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Abstract
Current research for node classification focuses on dealing
with either graph noise or label noise, but few studies con-
sider both of them. In this paper, we propose a new robust
node classification method to simultaneously deal with graph
noise and label noise. To do this, we design a graph con-
trastive loss to conduct local graph learning and employ self-
attention to conduct global graph learning. They enable us
to improve the expressiveness of node representation by us-
ing comprehensive information among nodes. We also utilize
pseudo graphs and pseudo labels to deal with graph noise and
label noise, respectively. Furthermore, We numerically vali-
date the superiority of our method in terms of robust node
classification compared with all comparison methods.

Introduction
Node classification is a classic learning task in graph data
and has been widely used in real applications, such as ci-
tation networks, traffic networks, social networks, etc. (Wu
et al. 2020). In many node classification methods, node rep-
resentation is updated by aggregating neighbors’ informa-
tion, assuming that both graph and label information are
clean. As a result, these methods are vulnerable to either
graph noise (Fox and Rajamanickam 2019) or label noise
(Li, Yin, and Chen 2021).

Graph noise points to the noise in the graph, includ-
ing missing-edges and noisy-edges. With the missing-
edges, models cannot aggregate enough intra-class neigh-
bors, easily resulting in limited generalization; with noisy-
edges, models easily aggregate inter-class neighbors to
lose their discrimination (Bojchevski and Günnemann
2019). Current approaches for dealing with graph noise
include three categories, i.e., structure-learning method,
weight-learning method, and robust-constraint method. The
structure-learning method attempts to reconstruct a de-
noised graph for enhancing the effectiveness of the message-
passing, so that similar nodes’ representation can be aggre-
gated to improve their expressiveness (Dai et al. 2022). The
weight-learning method specifies different weights to edges
to assign noisy edges with small weights in updating node
representations (Ye and Ji 2021). Different from the above
two methods denoising for the message-passing mechanism,
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the robust-constraint method attempts to preserve inherent
graph properties, such as low rank (Cheng, Miao, and Qiu
2020), sparsity (Ye and Ji 2021), and Laplacian (Runwal,
Kumar et al. 2022), to improve the denoising ability of node
representation. However, these methods focus on conduct-
ing local graph learning (Runwal, Kumar et al. 2022) to up-
date node representation. Obviously, they don’t capture the
global information among nodes, which has been proven to
effectively improve the robustness of node classification via
introducing more edges beyond the primitive graph (Huang
et al. 2023). Moreover, these methods are parameterized by
back-propagation involving label information, leading to a
sensitivity to label noise.

It is critical to train reliable deep-learning models un-
der label noise because accurate label annotation is time-
consuming and requires expert knowledge. It has been val-
idated that deep learning models easily overfit to noisy la-
bels with any ratio of corrupted labels (Zhang et al. 2021).
To address this issue, many approaches have been proposed
by training robust models with label noise, such as sample
selection method (Sukhbaatar et al. 2014), robust loss de-
sign method (Song, Kim, and Lee 2019), and robust regu-
larization method (Srivastava et al. 2014). However, these
methods cannot be directly extended for node classification
in the graph data because of issues such as sparse labeling
(Dai, Aggarwal, and Wang 2021) and severe scarcity of la-
bel information caused by label noise. Recently, studies have
attempted to introduce more supervision information based
on the graph, e.g., using label propagation over graphs (Dai,
Aggarwal, and Wang 2021). However, with the message-
passing mechanism, label noise is easily back-propagated to
disturb the representation learning of other nodes. As a re-
sult, this makes these methods sensitive to the graph quality.

Studies have demonstrated that graph noise and label
noise widely exist in graph data simultaneously (Zhong et al.
2019). Most existing studies concentrate on dealing with ei-
ther graph noise or label noise. Few works attempt to tackle
both in a unified framework. The primary challenges arise
due to the limited number of available labels for node classi-
fication, and both graph noise and label noise further inten-
sify the scarcity of labels. Specifically, previous node clas-
sification methods first aggregate neighbor information in
the graph to make updated node representation more distin-
guishing, followed by the back-propagation process merely
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Figure 1: The framework of the proposed method RNCGLN. The feature matrix X is first fed into an MLP, and then a graph
contrastive loss is designed to capture local information in the multi-hop graph, i.e., local graph learning, is also used to deal with
graph noise. The output node representation is fed into the multi-head self-attention module to consider the global information
beyond the primitive graph, i.e., global graph learning. In the label self-improvement module, the node representation and the
original labels are used to construct a classifier, which is further used for predicting all labeled and unlabeled nodes. The original
labels with low predictive confidence are replaced because they are considered noise.

involving label information. As a result, graph noise can
easily produce incorrect label prediction, and label noise is
back-propagated along the noisy graph to impact the repre-
sentation learning of other nodes. Therefore, node classifica-
tion is sensitive to these two kinds of noise. Moreover, their
coexistence makes node classification worse.

To tackle the above issues, we propose a new method
RNCGLN shown in Figure 1, namely Robust Node
Classification under Graph and Label Noise, which con-
sists of three modules, i.e., a graph self-improvement
module, a multi-head self-attention module, and a label
self-improvement module. Specifically, in the graph self-
improvement module, we design a graph contrastive loss to
conduct local graph learning and deal with graph noise. The
output representation is then fed into the multi-head self-
attention module to amplify its discriminative ability by con-
ducting global graph learning. In the label self-improvement
module, the node representation learned by the first two
modules and labels is used to construct a classifier, which
is further used to detect the label noise, i.e., the labels with
low predictive confidence by the classifier.

Compared with previous node classification methods, the
main contributions of our method are listed as follows:
• Our method focuses on conducting node classification by

simultaneously exploring graph and label noise issues.
On the contrary, previous methods only consider either
for node classification.

• Different from many previous node classification meth-
ods based on graph neural networks (GNNs) (Wu et al.
2020), we employ multi-head self-attention as the back-
bone network and design a graph contrastive loss for
considering both global and local information among the
nodes. Furthermore, we numerically prove the effective-
ness of our proposed framework over GNNs.

Approach
Motivations
Given a graph G = (V,E), where V is the node set with
n nodes representation X ∈ Rn×d, and E ∈ R|V|×|V| is
the edge set. Generally, a graph can be denoted as an adja-
cency matrix A ∈ [0, 1]n×n, where aij = 1 denotes node
vi connected with node vj . Given X, A, and a small set of
nodes labels YL, the goal of node classification is training
a model f(·) to minimize L(f(X,A),YL), such that f(·)
can accurately predict unlabelled nodes YU .

In the literature on node classification, the message-
passing mechanism is used to update the node representa-
tion via aggregating the neighbor’s information. The updat-
ing scheme is formulated as follows:

Z(l+1) = σ(F(A)Z(l)W) (1)

where σ(·) and W denote an activation function and a learn-
able weight matrix, respectively, and Z(0) = X. F(A) is a
graph filter (Balcilar et al. 2021) which distinguishes dif-
ferent GNN methods. For example, F(A) = D− 1

2AD
1
2

in GCN where D is the degree matrix (Kipf and Welling
2016). After conducting representation learning by Eq. (1),
the cross-entropy loss function is used to update networks:

Lce = −
∑

i∈YL

∑C

j=1
yij log zij (2)

Eq. (1) easily degrades the effectiveness of the message-
passing mechanism with graph noise in the graph A. Ex-
isting solutions generally focus on conducting local graph
learning, i.e., aggregating local neighbor information, to im-
prove the robustness of F(A), limiting the expressiveness
by overlooking crucial neighbors that do not initially present
in the graph.
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Label noise also impacts the performance of Eq. (2) since
it produces error gradient in the back-propagation process.
Since only a small set of labels is available, and label noise
may reduce the available label information, many existing
label-robust methods cannot be directly employed for node
classification under noise (Dai, Aggarwal, and Wang 2021).

Considering that real-world graph data generally contain
both graph noise and label noise, in this paper, we focus
on conducting node classification in the graph data with
graph noise and label noise, as shown in Figure 1. To do
this, we regard the multi-head self-attention as the backbone
to consider the global information among nodes and pro-
pose a graph contrastive loss to consider the local informa-
tion for representation learning. Moreover, the graph self-
improvement is designed to deal with graph noise. Further-
more, the output node representation is used to construct a
classifier for noisy labels.

Multi-Head Self-Attention Module
Existing robust methods often design structure learning and
weight learning (Chen, Wu, and Zaki 2021; Tang et al. 2019)
to make minor modifications to the initial graph. However,
they predominantly involve local graph learning without
comprehensively considering the information among nodes.
To address this issue, we adopt multi-head self-attention
(Vaswani et al. 2017) as the backbone network, which is sup-
ported by the facts that self-attention can be seen as a learn-
able fully-connected weighting graph and multi-head atten-
tion could capture diverse correlations among nodes (Min
et al. 2022). In particular, graph noise includes missing-
edges and noisy-edges, and multi-head self-attention allows
all edges to exist and utilizes task-driven weight learning to
deal with both missing-edges and noisy-edges. The multi-
head self-attention in the l-th layer is formulated as follows:

{
Z(1+1) = Concat(head1, ..., headH)Wc

headh = softmax(
(Z

(l)
h Wq

h)(Z
(l)
h Wk

h)
T

√
dk

)Z
(l)
h Wv

h,
(3)

where Concat(·) and dk denote the concatenation of node
representation and a scaling parameter, respectively. Wq

h,
Wk

h, and Wv
h are three learnable parameter matrices in the

h-th head. Eq. (3) measures the similarities of all nodes via

softmax(
(Z

(l)
h Wq

h)(Z
(l)
h Wk

i )
T

√
dk

) without using graph informa-
tion, similar to Eq. (1).

The standard self-attention has the complexity of O(n2d),
in the implementation, we adopt the efficient attention in
(Shen et al. 2021) with the complexity of O(d2n). The for-
mulation is listed as follows:

headh = ϕq(Z
(l)
h Wq

h)(ϕk(Z
(l)
h Wk

h)
TZ

(l)
h Wv

h) (4)

where ϕq and ϕk are two normalization functions. After up-
dating the node representation by Eq. (4), as what Trans-
former do (Vaswani et al. 2017), we merge information
across heads and layers to output the final representation:{

Z(l+1) = Z(l) + Z(l+1)

Z(l+1) = W2ReLU(W1LN(Z
(l+1))) + Z(l+1),

(5)

where W1 and W2 denote two trainable parameter matri-
ces, and LN(·) is the layer normalization operation.

Compared with previous methods, Eq. (3) has the fol-
lowing advantages. Firstly, self-attention integrates struc-
ture learning with weight learning to mitigate the influ-
ence of graph noise. Specifically, Eq. (3) reconstructs a
fully-connected graph, which is independent of the primi-
tive graph, to conduct structure learning (Dai et al. 2022)
for addressing the issue of graph noise. Moreover, Eq. (3)
learns the similarities between arbitrary node pairs, resulting
in weight learning (Ye and Ji 2021). Secondly, Eq. (3) cap-
tures global information among nodes by a fully-connected
graph. In contrast, previous methods modify the primitive
graph to capture the local information among nodes.

Extensive studies have demonstrated that local and global
information provide complementary information to each
other (Zhu et al. 2017). However, self-attention conducts
global graph learning for representation learning by ignor-
ing local graph learning.

Graph Self-Improvement Module
In this part, local graph learning is used to capture the lo-
cal information among nodes and graph self-improvement
is designed to deal with graph noise.

Local Graph Learning We design a graph contrastive
loss to capture the local graph information among nodes for
learning the node representation, which is then used as the
input of the multi-head self-attention module.

Given the feature matrix X, we first use the multi-layer
perceptron (MLP) with the parameter W to learn the new
representation of X, i.e.,

Z(0) = Dropout(σ(XW)) (6)

We then design a graph contrastive loss to capture the
local information among nodes for learning Z(0), which
preserves the consistency between the similarity matrix of
Z(0) and the multi-hop graph Ĝ, which will be defined
later. To do this, considering that enlarging the receptive
field for message-passing can empower nodes’ expressive-
ness (Wang et al. 2021), we first construct a multi-hop graph
and then design a graph contrastive loss. Given a binary ad-
jacency matrix A, we construct the multi-hop graph Ĝ via:

ĝij =

{
âi,j , if node j is the r-hop neighbor of node i

0, if node j is not the r-hop neighbor of node i
(7)

where âi,j is a weight normalized by the degree of the graph.
We then employ the graph contrastive loss in (Hu et al. 2021)
to capture the local information of the multi-hop graph Ĝ for
representation learning, i.e.,

Lgsi =
1
n

∑n
i=1 I

c
i (−log

∑n
j=1 1g

[j ̸=i]
ĝijexp(sim(z

(0)
i ,z

(0)
j )/τ)∑n

k=1 1g
[k ̸=i]

exp(sim(z
(0)
i ,z

(0)
k )/τ)

)

(8)
where τ and sim(·) represent a temperature parameter and
the similarity measurement, respectively. Additionally, the
matrix Ig indicates the presence of edges in the multi-hop
graph Ĝ, and the vector Ic indicates the nodes’ reliability in
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terms of their connection, being used to conduct edge selec-
tion and node selection respectively. To minimize this graph
contrastive loss, if there is an edge connecting node i with
node j in the multi-hop graph Ĝ, z(0)i should be similar to
z
(0)
j , i.e., maximizing the sim(z

(0)
i , z

(0)
j ). As a result, the lo-

cal information of Ĝ is passed to the node representation.

Graph Self-Improvement After conducting the propaga-
tion process several times, we assume the networks in the
current epoch are better than in the former epochs. In this
scenario, the pseudo graph constructed by the node represen-
tation in the current epoch should be better than the original
multi-hop graph Ĝ and the graph in the former epochs. In
particular, the pseudo graph actually conducts edge predic-
tion, where edges with high predictive confidence are kept
and otherwise discarded. Ĝ in Eq. (7) is updated by:

ĝij =


1, if sim(z

(0)
i , z

(0)
j ) ≥ τg1,

sim(z
(0)
i , z

(0)
j ), if τg2 ≤ sim(z

(0)
i , z

(0)
j ) < τg1,

0, otherwise.
(9)

where τg1 and τg2 are two hyper-parameters. Correct node
classification usually has reliable connectivities. It is diffi-
cult to find all potentially crucial edges in a noisy graph.
This motivates us to preserve crucial nodes with high pre-
dictive probabilities in node classification by:

Ici =

{
1, if z∗ij ≥ τp,

0, otherwise.
(10)

where Z∗ denotes the predictive probability matrix, and Ic

is an indicator vector in Eq. (8), aiming at conducting node
selection to preserve nodes with reliable neighbors.

Compared with previous methods in Eq. (1), the graph
self-improvement module achieves the following advan-
tages. Firstly, the pseudo graph automatically improves the
quality of the primitive graph, tackling the issue of graph
noise. Secondly, it and the multi-head self-attention module
capture local and global graph information among nodes,
effectively using their complementary information for rep-
resentation learning.

Label Self-Improvement Module
In semi-supervised node classification, the pseudo label
technique makes label information approximate to ground
truth as well as obtaining more supervision information from
unlabeled data. Such a process is formulated by:

yij =


1, if z∗ij ≥ τp1,

z∗ij , if τp2 ≤ z∗ij < τp1,

0, else.

(11)

where τp1 and τp2 are two adjustable hyper-parameters. If
the predicted probability of node i exceeds a set thresh-
old, it is deemed a reliable candidate. Consequently, the
associated predicted probability is deemed trustworthy and
serves as pseudo labels, acting as truthful labels in the sub-
sequent training. This approach effectively addresses chal-
lenges posed by the issues of label noise and sparse labeling
of node classification.

Algorithm 1: The pseudo-code of our RNCGLN method.

Input: the feature matrix X, the noisy graph A, the noisy
labels Y, and the hyper-parameter α;

Output: predicted labels Z∗, loss L, and the well trained
RNCGLN;

1: while epochs do
2: obtain Z(0) with MLP on X;
3: update Lgsi based on Ĝ and Z via Eq. (8);
4: update Z with self-attention layers on Z(0);
5: Z∗ = softmax(MLP(Z));
6: update Llsi based on Y and Z∗ via Eq. (12);
7: calculate L = Llsi + αLgsi via Eq. (13);
8: back-propagate L;
9: if epochs > warm-up then

10: update labels via Eq. (11);
11: select nodes with reliable neighbors via Eq. (10);
12: update the graph via Eq. (9);
13: end if
14: end while

We select the pseudo-labeling technique for the following
considerations. Motivated by the fact that models tend to fit
clean labels and subsequently overfit noisy labels (Van En-
gelen and Hoos 2020), our method leverages self-training
and pseudo labels to facilitate a self-improvement process
within an end-to-end learning framework.

Loss Function
Our pseudo label method belongs to self-training (Lee et al.
2013). After a warm-up, i.e., some epochs, confident pseudo
labels (via the label self-improvement module) and pseudo
graphs (via the graph self-improvement module) are updated
to replace the previous ones, which are then used in the next
epoch. Therefore, our method uses the cross-entropy loss for
node classification via:

Llsi = −
∑

i∈YL

∑C

j=1
yij log z

∗
ij (12)

where C denotes the number of labels and yij is the ini-
tial label information or the pseudo labels after conducting
the label self-improvement. To supplement label informa-
tion, we also use Eq. (8) to update networks, where ĝij is
the initial graph and then is the pseudo graph from Eq. (9)
after conducting the graph self-improvement. Therefore, our
final loss function is formulated as:

L = Llsi + αLgsi, (13)

where α is a trade-off hyper-parameter to balance two terms
of the loss function. Our method focuses more on classifi-
cation effectiveness under graph noise (i.e., with a small α).
Reliable graph information results in correctly predicting la-
bels under label noise (i.e., with a high α). Consequently,
labels and the graph can complement each other, mitigat-
ing the supervision scarcity caused by noise. Using two self-
improvement modules, the self-attention module converges
to self-consistency, ensuring similar neighbors share labels
and dissimilar nodes differ in labels. The pseudo-code of our
method is listed in Algorithm 1.
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Datasets {gr, lr} GCN GAT JLGCN IDGL NRGNN LAFAK RNCGLN

Cora
{0, 0} 82.72 ±0.78 83.20±0.31 83.83±0.16 83.85±0.25 82.30±0.22 81.58±0.92 84.46±0.35
{.1, .3} 70.58±1.21 74.48±1.00 69.01±0.30 76.83±2.57 70.90±3.88 79.34±0.54 81.73±0.33
{.3, .1} 72.94±1.58 73.70±1.29 72.40±1.70 80.53±1.70 72.43±1.98 74.34±1.34 80.60±1.06

Citeseer
{0, 0} 71.18±1.06 71.76±0.58 73.60±0.28 72.10±0.20 70.78±0.39 71.08±0.34 73.96±0.30
{.1, .3} 61.70±0.89 64.28±0.76 64.65±3.79 68.03±3.65 66.88±2.31 69.14±1.28 71.83±0.33
{.3, .1} 65.30±1.21 67.74±1.24 63.21±1.54 69.71±1.3 64.46±3.23 66.42±1.04 70.20±1.41

Pubmed
{0, 0} 79.04±0.30 79.16±0.28 79.50±0.29 80.80±0.39 79.58± 0.41 78.28±0.46 81.16±0.64
{.1, .3} 68.60±1.63 67.88±1.72 67.81±2.81 77.12±1.61 75.67±2.05 76.74±0.39 77.60±1.20
{.3, .1} 70.76±1.91 71.74±1.54 75.61±1.54 74.61±1.66 71.05±2.84 73.61±1.63 79.23±1.03

Photo
{0, 0} 90.84±0.70 91.15±0.35 91.98±0.88 91.00±0.51 90.21±0.23 91.10±0.66 92.21±0.54
{.1, .3} 82.18±0.69 83.73±0.51 85.57±3.10 75.15±2.00 81.54±2.27 89.01±0.79 90.27±0.39
{.3, .1} 81.86±0.73 80.05±0.68 85.83±0.34 84.65±1.79 82.54±2.26 85.60±0.81 90.72±0.08

Table 1: The results of node classification (ACC ± STD) under different ratios of graph noise (gr) and label noise (lr).

Complexity Analysis
The multi-head self-attention module is the main complex-
ity of our method. We employ efficient attention (Shen et al.
2021) to have linear complexity, i.e., O(nd2) for computa-
tion cost and O(d2 + dn) for memory cost. Besides, Eq.
(6) and Eq. (5) need O(nd2) and O(d2 + dn), respectively.
Hence, the overall complexity of our method is O(nd2) for
computation cost and O(d2 + dn) for memory cost.

Experiments
Datasets and Comparison Methods
We evaluate the robustness of our proposed method1 on four
popular datasets, including three citation datasets (i.e., Cora,
Citedeer, Pubmed) (Sen et al. 2008) and one amazon sale
dataset (i.e., Photo) (Shchur et al. 2018).

The comparison methods include two conventional GNN
methods that consider neither graph noise nor label noise
(i.e., GCN (Kipf and Welling 2016) and GAT (Veličković
et al. 2017)), two graph-noise robust methods (i.e., JLGCN
(Tang et al. 2019) and IDGL (Chen, Wu, and Zaki 2021));
two label-noise robust methods (i.e., NRGNN (Dai, Aggar-
wal, and Wang 2021) and LAFAK (Zhang et al. 2020)).

Result Analysis of Node Classification With Noise
We compare our method with all comparison methods re-
garding node classification under two kinds of noise on
all four datasets. We take two situations into account in
terms of different ratios of graph noise (gr for short) and
label noise (lr for short), i.e., {gr, lr} = {0.3, 0.1} and
{gr, lr} = {0.1, 0.3}. For an intuitive comparison, we also
list the results when the graph and the labels are both clean,
i.e., {gr, lr} = {0, 0}. All results are reported in Table 1.

First, our method achieves the best performance in node
classification under different ratios, followed by KAFAK,
IDGL, NRGNN, JLGCN, GAT, and GCN. Compared with
the best comparison method (i.e., KAFAK), our method, on
average, improves by 3.50% on all four datasets. Compared
with the best baseline method, no considering noise issues

1Our code and comprehensive theoretical version are available
at: https://github.com/yhzhu66/RNCGLN

(i.e., GAT), our method shows a significant improvement of
7.32% on all datasets. The reason is that our method con-
siders both graph noise and label noise, while comparison
methods consider either or neither.

Second, our method can produce better performance inde-
pendently, focusing on one kind of noise. For example, com-
pared with the best label-noise robust method (i.e., KAFAK)
under {gr, lr} = {0.1, 0.3}, our method improves by 1.80%
on all datasets. Compared with the best graph-noise ro-
bust method (i.e., IDGL) under {gr, lr} = {0.3, 0.1}, our
method improves by 2.81% on all datasets. This validates
the necessity of taking into account both graph noise and
label noise for robust node classification. By contrast, previ-
ous robust methods perform unstably when processing noise
beyond their focus. For example, on dataset Photo, IDGL
robust to graph noise performs better under {gr, lr} =
{0.3, 0.1} while worse under {gr, lr} = {0.1, 0.3}, com-
pared with the GCN without considering any kinds of noise.
This is because these methods need to rely heavily on label
information to purify the graph structure. When label noise
exists, the errors from noisy labels could severely impact the
models. Differently, our method takes two kinds of noises
into account. When there is severe graph noise, our model
depends more on label information and vice versa. This is
why our method consistently outperforms previous robust
models under different scenarios.

Third, our proposed method shows more powerful expres-
siveness than previous GNNs. Compared with two baseline
methods (i.e., GCN and GAT) no concerning noise issues,
our method improves by 2.00% and 1.63%, respectively, on
clean data, i.e., {gr, lr} = {0, 0}, and improves by 8.53%
and 7.32%, respectively, on noisy data, i.e., {gr, lr} ̸=
{0, 0}. This indicates our method has stronger robustness
and also a more powerful expressiveness. We attribute supe-
riority to conducting both local and global graph learning.

Result Analysis of Noise Robustness
We investigate the noise effects of all methods by exploring
their sensitivity under different noise ratios. To do this, we
fix one noise as 0.1 and change the ratio of another noise to
[0, 0.05, 0.1, ..., 0.4]. All results are listed in Figure 2.

On the upper four figures considering the variation of la-
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Figure 2: The sensitivities of all methods to label noise and graph noise under different ratios, where the upper four plots show
sensitivities in terms of label noise and the lower four plots show sensitivities in terms of graph noise.

bel noise, all methods show a decreasing trend with the in-
crease of ratios of label noise, but our method consistently
outperforms comparison methods. For example, on dataset
Photo under varying label noise (i.e., Figure (2-d)), our
method on average improves by 1.40%, compared with the
best comparison method (i.e., LAFAK) on different ratios of
label noise. Besides, two methods (i.e., RNCGLN (ours) and
LAFAK) both leverage a graph-related loss to supplement
label information and thus output stable performance. This
implies that using graph contrastive loss is effective in han-
dling label noise via supplementing more supervision infor-
mation. Differently, our method leverages the pseudo graph
and the pseudo label to achieve better performance by im-
proving the quality of two kinds of supervision information.

On the lower four figures considering the variation of
graph noise, all methods show a decreasing trend with the
increase of ratios of graph noise, but our method consis-
tently outperforms comparison methods and shows more
stable performance. For example, on dataset Pubmed under
varying graph noise (i.e., Figure (2-g)), the performance of
our method shows very slight fluctuation in different ratios,
while the best comparison method (i.e., JLGCN) reports a
decrease of 3.24% from 0 to 0.4 in terms of graph noise.
Moreover, our method, on average, improves by 3.17% on
different ratios. Besides using the pseudo graph, it can also
attribute the superiority to using a fully connected weighted
graph of self-attention, which can simultaneously relieve the
issues of the missing-edges and the noisy-edges.

Overall, our method could output stable performance un-
der different scenarios for both graph noise and label noise.
This is because graph information and label information
can complement each other in our method, while others
rely highly on one kind of information to purify another.

Therefore, previous robust GNNs may not consistently out-
put satisfactory performance when other noise is present.
For example, JLGCN on dataset Cora under {gr, lr} =
{0.3, 0.1} (i.e., Figure 2-e), and NRGNN on dataset Photo
under {gr, lr} = {0.1, 0.3} (i.e., Figure 2-d), drop under
the baseline methods considering any noise. This indicates
when there is another kind of noise (e.g., label noise to
JLGCN and graph noise to NRGNN.), the previous robust
GNNs become vulnerable.

Ablation Study
To evaluate the effectiveness of our proposed method, we
conduct the ablation study from two aspects, i.e., the key
components and the pseudo techniques. In the key compo-
nents, we explore the necessity of graph contrastive loss,
i.e., Eq. (8) for local graph learning, Gloss for short, and
node selection, i.e., Eq. (10) for selecting nodes with reli-
able neighbors, NS for short. In the pseudo techniques, we
evaluate the influence of the pseudo graph and pseudo label.
All results are reported in Table 2.

From the upper table, the performance of our model dra-
matically declines and slightly declines, respectively, disre-
garding the Gloss and the NS. For example, our standard
model decreases by 19.95% and 0.53% than the two ab-
lation models on different ratios. Graph contrastive loss is
essential to our method to capture local information from
the primitive graph; otherwise, self-attention cannot accu-
rately capture global information. Moreover, node selection
can filter out nodes with error neighbors by using predictive
confidence to construct the pseudo graph.

From the lower table, the pseudo graph and the pseudo
label can both improve the performance of node classifi-
cation under two kinds of noise. Our model improves by
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Component Cora Citeseer Pubmed Photo

Gloss NS {0.1, 0.3} {0.3, 0.1} {0.1, 0.3} {0.3, 0.1} {0.1, 0.3} {0.3, 0.1} {0.1, 0.3} {0.3, 0.1}
✓ 53.93±0.66 56.80±3.34 41.73±2.04 60.33±1.19 60.26±1.21 69.63±1.76 60.29±1.60 79.77±0.90

✓ 81.56±1.56 79.80±0.48 70.93±1.43 71.40±0.21 76.80±1.75 79.66±0.90 88.10±0.59 89.49±1.25
✓ ✓ 81.73±1.42 80.60±0.50 71.73±0.33 71.53±0.17 77.60±1.20 79.23±1.03 89.38±2.34 90.59±0.66

Pseudo Cora Citeseer Pubmed Photo

Graph Label {0.1, 0.3} {0.3, 0.1} {0.1, 0.3} {0.3, 0.1} {0.1, 0.3} {0.3, 0.1} {0.1, 0.3} {0.3, 0.1}
75.90±1.01 79.53±0.41 65.30±1.33 67.93±0.49 76.36±0.67 77.93±0.87 86.25±0.36 87.56±0.59

✓ 78.36±0.60 79.20±0.45 65.50±1.14 70.50±0.08 76.50±0.58 78.10±0.43 86.93±0.29 87.59±0.55
✓ 80.80±0.90 79.93±0.52 68.46±1.85 70.83±0.26 77.30±1.80 78.90±0.43 87.71±0.86 88.57±1.35

✓ ✓ 81.73±1.42 80.60±0.50 71.73±0.33 71.53±0.17 77.60±1.20 79.23±1.03 89.38±2.34 90.59±0.66

Table 2: Ablation study. {·, ·} stands for {gr, lr} in terms of key components and the use of pseudo graph and pseudo label.
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Figure 3: The sensitivity of the hyper-parameter α in
Eq. (13), where the legend is the {gr, lr}.

1.18%, 2.41%, and 3.20%, respectively, compared with the
models using pseudo labels only, using the pseudo graph
only, and using neither. This indicates that our proposed self-
improvement modules effectively improve the quality of su-
pervision information, via not only correcting error informa-
tion but also supplementing more supervision information
from unlabeled nodes and missing edges.

Parameter Sensitivity Analysis
Our method has only one hyper-parameter in the loss func-
tion, i.e., α. Figure 3 shows how performance varies with
different α within the ranges of {10−3, 10−2, ..., 103}.

Based on the results, our methods are sensitive to the set-
ting of α under two scenarios i.e., {gr, lr} = {0.3, 0.1} and
{gr, lr} = {0.1, 0.3}. Both lines first dramatically increase
to a peak and then slightly decline. When α is small, the lo-
cal graph information cannot be fully captured and thus the
model performs worse. After which, the values of α can bal-
ance two kinds of supervision information in terms of the
graph and labels, based on their individual quality. There-
fore, by tuning the hyper-parameter α, our method can flex-
ibly handle two kinds of noise.

Convergence
Figure 4 reports the convergence of our method, including
both variations in terms of the ACCs (i.e., accuracies) and
losses with epochs.
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Figure 4: Convergence on the datasets Cora under the joint
graph and label noise.

All losses first smoothly converge and continue converg-
ing after some jumps, which differs from the ACCs that keep
increasing to peaks before keeping stable. A representative
example is shown in Figure 4-(a), where the loss decreases
from 9.5 to 9.0 before suddenly jumping to 10.5, after which
it keeps decreasing until stopping. Actually, before ending
with the warm-up, our model continually fits the clean data,
after which the pseudo graph and the pseudo label correct
noise information and bring in more supervision information
from unlabeled nodes and missing edges, such that losses
suddenly increase. Two processes, i.e., fitting clean data and
purifying supervision information, are iteratively updated
until the model achieves convergence when similar nodes
share the same label.

Conclusion

In this paper, we proposed a new method designed for ro-
bust node classification with graph noise and label noise.
Our method simultaneously conducts local and global graph
learning through graph contrastive learning and the self-
attention mechanisms to enhance the discriminative ca-
pacity of node representation. We also employ two self-
improvement modules to make graph information and la-
bel information provide complementary information to each
other. Extensive experiments demonstrated that our method
outperformed all comparison methods in node classification.
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