates) (Shi et al. 2020). With accessible observa-
tional data, an essential obstacle for the unbiased estima-
tion of causal effects is the confounding bias from the con-
founders (i.e., common causes of treatment and outcome),
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Representation Learning Method Formulation

Treatment-Balanced T ⊥⊥ Φ(X)
Balancing Representation T ⊥⊥ X | Φ(X)
Prognostic Representation Y (t) ⊥⊥ X | Φ(X)
Double Balancing (ours) (T, Y ) ⊥⊥ X | Φ(X)

Table 1: A comparison of the constraints employed in vari-
ous representation learning methods.

which can lead to spurious correlations between treatment
and outcome (Mealli et al. 2011; Pearl et al. 2009). Another
challenge is the heterogeneity of dose-response curves, that
is, individuals with different covariates will have different
responses even with the same dose given (Wager and Athey
2018; Schwab et al. 2020; Wu et al. 2023; Li et al. 2023c,b).

Compared with the binary treatment case, dose-response
curves has greater challenges in adjusting for the confound-
ing bias of high-dimensional covariates on the continuous
treatment (Imai et al. 2004; Hirano et al. 2004; Kennedy et
al. 2017). To tackle this problem, the generalized propen-
sity score (GPS) serves as a generalization of the propen-
sity score (Rosenbaum and Rubin 1983) in the binary treat-
ment case, using a Gaussian distribution to model the treat-
ment conditional density for given covariates (Imai et al.
2004; Hirano et al. 2004). Motivated by covariate balanc-
ing propensity score (Imai and Ratkovic 2014; Hainmueller
2012), the optimal balancing weighting methods focus on
learning sample weights such that the treatment and covari-
ates are independent on the re-weighted data (Fong, Hazlett,
and Imai 2018; Vegetabile et al. 2021). Despite focusing on
the unbiasedness that treatments and confounders are con-
ditionally independent on balancing scores, these methods
show limited performance in practice when the covariates
are high-dimensional (Nie et al. 2021; Schwab et al. 2020).
Furthermore, these methods neglect the outcome during the
modeling process of the balancing weight, which might omit
important confounders that are necessary for outcome pre-
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diction (Stuart, Lee, and Leacy 2013; Hansen 2008).
With the progress of deep learning, recent studies ap-

ply neural networks to fit dose-response curve of high-
dimensional covariates (Bica et al. 2020; Schwab et al. 2020;
Nie et al. 2021). In deep methods, a critical challenge is
how to learn appropriate covariate representations for het-
erogeneous dose-response curve estimation (Kallus 2020).
Specifically, DRNet (Schwab et al. 2020) propose to learn
treatment-balanced representations (Shalit et al. 2017; Wu
et al. 2022a; Wang et al. 2023) which force the learned
representations to be independent of continuous treatments.
Nonetheless, the method’s unbiasedness hinges on the as-
sumption of invertibility concerning covariate representa-
tions, which is stringent for deep methods (Behrmann et al.
2019). In practice, imposing the constraint of independence
between treatment assignment and covariate representations
runs the risk of neglecting confounder information that is
essential for outcome prediction, leading to biased esti-
mates (Assaad et al. 2021). To tackle this problem, VC-
Net (Nie et al. 2021) employs a propensity score estimator
to constrain the representations for unbiased average dose-
response curve estimation. However, while the propensity
score is the coarsest balancing score (Rosenbaum and Ru-
bin 1983), it may not adaptable for the heterogeneous dose-
response curve estimation because of the covariate informa-
tion loss (Hahn 1998). In other words, it might not prognos-
tic that potential outcomes and confounders are condition-
ally independent given balancing scores (Hansen 2008). For
the prognostic representation, SCIGAN (Bica, Jordon, and
van der Schaar 2020) directly models the treatment effect
by generative adversarial networks (Goodfellow et al. 2020).
However, it is noteworthy that SCIGAN does not explicitly
account for the unbiasedness.

Overall, obtaining appropriate representations that elim-
inates confounder bias and retains necessary confounder
information for the unbiased heterogeneous dose-response
curve is still a challenging problem (Wu et al. 2022b). To
solve this problem, we systematically introduce the dou-
ble balancing representation, i.e., a combination of the bal-
ancing and prognostic representations, which is constrained
to satisfy the conditional independence between the co-
variates and both of the treatments and the potential out-
comes. For the double balancing representation, we propose
a novel contrastive regularizer, applying contrastive learn-
ing (Chen et al. 2020; He et al. 2020; Grill et al. 2020) to
monitor the unbiasedness condition and maintain treatment
continuity. Specifically, we create negative samples by ran-
domly shuffling the original covariates and treat the origi-
nal covariates as positive samples (Arbour, Dimmery, and
Sondhi 2021; Cheng et al. 2020). Adaptable to the cross-
entropy loss (Chen et al. 2020), we adopt partial distance
measure (Székely and Rizzo 2014) to evaluate the unbiased-
ness condition and design a contrastive regularizer loss to
minimize the partial distance measure while discriminating
among positive and negative samples. Moreover, to preserve
the predictive power of the representation for the outcome,
we design a mean squared error loss specifically tailored to
address prognostic representation. Empirically, we demon-
strate that CRNet achieves state-of-the-art performance on

both synthetic and semi-synthetic datasets with different di-
mensions of continuous treatments. We summarize our con-
tribution as follows:
• For unbiased heterogeneous dose-response curve estima-

tion, we systematically define a double balancing repre-
sentation condition which satisfies the conditional inde-
pendence constraint between the covariates and both of
the continuous treatments and the observed outcomes.

• We propose a novel CRNet architecture for learning dou-
ble balancing representations without losing the conti-
nuity of treatments. Specifically, we design a contrastive
loss with a partial distance measure of positive and neg-
ative samples and a mean square error loss to optimize
the CRNet. To the best of our knowledge, this is the first
paper to apply contrastive learning in the field of hetero-
geneous dose-response curve estimation.

• Empirically, varying the dimension of continuous treat-
ments and covariates in both simulated and real-world
datasets, we demonstrate that the proposed CRNet out-
performs other baseline methods on HDRC estimation.

Related Work
Dose-Response Curve Estimation. For estimating the
dose-response curve1, traditional methods (Imbens et al.
2000; Imai et al. 2004; Fong et al. 2018; Vegetabile et al.
2021) learn sample weights on selected metrics to achieve
the balance of covariates to eliminate the confounding bias.
However, these methods neglect the outcome during the
modeling of the balancing weight, which might omit con-
founders that are necessary for outcome prediction (Hansen
2008; Stuart, Lee, and Leacy 2013; Lee and Lee 2022).

Deep methods learn appropriate representations for DRC
estimation (Bica et al. 2020; Schwab et al. 2020; Nie et
al. 2021). Treatment-balanced representation methods, for
instance, DRNet (Schwab et al. 2020) constrains repre-
sentations independent of continuous treatments. VCNet
(Nie et al. 2021) and SCIGAN (Bica, Jordon, and van der
Schaar 2020) constrain representations by treatment estima-
tors/discriminators. None of them explicitly constrain that
the learned representation satisfies both balancing and prog-
nostic representation conditions for dose-response curve es-
timation. Instead, we propose a novel contrastive regularizer
network to obtain double balancing representations for unbi-
ased heterogeneous dose-response curve estimation directly.

Contrastive Representation Learning. Contrastive rep-
resentation learning (Chen et al. 2020; He et al. 2020; Grill
et al. 2020; Zhang et al. 2021, 2022; Yao et al. 2022; Gan
et al. 2023) is a self-supervised learning method. It approx-
imates the latent representations by constructing contrastive
samples (positive and negative instances) to facilitate in-
stance discrimination (Wu et al. 2018). Through the pro-
cess of discriminating between contrastive samples, positive
instances are closer to the original instance in the projec-
tion space, while negative instances are further away from
the original instance in the projection space to maximize

1We only discuss weighting methods because matching and
stratification can be considered as particular forms of weighting.
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the lower bound of the mutual information (Wang and Isola
2020; Huang, Yi, and Zhao 2021). In this paper, we apply
contrastive learning to regularize this representation with-
out breaking the continuity of treatments. To the best of our
knowledge, this is the first paper to apply contrastive learn-
ing in heterogeneous dose-response curve estimation.

Problem Setup
For the case of continuous treatments, we observe n units
with baseline covariates X ∈ X ⊂ Rp, continuous treat-
ments T ∈ T ⊂ Rq and outcome Y ∈ Y ⊂ R, where
p, q is dimension of covariates and treatments, respectively.
We also let X ∈ Xn ⊂ Rn×p, T ∈ T n ⊂ Rn×q and
Y ∈ Yn ⊂ Rn denote all the observed baseline covariates,
continuous treatments, and outcomes, respectively. Using
Neyman-Rubin potential outcome framework (Rubin 1974;
Rosenbaum and Rubin 1983), for an observation for unit i
with received Ti = t, there is a potential outcome Yi(t).

Throughout this paper, we assume three assumptions that
are commonly made in continuous treatment settings (Im-
bens 2000; Schwab et al. 2020; Nie et al. 2021; Bica, Jor-
don, and van der Schaar 2020). Specifically, for a unit i, we
assume the stable unit treatment value assumption (SUTVA)
assumption holds that we can only observe the potential out-
come corresponding to the received treatment level t, i.e.,
Yi = Yi(t) and there should not be alternative forms of the
treatment and interference between units, capturing consis-
tency and non-interference. Moreover, we assume the un-
confoundedness assumption that Y (t) ⊥⊥ T | X and the
positivity assumption that 0 < P(t|x) for T = t and X = x.
In this paper, ⊥⊥ denotes (conditional) independence, and P
is the probability density function (pdf). We consider esti-
mating the heterogeneous dose-response curve (HDRC):

h(t, x) = E[Y (t) | X = x], (1)
where E denotes expectation.

Motivation
For estimating the heterogeneous dose-response curve, deep
methods require an appropriate criterion to monitor the rep-
resentation they produce (Kallus 2020; Schwab et al. 2020).
Inspired by the effective balancing score (Hu, Follmann, and
Wang 2014; Huang and Chan 2017), a linear function of co-
variates for unbiased causal effect estimation, we turn to de-
fine two conditions of representation for unbiased heteroge-
neous dose-response curve estimation.
Definition 1 (Balancing Representation Condition). A bal-
ancing representation Φ(X), X ∈ X , correlated to treat-
ments T ∈ T and outcome Y ∈ Y satisfies:

X ⊥⊥ T | Φ(X). (2)
Theoretically, let FX(·|·) denote conditional probability

distributions for X , we can derive the treatment assignment:
PT (T = t|Φ(x), Y (t))

=

∫
x′
PT (T = t|X = x′,Φ(x), Y (t))dFX(X = x′|Φ(x), Y (t))

=

∫
x′
PT (T = t|X = x′)dFX(X = x′|Φ(x)) = PT (t|Φ(x)).

(3)

The first and third equations hold by using iterated expec-
tation operation, the second equation holds by unconfound-
edness assumption and Definition 1. The above equation im-
plies that X ⊥⊥ T | Φ(X) is equivalent to the unbiasedness
condition, i.e., Y (t) ⊥⊥ T | Φ(X). It guarantees that the
treatment assignment is ignorable given the balancing rep-
resentation when the unconfoundedness assumption is satis-
fied (Rosenbaum and Rubin 1983). As a result, we can iden-
tify the average dose-response curve as:

E[Y (t)] = EX [E[Y (t) | Φ(x)]]
= EX [E[Y (t) | Φ(x), T = t]]

= EX [E[Y | Φ(x), T = t]].

(4)

The first equation holds by the iterated expectation, the
second equation holds by Y (t) ⊥⊥ T | Φ(X), and the third
equation holds by the consistency assumption in SUTVA.
Nevertheless, regressing outcome Y on balancing represen-
tation Φ(X) and treatment T is inadequate for the heteroge-
neous dose-response curve estimation. This inadequacy can
be attributed to the following reasons:

E[Y (t) | x] ̸= E[Y (t) | Φ(x)]. (5)

For instance, VCNet (Nie et al. 2021), which employs a
propensity score constraint on representation, is sufficient
for unbiased average dose-response estimation. Nonethe-
less, it is important to acknowledge that the propensity
score is the coarsest balancing score (Rosenbaum and Rubin
1983). Using representations that are constrained by it might
result in the loss of covariate information for outcome pre-
diction (Hahn 1998). This concern is amplified in situations
where VCNet discretizes the continuous treatment variable
into discrete intervals and utilizes the cross-entropy loss
function for training the propensity score (Li et al. 2023a).
Definition 2 (Prognostic Representation Condition). A
prognostic representation Φ(X), X ∈ X correlated to treat-
ments T ∈ T and outcome Y ∈ Y satisfies:

X ⊥⊥ Y (t) | Φ(X). (6)

Theoretically, the prognostic representation condition in
Eq. (6) is sufficient for unbiased heterogeneous dose-
response curve estimation. Consider a unit i with treatment
t, we can write the heterogeneous dose-response curve as:

E[Y (t) | x] = E[Y (t) | Φ(x)] = E[Y | Φ(x), T = t]. (7)

The first equation holds by Definition 2 and the second
equation holds because the prognostic representation is also
a balancing representation (Hansen 2008; Stuart, Lee, and
Leacy 2013). The above analysis implies that given the prog-
nostic representation, the covariates are ignorable for the
outcome prediction (Hansen 2008).

Learning the prognostic representation presents a chal-
lenge due to the unobservability of potential outcomes Y (t)
(Holland 1986). In practical scenarios, we are constrained
to derive representations based on the condition X ⊥⊥ Y |
Φ(X), which we refer to as the learnable prognostic rep-
resentation condition, a condition also implicitly utilized
in SCIGAN (Bica et al. 2020). Consequently, when repre-
sentations are constrained by this prognostic representation
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condition between covariates and observed outcomes, there
exists a potential concern regarding ensuring unbiasedness
(Hansen 2008; Huang and Chan 2017).

To address the challenges posed by both the balanc-
ing representation and prognostic representation conditions,
where balancing representation condition alone may lead
to the loss of essential information for outcome prediction
and prognostic representation condition constrained by ob-
served outcomes may introduce bias, we propose the condi-
tion of double balancing representation. This condition aims
to enhance both unbiasedness through the balancing repre-
sentation condition and the predictive capacity for outcomes
through the prognostic representation condition.

Definition 3 (Double Balancing Representation Condition).
A double balancing representation Φ(X), X ∈ X corre-
lated to treatments T ∈ T and outcome Y ∈ Y satisfies:

X ⊥⊥ T | Φ(X), X ⊥⊥ Y | Φ(X). (8)

Theoretically, consider a unit i with treatment t. Given the
double balancing representation, we can identify the hetero-
geneous dose-response curve as:

E[Y (t)|x] = E[Y |x, T = t] = E[Y |Φ(x), T = t]. (9)

It becomes evident that the second equation is valid when the
condition of double balancing representation is met. In the
context of HDRC estimation, the two conditions comprising
the double balancing representation are of paramount im-
portance, as they mutually reinforce the effectiveness of this
representation. Hence, it is imperative to verify the fulfill-
ment of the double balancing representation condition.

Method
The two conditions in double balancing representation both
control confounder information of treatment assignment and
retain necessary confounder information for outcome pre-
diction. For unbiased heterogeneous dose-response curve es-
timation, we design the contrastive regularizer loss and mean
square loss to constrain these two conditions.

Contrastive Regularizer
In the setting of dose-response curve estimation, the treat-
ments can be multiple and continuous and the covariates are
high-dimensional. To ensure the unbiased treatment assign-
ment, it is necessary to quantify the conditional dependence
of T and X given Φ(X) (Rosenbaum and Rubin 1983).
Without loss of generalization, we adopt partial distance
measure (Székely and Rizzo 2014) to achieve this goal. The
partial distance measure is a scalar quantity that captures de-
pendence, which equals the conditional correlation in Gaus-
sian scenarios. In the non-Gaussian case, a partial distance of
zero does not confirm conditional independence, however,
such a measure that is closer to zero indicates a weaker as-
sociation (refer to Sec 4.2. in (Székely and Rizzo 2014)).

Partial Distance Measure. For all observed data, assum-
ing three variables X,T,Z and their double-centered pair-
wise distance ω(X), ω(T), ω(Z), we define [ω(X)]i,j =
∥Xi −Xj∥ − 1

n

∑n
k=1 ∥Xk −Xj∥ − 1

n

∑n
l=1 ∥Xi −Xl∥

+ 1
n2

∑n
k=1

∑n
l=1 ∥Xk −Xl∥ where ∥·∥ is the Euclidean

norm and ω(·) ∈ Rn×n. The form of ω(T), ω(Z) are sim-
ilar. We define the inner product of ω(X) and ω(T) as
ω(X)⊗ ω(T) = [n(n− 3)]−1

∑
i̸=j [ω(X)]i,j · [ω(T)]i,j .

The double-centered pairwise distance orthogonal projec-
tion of X on Z is projZ(X) = ω(X) − ω(X) ⊗ ω(Z)
[ω(Z)⊗ ω(Z)]−1ω(Z), and the projection of ω(T) on
ω(Z) is similar. Then, we formulate the partial distance
measure DZ(X,T) as follows:

DZ(X,T) =
|projZ(X)⊗ projZ(T)|
∥projZ(X)∥ · ∥projZ(T)∥

, (10)

where | · | is the absolute operation. The norm ∥projZ(X)∥
= (projZ(X) ⊗ projZ(X))1/2 and the norm ∥projZ(T)∥
similarly defined.

Given the partial distance measure, a key challenge relates
to the design of the loss function (LeCun et al. 2006). The
motivation for employing contrastive learning stems from
the potential mode collapse issue (Jing et al. 2021; Goodfel-
low et al. 2020), which can occur when naively minimizing
partial distance measures for positive samples. Mode col-
lapse is a fundamental problem in representation learning
(He et al. 2020; Chen et al. 2020; Chen and He 2021)and
arises when a model fails to adequately capture the diverse
patterns within the data, instead collapsing them into a single
mode or a limited set of modes. For instance, if the balanc-
ing representation exhibits a multi-modal distribution, but
the model only learns a uni-modal distribution, it becomes
susceptible to mode collapse. This situation can introduce
bias into the learned representation for the estimation of het-
erogeneous dose-response curves (Li et al. 2023a). To obvi-
ate it, we adopt the contrastive learning (Chen et al. 2020).

We propose a novel contrastive regularizer (CR) to con-
strain the balancing representation. To construct the positive
and negative samples for contrastive learning, we randomly
shuffle the n units of X in the original data m times to get
n ∗ m permuted data X′ that X′ ⊥⊥ T (Arbour, Dimmery,
and Sondhi 2021; Cheng et al. 2020). Then we name X posi-
tive samples and X′ negative samples and define their partial
distance measure as:

DΦ(X)(X,T) =
|projΦ(X)(X)·projΦ(X)(T)|

∥projΦ(X)(X)∥·∥projΦ(X)(T)∥ , (11)

DΦ(X′)(X,T) =
|projΦ(X′)(X)·projΦ(X′)(T)|

∥projΦ(X′)(X)∥·∥projΦ(X′)(T)∥ . (12)

As the Fig. 1 shown, given the representations Φ(X) and
Φ(X′) from n observed covariates X and n shuffled covari-
ates X′, the correctly specified function Φ should satisfy
that DΦ(X) (X,T) ≪ DΦ(X′) (X,T). Then we propose to
perform contrastive learning for the positive samples X and
negative samples X′. The contrastive regularizer loss is for-
mulated as follows:

ℓCR
Φ (X,T) = DΦ(X)(X,T)− log

∑m
j=1 exp

(
DΦ(X′

(j)
)(X,T)

)
,

(13)

where m represents the number of shuffles, and X′
(j) de-

notes the shuffled covariates from the n negative samples
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Figure 1: Contrastive regularizer. The n covariates X undergo a transformation via the encoder Φ resulting in Φ(X). Φ(X)
transforms to g(Φ(X)) through projection head g (Chen et al. 2020). g(Φ(X)) is directly constrained by ℓCR

Φ (X,T). To
simplify notation, we use Φ(X) in the context to represent g(Φ(X)). DΦ(X) and DΦ(X′) are partial distance measure of
positive/negative samples (Székely and Rizzo 2014).

acquired during the jth shuffle. The total count of negative
samples is given by n × m. During the training procedure,
for each batch of samples, we perform random shuffling of
the original covariates within the batch a total of m times,
and we set m = 1 with default (Cheng et al. 2020).

It is worth noting that the contrastive regularizer serves a
dual purpose, not only preserving unbiasedness but also en-
suring the continuity of treatments, thereby benefiting prog-
nostic condition, owing to its enhancement of representa-
tion quality. More specifically, given that all discrimination
operates at the instance level (Wu et al. 2018), there is no
necessity to discretize treatment variables into bins (Schwab
et al. 2020; Bica, Jordon, and van der Schaar 2020; Nie et al.
2021). Consequently, the continuity of treatments is inher-
ently maintained. Furthermore, the contrastive regularizer
with positive/negative samples effectively captures diverse
information from covariates X for representation learning.
This aspect aligns with the requirement of addressing prog-
nostic condition, aiming to capture the differences in causal
effects among various study subjects (Hansen 2008).

CRNet
Different from the unbiasedness condition, which focuses
on the treatment assignment. The prognostic condition focus
on the outcome prediction power in representation. In this
paper, we design a two-head neural network, which encodes
the treatments T through Ψ and covariates X through Φ for
representations Ψ(T ) and Φ(X). Then, we adopt a mean
square error loss (MSE) to directly constrain the condition in
the double balancing representation that Y ⊥⊥ X|Φ(X). In
particular, for a unit i, the MSE loss is formulated as follows:

ℓMSE(Xi, Ti, Yi) = (Yi − h(Φ(Xi),Ψ(Ti)))
2. (14)

Although the MSE loss has been commonly employed
in previous works for outcome prediction (Schwab et al.
2020; Bica, Jordon, and van der Schaar 2020; Nie et al.
2021), it’s important to note that most of these approaches do
not constrain the prognostic condition effectively. To elabo-
rate, DRNet (Schwab et al. 2020) imposes the MSE loss on
a treatment-balanced representation that is independent of
treatments T . However, as treatments T is correlated with
covariates X , this approach may lead to a loss of essen-
tial confounder information for outcome prediction. VCNet
(Nie et al. 2021) utilizes the MSE loss on representations
constrained by a propensity score estimator, which is con-
sidered the coarsest balancing score (Rosenbaum and Rubin
1983). Representations subject to this constraint may also
fail to satisfy the prognostic representation condition (Hahn
1998). Furthermore, these methods tend to neglect the is-
sue of mode collapse, which can compromise their ability to
estimate heterogeneous causal effects effectively. Different
from them, our MSE loss is imposed on double balancing
representations, while constraining the representation to sat-
isfy unbiasedness. We achieve this by employing the con-
trastive regularizer to preserve the confounder information
of X . This facilitates the direct regression model to learn
prognostic representation as much as possible.

In summary, we propose a neural network framework
called CRNet for the estimation of HDRC. As depicted in
Figure 2, the overall architecture of CRNet comprises three
distinct blocks: a) Two-Head Encoder. The first head, de-
noted as Φ, encodes covariates X into representation Φ(X).
The second head, denoted by Ψ, encodes treatments T
into representation Ψ(T); b) Projection Head. The projec-
tion head, denoted by g, project the covariate representation
Φ(X) into g(Φ(X)) for the partial distance measure involv-
ing covariates X and treatments T; c) Outcome Estimator.
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Figure 2: CRNet. For the training procedure, the representa-
tions Φ(X) constrained by contrastive loss ℓCR

Φ (X,T) are
concatenated and input to MLPs h to obtain the estimated
outcome Ŷ by the final loss in Eq. (15). The final objective
is to minimize the loss. For the inference procedure, the es-
timated HDRC is obtained by h(Φ(X),Ψ(T)).

The outcome estimator h takes the concatenated representa-
tions of covariates and treatments, Φ(X) and Ψ(T ), as input
and transforms them into h(Φ(X),Ψ(T)). This estimated
outcome h(Φ(X),Ψ(T)) approximates the observed Y by
the regularized regression loss ℓfinal(X,T,Y):

ℓfinal(X,T,Y) =
∑n

i=1 ℓ
MSE(Xi, Ti, Yi) + α ∗ ℓCR

Φ (X,T),
(15)

where α represents the hyperparameter. The use of both the
MSE loss ℓMSE and the contrastive regularizer loss ℓCR

Φ is
necessary for unbiased estimation of HDRC. The loss ℓMSE

is used to minimize the difference between the predicted
outcome and the observed outcome, thus ensuring that the
model can make reliable predictions. Without this loss, the
CRNet model would not be able to accurately predict the
outcomes, resulting in loss of prediction capacity. On the
other hand, the loss ℓCR

Φ helps to prevent treatment assign-
ment bias and outcome overfitting by comparing the rep-
resentation of positive/negative samples. Without this loss,
the CRNet model might induce treatment assignment bias
or mode collapse, leading to inaccurate outcome prediction.
In short, the two losses in ℓfinal complement each other.

Experiments
Since the true HDRC are rarely available in real application,
in line with previous work (Nie et al. 2021; Bica et al. 2020),
we simulate 4 synthetic data and 5 semi-synthetic data from
two real-world datasets IHDP2 and News3.

Experimental Setup
Synthetic Data Generation. We simulate synthetic data
as follows. For each unit i ∈ {1, 2, · · · , n}, we gener-
ate p = 100 covariates from an independent identical dis-
tribution, i.e., Xi ∼ N (0p,Ep), where 0p denotes a p-
dimensional vector with all elements equal 0, and Ep rep-
resents p-order identity matrix. We generate q treatments
using the following rules: Ti,j = 0.2

∑5
j=1 WjXi,j +

1
p−11

∑p
j=11 WjX

2
i,j + T̃i,j + 0.5T̃ 3

i,jXi,p−j . Here, we de-
note T̃i,j ∼ N (0, 1), Wj ∼ U(0.5, 1) for j ∈ {1, 2, · · · , q}.
The outcome is generated according to the following

2https://www.fredjo.com
3https://paperdatasets.s3.amazonaws.com/news.db

rules: Yi = 0.5
∑q

j=1 W
T
j |Ti,j | + 0.5

∑10
j=6 WjX

2
i,j +∑p

j=11 WXi + 0.5
∑q

j Ti,jXi,q−j−10. Here, we denote
WT

j ∼ U(0.5, 1). Then, we design 4 simulation datasets and
name them Data-q where q means the dimension of T and
X (e.g., Data-1 means a simulation with 1 treatment, 100
covariates). Then we sample 2100/600/300 units for train-
ing/validation/test for each data.

Semi-synthetic Data Generation. We proceed to perform
semi-simulation experiments with the aim of demonstrat-
ing the robustness of our method across a range of settings.
These settings are designed in accordance with the data gen-
eration rules of synthetic data generation. We sample units
from the IHDP data to create the training, validation, and test
sets, with 522/150/75 units for each data split. For the News
dataset, we perform data splits into training, validation, and
test sets with 2100/600/300 units, respectively.

Baselines and Evaluation. We compare our model with
the following baselines in the above datasets: For statistical
methods, we use (1) Causal Forest (Wager et al. 2018), a
random forest algorithm for causal inference. (2) GPS (Im-
bens 2000), a generalized propensity score for continuous
treatments. (3) CBGPS (Fong et al. 2018), a generalized co-
variate balancing propensity score (Imai and Ratkovic 2014)
for continuous treatments. For deep methods, we apply (4)
SCIGAN (Bica et al. 2020), a hierarchical generative adver-
sarial network (Goodfellow et al. 2020). (5) DRNet (Schwab
et al. 2020), a multi-head deep model stratified according to
treatment. (6) VCNet (Nie et al. 2021), a varying coefficient
neural network with functional targeted regularization.

For all experiments, we perform 30 replications to report
the mean integrated square error (MISE) and the standard
deviations (std) of HDRC estimation: MISE = s−1

∑s
i=1∫ b

a
(h(t,Xi) − ĥ(t,Xi))

2dt, where s is the test sample size
and [a, b] is the sampling interval of treatment values.

Results
Performance Comparison. We conduct simulation and
semi-simulation experiments as shown in Table 2, where
bold indicates optimal performance, and underlined indi-
cates suboptimal performance. As the dimensionality of
treatments increases, traditional statistical methods tend to
fail, highlighting their limitations in handling complex,
high-dimensional data. CRNet surpasses both DRNet and
VCNet in performance, underscoring that relying solely on
treatment-balanced representation or balancing representa-
tion can indeed lead to a loss in predictive capabilities. SCI-
GAN’s poor performance in high-dimensional data reflects
the instability inherent in generative adversarial networks
while also emphasizing the necessity of balancing repre-
sentation condition. CRNet attains a state-of-the-art perfor-
mance level in all conducted experiments. This demonstrates
the effectiveness of the double balancing representation con-
dition in enhancing both the constraint on unbiasedness and
the outcome predictive capacity.

Ablation Studies. To verity the performance of prognos-
tic representation, we conduct the w/o balancing (BR) abla-
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Method Data-1 Data-2 Data-5 Data-10 IHDP-1 News-2 News-4 News-8 News-16

GPS 57.7 ± 18 57.8 ± 14 57.4 ± 15 78.0 ± 19 0.98 ± 0.4 84.3 ± 4.6 83.8 ± 4.5 87.8 ± 3.8 89.0 ± 4.2
CBGPS 57.8 ± 18 57.8 ± 14 57.3 ± 15 70.5 ± 19 1.03 ± 0.4 84.1 ± 4.4 83.6 ± 4.6 85.5 ± 5.0 86.7 ± 4.5
CF 1.83 ± 0.6 2.50 ± 0.7 5.16 ± 0.9 14.9 ± 2.4 0.79 ± 0.3 26.8 ± 15 26.9 ± 11 47.9 ± 21 82.7 ± 81
DRNet 2.35 ± 0.7 3.49 ± 1.4 6.39 ± 2.1 18.5 ± 4.7 1.29 ± 0.4 18.0 ± 8.9 18.6 ± 10 33.3 ± 65 26.1 ± 10
SCIGAN 15.0 ± 13 26.1 ± 13 43.6 ± 15 59.6 ± 26 0.65 ± 0.3 233 ± 218 163 ± 151 254 ± 365 200 ± 248
VCNet 5.79 ± 4.8 6.41 ± 4.7 13.7 ± 5.7 28.2 ± 7.1 1.28 ± 0.7 11.3 ± 6.0 9.80 ± 3.3 26.5 ± 51 25.3 ± 31

CRNet 1.69 ± 0.5 2.07 ± 0.8 3.05 ± 0.7 7.55 ± 2.6 0.22 ± 0.1 3.21 ± 1.4 5.19 ± 2.3 8.35 ± 5.0 9.18 ± 2.9
w/o BR 2.04 ± 0.5 2.56 ± 1.0 4.76 ± 1.2 9.69 ± 5.1 0.63 ± 0.4 6.03 ± 4.6 5.60 ± 3.4 9.88 ± 5.9 15.9 ± 23
w/o PR 52.9 ± 16 53.9 ± 14 51.0 ± 13 55.2 ± 16 0.92 ± 0.4 35.3 ± 17 36.1 ± 17 36.1 ± 15 38.3 ± 14

Table 2: Performance comparison (MISE ± std) and ablation studies on simulation Data-q-p, IHDP-q and News-q.

n ∗m Data-1 Data-10 IHDP-1 News-16

m = 0 1.99 ± 0.6 11.0 ± 3.1 0.58 ± 0.3 10.2 ± 2.9
m = 1 1.69 ± 0.5 7.55 ± 2.6 0.22 ± 0.1 9.18 ± 2.9
m = 2 1.69 ± 0.5 7.06 ± 2.4 0.24 ± 0.1 10.1 ± 4.0
m = 3 1.69 ± 0.5 7.38 ± 3.2 0.23 ± 0.1 10.9 ± 5.0
m = 5 1.71 ± 0.6 8.08 ± 3.1 0.23 ± 0.1 10.5 ± 4.1
m = 10 1.70 ± 0.6 7.36 ± 2.7 0.23 ± 0.1 11.5 ± 6.4

Table 3: Performance comparison (MISE ± std) varying val-
ues m of the number of negative sample augmentations.

tion study on CRNet with hyperparameter α = 0. To verify
the performance of balancing representation, we conduct the
w/o prognostic (PR) ablation study on CRNet, which applies
a two-stage training strategy: Only loss ℓCR

Φ is used in the
first stage, and only ℓMSE loss is used in the second stage.
The results are shown in Table 2. Although w/o balancing
achieved good performance in most settings, its performance
was still significantly degraded compared to CRNet. On the
other hand, w/o prognostic performed poorly in all settings.
This result aligns with our expectations since the model’s
predictive accuracy deteriorates when the prognostic repre-
sentation condition is unsatisfied, and the sole reliance on
prognostic representation proves biased in practice.

Hyperparameters Tuning. We conduct experiments to
evaluate the impact of hyperparameters α in Eq. (15), the
dimension of double balancing representation KΦ(X), the
augmentation of negative samples m on the performance of
CRNet. As Fig. 3 shown, we found that a large α improves
estimation performance. Nevertheless, when α is too large,
it will be an obstacle to fitting the outcome. Moreover, we
found that increasing the dimension KΦ(X) does not lead to
a substantial improvement in estimation performance, which
implies that CRNet is not sensitive to the dimension.

We further conduct experiments, as shown in Table 3, by
increasing the number of shuffle times m from 0 to 10. The
results show a degradation in performance when m = 0,
highlighting that naive minimization of the partial distance
measure can induce mode collapse. Conversely, increasing
m to 1 significantly improves performance, indicating the
effectiveness of our designed negative sample constraint.
This issue is particularly pronounced in high-dimensional

𝐾%(&) 𝐾%(&)

(a) IHDP-1 (𝐾%(-) = 16)

(c) IHDP-1 (α = 1000)

(b) News-16 (𝐾%(-) = 1024)

(d) News-16 (α = 1000)

Figure 3: The sensitivity experiments (MISE ± SD) for the
value of α and the dimension of double balancing represen-
tation KΦ(X) on IHDP-1 and News-16 datasets.

datasets such as Data-10 and News-16. The results also show
that our best results from the main text (Tables 2) can be fur-
ther improved by increasing the number of m. To enhance
training efficiency, this paper defaults to m = 1.

Conclusion
For estimating heterogeneous dose-response curves, we pro-
pose a neural network called CRNet. With no break of the
continuity of treatments, this network discriminates between
positive samples X and negative samples X′ by a partial
distance measure applied to double balancing representa-
tion. By employing this network, we enforce unbiasedness
in our estimates and enable us to capture the prognostica-
tion present among individuals. Besides, this study has some
potential limitations. We assume unconfoundedness and al-
though we make efforts to control for potential confounding
factors, there remains a possibility that unmeasured or un-
known confounders may influence the results. Additionally,
different conditional dependence measures may lead to dif-
ferent conclusions about the performance of our method.
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Székely, G. J.; and Rizzo, M. L. 2014. Partial distance corre-
lation with methods for dissimilarities. The Annals of Statis-
tics, 42(6): 2382–2412.
Vegetabile, B. G.; Griffin, B. A.; Coffman, D. L.; Cefalu, M.;
Robbins, M. W.; and McCaffrey, D. F. 2021. Nonparametric
estimation of population average dose-response curves using
entropy balancing weights for continuous exposures. Health
Services and Outcomes Research Methodology, 21(1): 69–
110.
Wager, S.; and Athey, S. 2018. Estimation and inference of
heterogeneous treatment effects using random forests. Jour-
nal of the American Statistical Association, 113(523): 1228–
1242.
Wang, H.; Chen, Z.; Fan, J.; Li, H.; Liu, T.; Liu, W.; Dai, Q.;
Wang, Y.; Dong, Z.; and Tang, R. 2023. Optimal transport
for treatment effect estimation. Advances in Neural Infor-
mation Processing Systems.
Wang, T.; and Isola, P. 2020. Understanding contrastive rep-
resentation learning through alignment and uniformity on
the hypersphere. In International Conference on Machine
Learning, 9929–9939. PMLR.
Wu, A.; Kuang, K.; Li, B.; and Wu, F. 2022a. Instrumen-
tal variable regression with confounder balancing. In Inter-
national Conference on Machine Learning, 24056–24075.
PMLR.
Wu, A.; Kuang, K.; Xiong, R.; Li, B.; and Wu, F. 2023. Sta-
ble estimation of heterogeneous treatment effects. In Inter-
national Conference on Machine Learning, 37496–37510.
PMLR.
Wu, A.; Yuan, J.; Kuang, K.; Li, B.; Wu, R.; Zhu, Q.;
Zhuang, Y.; and Wu, F. 2022b. Learning decomposed rep-
resentations for treatment effect estimation. IEEE Trans-
actions on Knowledge and Data Engineering, 35(5): 4989–
5001.
Wu, Z.; Xiong, Y.; Yu, S. X.; and Lin, D. 2018. Unsuper-
vised feature learning via non-parametric instance discrimi-
nation. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 3733–3742.
Yao, D.; Zhao, Z.; Zhang, S.; Zhu, J.; Zhu, Y.; Zhang, R.; and
He, X. 2022. Contrastive Learning with Positive-Negative
Frame Mask for Music Representation. In WWW ’22: The
ACM Web Conference 2022, Virtual Event, Lyon, France,
April 25 - 29, 2022, 2906–2915. ACM.
Zhang, M.; Huang, S.; Li, W.; and Wang, D. 2022. Tree
structure-aware few-shot image classification via hierarchi-
cal aggregation. In European Conference on Computer Vi-
sion, 453–470. Springer.
Zhang, S.; Yao, D.; Zhao, Z.; Chua, T.; and Wu, F. 2021.
CauseRec: Counterfactual User Sequence Synthesis for Se-
quential Recommendation. In SIGIR ’21: The 44th Inter-
national ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, Virtual Event, Canada, July
11-15, 2021, 367–377. ACM.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17183


