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Abstract

To better understand the output of deep neural networks
(DNN), attribution based methods have been an important
approach for model interpretability, which assign a score for
each input dimension to indicate its importance towards the
model outcome. Notably, the attribution methods use the ax-
ioms of sensitivity and implementation invariance to ensure
the validity and reliability of attribution results. Yet, the ex-
isting attribution methods present challenges for effective in-
terpretation and efficient computation. In this work, we in-
troduce MFABA, an attribution algorithm that adheres to ax-
ioms, as a novel method for interpreting DNN. Addition-
ally, we provide the theoretical proof and in-depth analy-
sis for MFABA algorithm, and conduct a large scale exper-
iment. The results demonstrate its superiority by achieving
over 101.5142 times faster speed than the state-of-the-art at-
tribution algorithms. The effectiveness of MFABA is thor-
oughly evaluated through the statistical analysis in compar-
ison to other methods, and the full implementation package
is open-source at: https://github.com/LMBTough/MFABA.

Introduction
Deep learning (DL) has shown prominent performance in
various areas of computing tasks, such as image classifica-
tion (Li 2022), semantic segmentation (Mo et al. 2022), ob-
ject detection (Zaidi et al. 2022), and text classification (Mi-
naee et al. 2021). A wide range of applications in practice
have demonstrated its effectiveness, unfortunately without
much contextual explanation of the decision process. This
has led to a severe crisis towards the trustworthiness of DL
models given the facts of poor interpretability of results,
intractability of model errors, and the difficulty in tracing
model behaviours (Janik, Sankaran, and Ortiz 2019). It re-
mains challenging for researchers to obtain a better under-
standing of complicated models, especially those based on
multiple layers and designed for nonlinear learning.

Recently, the attribution methods have been proposed as
one of the most promising means to solve this problem,
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which can find the causal relationship between the inputs
and outputs. In general, there are two fundamental axioms
proposed in Integrated Gradients (IG) (Sundararajan, Taly,
and Yan 2017): Sensitivity, and Implementation Invariance.
Sensitivity requires good capability of differing the feature
and prediction for every input, which ensures that the input
information can be correctly attributed for the predictions. In
addition, a method that satisfies Implementation Invariance
defines that two neural networks with the same input and
output values are functionally equivalent regardless the im-
plementation details. The attribution method should retain
the same results given two identical networks.

Different from IG using integration to calculate the contri-
bution, Expected Gradient (EG) method (Erion et al. 2021)
introduces prior knowledge and uses it as a prior probabil-
ity distribution for feature attribution, proposing expectation
gradients to calculate the importance of an input feature
to the output. Boundary-based Integrated Gradient (BIG)
method is one of the first methods that uses adversarial at-
tacks with a linear attribution path to identify appropriate de-
cision boundaries for interpretation (Wang, Fredrikson, and
Datta 2021). However, the overall performance is limited
due to the linear attribution path of IG algorithm (Jin et al.
2023), and BIG requires much more time for computation.

Adversarial Gradient Integration (AGI) method (Pan, Li,
and Zhu 2021) exploits the gradient information of adversar-
ial examples to compute the contribution of all input features
by integrating the gradient along the non-linear path with the
steepest ascent. While AGI does not depend on the choice
of reference points in IG, it employs targeted adversarial at-
tacks to discern optimal decision boundaries. Consequently,
AGI incurs significant computational costs, particularly in
complex tasks and models where extensive gradient integra-
tions are required. The interpretation performance is further
hindered if noise or outliers exist in the input data.

To address the noise pixels generated by IG in regions
where the prediction category is irrelevant, the Guided In-
tegrated Gradients (GIG) method (Kapishnikov et al. 2021)
sets all contributions in the region specified in the feedfor-
ward process to zero by guided gradients and only the target
region of the network output needs to be considered. While
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only effective for limited datasets, GIG has a high demand
on computational resources and time cost.

Thus, current attribution algorithms is yet to provide ac-
curate attribution results and require significant computa-
tional cost. To tackle these issues, in this work, we propose
a new attribution method, called More Faithful and Acceler-
ated Boundary-based Attribution method (MFABA) which
attempts to exploits part of the adversarial attack nature for
a faster and more effective attribution. MFABA proposes a
novel idea based on the second-order Taylor expansion of
the loss function in addition to IG, which attribution results
demonstrate a more faithful performance. We also investi-
gate the attack from the attribution method to explore the
limitations for the linear paths.

In summary, the contributions of this paper are as follows:

• A novel attribution method MFABA is proposed which
demonstrate a state-of-the-art performance;

• A detailed derivation of attribution validity and an ax-
iomatic are presented for MFABA;

• The definition of attack in MFABA is provided, and we
substantiate the superiority of MFABA through evidence;

• The replication package of MFABA is released.

Background
From Attribution to Interpretability
The interpretability of DL model refers to the ability of ex-
plain the predictions and decisions made by the model in a
way that human can understand (Zhang and Zhu 2018). For
the attribution method in DNN, an exact one-to-one corre-
spondence between the input and output should be provided
(Ancona et al. 2017). Thus, attribution method is considered
an exclusive set of methods providing the interpretability for
DL models. Other general interpretable algorithms may not
meet the axiomatic requirements of Sensitivity and Imple-
mentation Invariance (Sundararajan, Taly, and Yan 2017).

For most visual related tasks, attribution methods target
on the corresponding information for the feature and predic-
tion. It has thus been challenging for comprehensive evalu-
ation with human intuition, which is more applicable with
other interpretation approaches, such as Grad-CAM (Sel-
varaju et al. 2017) and Score-CAM (Wang et al. 2020).
These methods are gradient-based methods, among which
Grad-CAM faces different challenges like gradient satu-
ration (Ramaswamy et al. 2020), gradient disappearance
(Zhang, Wang, and Tang 2019), and low performance for
both the coarse-grained heat map generated at the deep level
and the fine-grained heat map generated at the superficial
level (Choi, Choi, and Rhee 2020). Similarly, Score-CAM
aims to bypass the gradients reliance and can obtain the
weights of each activation map through forward propagation
of scores on target classes. Eventually a linear combination
of the weights and activation map will be obtained. How-
ever, both methods fail to provide an accurate attribution for
the features. Only the intermediate layers of the networks
are interpreted, yielding intuitively interpretable results at
the corresponding layer. Yet, the methods do not satisfy the
two fundamental axioms of the attribution methods.

Saliency Map (SM) (Simonyan, Vedaldi, and Zisserman
2013; Patra and Noble 2020) is one earliest attribution
method aiming at the visualisation of the particular features
related to model outputs. In details, the partial derivative
of the loss function ∂f(x) is leveraged to calculate the de-
gree of importance of x. SM suffers from gradient saturation
and does not satisfy the axiom of Sensitivity. For example,
in a simple neural network f(x) = 1 − ReLU(1 − x) ={

x, x < 1
1, x ≥ 1

, the attribution result could be 0 at x = 0 or

x = 2. However, it will be none for ∂f(x). To address this
issue, Integrated Gradient (IG) (Sundararajan, Taly, and Yan
2017) integrates the gradients over different paths to obtain
the degree of contribution of the non-zero gradient in the
non-saturated region. However, it suffers from: (1) poor re-
sults due to the choice of baseline may lead to significant
deviations (Pan, Li, and Zhu 2021). It is not feasible to find
an appropriate baseline for various tasks. (2) expensive com-
putational process, which requires multiple rounds of propa-
gation to obtain approximate integration results. (3) ineffec-
tive representation of sample transformation path from the
selected gradient path, presenting as an attack conflict issue.

Other methods, like FullGrad method (Srinivas and
Fleuret 2019), aim to use local gradient information to in-
terpret DNN internal structure. Distilled Gradient Aggrega-
tion (DGA) method (Jeon, Jeong, and Choi 2022) considers
the linear regions of decision boundaries based on interme-
diate local attribution for a sequence of meaningful baseline
points. LIME algorithm (Ribeiro, Singh, and Guestrin 2016)
amalgamates approximation techniques with weighted sam-
pling methods to construct a local model to generate inter-
pretable predictions from the model classifier. Shapley Ad-
ditive Explanations (SHAP) algorithm (Lundberg and Lee
2017) computes feature contribution to the prediction out-
come using Shapley values and subsequently ranks their im-
portance, thereby achieving both local and global interpre-
tation of the model. However, these methods still face the
problem of low accuracy and slow attribution speed. Further-
more, LIME and SHAP tend to emphasize axioms that en-
sure ‘local faithfulness’ or ‘local accuracy’ of explanations,
deviating from strict and complete attributions based on sen-
sitivity and implementation invariance axioms.

Gradient-Based Adversarial Attack
Adversarial Attack Algorithms Adversarial attack aims
to find the minimum perturbation of input to deviate the out-
put result. In our work, the baseline for finding the attribu-
tion and the computational process for optimizing the attri-
bution algorithm are the same. We firstly discuss their rela-
tionships and the differences.

xj = xj−1 + η sign (∇xL(θ, x, y)) (1)

xt+1 = Πx+S
(
xt + α sign (∇xL(θ, x, y))

)
(2)

Eq. 1 represents the attack process for FGSM (Goodfellow,
Shlens, and Szegedy 2014), where a clamp gradient ascent
method is used to perform the attack. For I-FGSM (Kurakin,
Goodfellow, and Bengio 2018), multi rounds of FGSM at-
tacks are conducted to identify the optimal perturbation di-
rection. Eq. 2 represents the attack process for PGD, where

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17229



the distance of the attack is limited by mapping the attacks
to the circular space of the data, thereby making the attack
result as close as possible to the actual result.

Definition of Successful Attack In the classification task,
x0 belonging to the target category of C and an adversarial
sample xn producing an output category different from C
denotes a successful attack, subject to LP norm for x0 and
xn is less than ε. Attack samples with larger deviations will
be considered as failed attack, as shown in Eq. 3.

m (x0) = C and m (xn) ̸= C and ∥x0 − xn∥p < ε (3)

Method
In this section, we first present the derivation of gradient as-
cent, with the axiomatic proof for our attribution method.
Secondly, we discuss the different methods of ‘sharp’ and
‘smooth’ gradient ascent for MFABA.

Theoretical Derivation
Gradient Ascent Method Inspired from BIG and AGI,
we consider that gradient ascent of the loss function can
push the adversarial samples across the decision boundary
of the model. The model’s inference response on these ad-
versarial samples is the key information for interpretation.
Following Eq. 4-5 present the gradient ascent process using
first-order Taylor expansion. L is the loss function.

L (xj + αd) = L (xj) + αgTj d+ ε (4)

L (xj + αd) > L (xj) s.t. gTj · d > 0 (5)

In which, gj =
∂L(xj)
∂xj

, d is an update direction vector with
the same dimension as xj . We can get L (xj + αd) > L (xj)
if gTj · d > 0, where · represents dot product. Then we use
xj+1 = xj + αd or xj+1 = xj + αsign(d) to update the
adversarial sample. The sign function here meets the decou-
pling requirements of adversarial attacks. To achieve this,
the scalar learning rate α for the gradient ascent process will
be minimum.

Since the first-order Taylor expansion only takes into ac-
count the gradient (first derivative) but ignores curvature
(second derivative) of the loss function, it offers a less com-
prehensive source of information compared to the second-
order Taylor expansion.To more accurately depict the local
behavior of the model in the vicinity of a given input point,
particularly accounting for the non-linear impact of features,
we consider that the corresponding function L can be trans-
formed with the second-order Taylor expansion at the point
xj in our MFABA. Next is the derivation of how to obtain
the attribution of each model input in MFABA.

MFABA Mathematical Derivation Here, we list second-
order Taylor expansion of Eq. 4 during gradient ascent:

L (xj) = L (xj−1) +
∂L (xj−1)

∂xj−1
(xj − xj−1)

+
1

2

∂2L(xj−1)

∂x2
j−1

(xj − xj−1)
2 + ε (6)

Eq. 6 indicates that second-order Taylor expansion can be
performed when xj and xj+1 are close.

n∑
j=1

L (xj) =
n−1∑
j=0

L (xj) +
n−1∑
j=0

∂L (xj)

∂xj
(xj+1 − xj)

+
n−1∑
j=0

1

2

∂2L(xj)

∂x2
j

(xj+1 − xj)
2 (7)

L (xn)− L (x0) =

n−1∑
j=0

(
∂L (xj)

∂xj
(xj+1 − xj)

+
1

2

∂2L(xj)

∂x2
j

(xj+1 − xj)
2

) (8)

In Eq. 7 and Eq. 8, we derive the approximate derivation
relationship from Eq. 6, and ε is omitted.

∂2L(xj)

∂x2
j

(xj+1 − xj)
2 = (

∂L(xj+1)

∂xj+1
− ∂L(xj)

∂xj
)(xj+1 − xj) = △xTH △ x

= △xT ·

h11 · △x1 + h12 · △x2 + ...+ h1n · △xn

. . .
hn1 · △x1 + hn2 · △x2 + ...+ hnn · △xn

 (9)

In Eq. 9, we use the Hessian matrix H to calculate the
second-order derivative part in the Taylor expansion.

We replace the second derivative in Eq. 8 with the Hessian
matrix proposed in Eq. 9, and finally Eq. 10 is as follows:

L (xn)− L (x0) =
n−1∑
j=0

(
∂L (xj)

∂xj
(xj+1 − xj)

+
1

2

(
∂L(xj+1)

∂xj+1
− ∂L(xj)

∂xj

)
(xj+1 − xj)

)

=

p∑
i=0

(
n−1∑
j=0

∂L(xj)

∂xi
j

+
∂L(xj+1)

∂xi
j+1

2

(
xi
j+1 − xi

j

))
(10)

where p indicates the size of the input dimension. And xj

denotes the sample at the j-th gradient ascent, x0 and xn are
the original and adversarial sample, respectively. Eq. 10 in-
dicates that the difference between L (x0) and L (xn) can be
seen as the sum of the attribution at each position. In other
words, whenever the output values change between them,
attribution of non-zero outcomes will be calculated, which
meets the axiom of Sensitivity. By iteratively performing
gradient ascent and computing the sum of attributions at
each position, we can observe how these perturbed features
influence the decision-making behavior of the model. Thus,

for
∑n−1

j=0

∂L(xj)
∂xi

j

+
∂L(xj+1)

∂xi
j+1

2

(
xi
j+1 − xi

j

)
, it can be seen as

an attribution on the i-dimensional input.

Axiomatic Proof
Following we discuss the axioms satisfied in MFABA.

Definition of Sensitivity An attribution method satisfies
Sensitivity(a) if for every input and baseline that differ in
one feature but have different predictions then the differing
feature should be given a non-zero attribution.

According to Eq. 8, the sum of all imputations is L (xn)−
L (x0). Non-zero imputation results are always calculated
when x0 and xn lead to a change in L. Therefore our method
follows the axiom.
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Definition of Implementation Invariance A method that
satisfies Implementation Invariance should ensure that two
neural network attributions with the same input and output
values are consistent. It is clear that the computational pro-
cesses in MFABA follow the chain rule of gradients, which
meets the definition of implementation invariance (Sun-
dararajan, Taly, and Yan 2017).

Attribution Method in MFABA
Based on Eq. 10, the attribution corresponding to the i-
dimensional input can be expressed as follows:

MFABA(xi) =
n−1∑
j=0

1

2

(
∂L(xj)

∂xi
j

+
∂L(xj+1)

∂xi
j+1

)
· (xi

j+1 − xi
j)

(11)

In order to achieve best attribution results, the Taylor ex-
pansion needs to ensure that xi

j+1 is close to xi
j . We fur-

ther use the approximation
(

∂L(xj+1)

∂xi
j+1

− ∂L(xj)

∂xi
j

)
to replace

the Hessian matrix, as it may be computationally expensive.
Thus, little additional computational time is needed since
there is no additional forward and backward propagation.

The adversarial sampling will stop when the decision
boundary is found (e.g., a category shift in a classification
problem) to avoid potential bias in a sample. We have prat-
ically set a maximum n for gradient ascending step to miti-
gate additional computing costs in the absence of identified
decision boundaries. Meanwhile, the function L is broadly
explored in experiments with comparison with BIG and IG,
in which neural network output value is selected for attribu-
tion. However, we observed that a negative attribution may
be generated. Suppose we have a toy sample for a three-
classification task, the adversarial attack attempts to alter the
output value of the model from [0.4, 0.5, 0.55] to [0.5, 0.65,
0.6]. Here 0.4, 0.5 and 0.55 represent the output values of
class A, B and C respectively. It is obvious that after pertur-
bation, the final output class of the model changes from C to
B. But the confidence value for class C is actually increased,
resulting in attribution errors when other models like IG
and BIG use the probability results obtained before softmax
function as the model output. We observe that the probabil-
ity results obtained via softmax function can highlight the
correct reduced probabilities for classification, which helps
to mitigate the attribution issue. Thus, in MFABA, softmax
output is used to attribute the category values.

Sharp and Smooth Gradient Ascent Methods
For MFABA, two gradient ascent methods are applied
namely sharp and smooth gradient ascent methods in Eq. 12.
Smooth method truncates the gradients, causing a relatively
weak sample gradient to traverse a same distance as a strong
sample gradient. For example, a pixel with 0.01 gradient will
change by the same magnitude as a pixel with 0.71 gradient.
Sharp method maximises the directionality of the preserved
gradient in favour of the more dominant gradient informa-

tion, and the attribution results in the sharpest information.

smooth(grad) = sign(grad)

sharp(grad) =
grad

∥ grad ∥2
(12)

The Role of the sign Function
In MFABA, the gradient ascent method utilizes the adver-
sarial attack to find samples and the equivalent gradient di-
rection. Normally, the gradient is calculated as ∂Fi

∂xi
. While

the adversarial attack usually chooses a loss function as the
objective, the gradient will be ∂L

∂x = ∂L
∂Fi

∂Fi

∂x = − 1
Fi

∂Fi

∂x ,
where 1

Fi
only affects the vector norm not the gradient di-

rection, and can be interpreted as an equivalence relationship
with the sharp and smooth methods. In classical adversarial
attack task, sign function (Eq. 12) is required to prevent bi-
ased training towards the direction of larger weight (Good-
fellow, Shlens, and Szegedy 2022), preventing meaningless
input changes for attribution results.

In-Depth Analysis
Analysis of MFABA Efficiency
We evaluate the method based on the inference speed and the
number of forward and backward propagations in a unified
GPU environment. The corresponding gradient information
of ∂L(xj)

∂xj
is kept during the gradient ascending process,

which avoid recomputing for the subsequent steps. Typi-
cally, it takes 3-10 steps to find an adversarial sample. In
comparison with IG which also meets the axioms, IG re-
quires 30-200 rounds of forward propagation between x0

and xn while our algorithm only requires 3-10 rounds of
forward and backward propagation.

Figure 1: Linear and non-linear path of the direction for ad-
versarial attack and baseline samples

Different from the pairwise attack approach used by BIG,
MFABA algorithm does not use boundary search, instead
using gradient ascent method to identify the decision bound-
ary with adversarial samples. With Eq. 11, the samples ob-
tained from each iteration are relatively close to each other,
leading to high-quality samples for decision boundary. Other
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works may specify a directed adversarial sampling attack to
find the attribution results, such as (Pan, Li, and Zhu 2021).
MFABA does not specific a direction of the adversarial at-
tack to find a sample. The reason is that, for example, given
a correct label of A, the adjacent decision boundary is de-
fined as B. However, C is closer to B. In this case, a di-
rected adversarial attack to C will not help to find the de-
cision boundary for A correctly. Also, directly using the ad-
versarial attack to find decision boundary would result in ex-
tensive gradient computation and adversarial sampling time.
In MFABA, we avoid this by preserving the gradient graph
for forward and backward propagation.

Definition of Aggressiveness
Definition: When x′ satisfies the attack

L
(
x′) > L(x) (13)∥∥x− x′∥∥

p
< ε (14)

If a lower value of loss function L indicates a better perfor-
mance for neural network, hereby we define the aggressive-
ness for x′, meaning that x′ is an sample with aggressiveness
for L function. In other way, the sample of x′ not subject to
the equations is called a non-aggressive sample.

In Figure 1, the red line denotes the direction of attack
while yellow line represents the baseline direction, such as
the linear path in BIG. As shown in the diagram, there may
exist many non-aggressive samples. BIG algorithm needs
to compute

∫ 1

0
∂f((x−xb)t+xb)

∂x dt in the process of attribu-
tion, changing xb to x will result in many samples that do
not have non-aggressive samples entering the computational
process, and the process of non-aggressive sample compu-
tation will affect the correct attribution of the features. As
shown in Figure. 2, in the process of MFABA calculation,
we remove the non-aggressive sample features and visualize
the aggressive or non-aggressive sample integration process
separately. More details can be found in Appendix folder in
GitHub link. We find that all non-aggressive samples devi-
ated from the key features have critical impacts on the re-
sults. We will further investigate this in the next section.

Figure 2: Comparison of heatmap without (left) and with
(right) non-aggressive samples

Comparison With Other State-of-the-Art Methods
In this section, we will derive a linear approximate version
of MFABA, and compare it with other methods, including

IG and BIG. In BIG (Wang, Fredrikson, and Datta 2021),
Eq. 15 shows that the computation can be seen as calculating
the difference between x and x′ and the definite integral of
the computed gradient in the linear path, respectively.

gBIG(x;xb) = (x− xb)

∫ 1

0

∂f((x− xb)t+ xb)

∂x
dt (15)

Based on the discussion in Definition of Aggressive-
ness, we notice that the linear path may not be optimal. In
MFABA, the non-aggressive samples are removed from the
linear path. Regarding the overall computational tasks, the
linear path requires more time to obtain the corresponding
gradient information, at least 30-200 rounds in BIG for for-
ward and backward propagation. At this point, we consider
mapping all the attack samples generated in the adversarial
attack to the linear distance, and approximating the integra-
tion result using IG algorithm.

tj =

∑j
i=1 ∥xi − xi−1∥p∑n
k=1 ∥xk − xk−1∥p

(16)

tj =
(xj − x0) · cos < xj − x0, xn − x0 >

xn − x0
(17)

Figure 3: Two approximate algorithms of MFABA. The top
graph represents the MFABA-norm algorithm, and the bot-
tom graph represents the MFABA-cosine algorithm

Eq. 16 is MFABA-norm and Eq. 17 is MFABA-cosine
method. Figure. 3 illustrates the two approximate algorithms
of MFABA for Eq. 16 and 17, respectively. Eq. 16 treats all
the Lp-parametric distances of the motion trajectories x0-xn

as 1, and the position of j-th sample between 0 and 1 can be
regarded as the relative distance of the position traveled by
the xj sample. The second approach in Eq. 17 maps the rela-
tive positions of xj and x0 onto the vector x0-xn, which also
reaches the objective of obtaining the relative distance. We
have included more visualization results of MFABA-norm
and MFABA-cosine in the Appendix folder.
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Evaluation
In this section, we provide the experiment design details and
the experimental results to answer following questions: 1)
Can MFABA provide enhanced and faithful interpretations
of the model results in comparison with other state-of-the-
art methods? 2) How much improvement has been achieved
for MFABA in terms of the computational efficiency?

Experiment Setup
To fairly evaluate MFABA and other state-of-the-art meth-
ods, we have implemented the experiments with publicly
available and widely used model architecture including
Resnet50 and EfficientNet. The empirical experiments are
conducted against the CIFAR10 (Krizhevsky, Nair, and Hin-
ton 2010), CIFAR100 and ImageNet (Russakovsky et al.
2015) datasets. It is acknowledged that the sizes of these
datasets sizes exceed ten thousand. For each method, 50 gra-
dient ascending steps are set as the maximum steps for at-
tacking, and the learning rate is set to 0.01.

Prediction: hourglass
MFABA

Heatmap Heatmap*Input

BIG AGI

Original IG SM SG DeepLift BIG SMOOTH SHARP

Figure 4: Results of MFABA compared to other SOTA meth-
ods (the colormaps demonstrate that our method can effec-
tively highlight more concentrated regions associated with
the recognized subjects, signifying higher interpretability)

Empirical Evaluation
Figure. 4 shows the results of the heatmap and the at-
tribution map for different methods, including Integrated

Gradients (IG), saliency map (SM), smoothed gradient
(SG), DeepLift (Shrikumar, Greenside, and Kundaje 2017),
BIG (Wang, Fredrikson, and Datta 2021), sharp and smooth
gradient ascent methods based MFABA. It can be observed
that, for MFABA results, the highlight areas are more fo-
cused related to the identified subjects, which can provide
a better interpretation output. We have also provided more
qualitative results in the Appendix folder.

Attribution Performance Evaluation
In addition to the visualised results for interpretation, herein
we provide the statistical results for attribution performance
evaluation, which are defined as the error rate evaluation
indicators, the insertion and deletion score (Petsiuk, Das,
and Saenko 2018) and area under accuracy information
curve (Kapishnikov et al. 2019).

Error Rate Evaluation Indicators

ErrorRate =

∣∣∣∣∣ 1−
∑

attr
(
xi
)

L (xn)− L (x0)

∣∣∣∣∣ (18)

The error rate is obtained by dividing the final attribution re-
sult by the true attribution sum L (xn)−L (x0). We compare
MFABA with its vanilla variant, which only utilises the first-
order Taylor expansion for gradient information. We denote
this method as ‘Vanilla’ in Table 1. We can see that the error
rate of the MFABA is significantly reduced from Table 1.
Overall, the error rate is relatively low, which demonstrate
the high efficiency of MFABA method. A detailed discus-
sion can be found in the Appendix folder.

Dataset Model Method Error Rate

ImageNet EfficientNet Vanilla 0.02058
MFABA 0.01165

CIFAR10 ResNet-50 Vanilla 0.2613
MFABA 0.01165

CIFAR100 ResNet-50 Vanilla 0.10221
MFABA 0.04192

Table 1: Attribution Error Rate Results

Insertion Score and Deletion Score Figure. 5 shows a
schematic of our MFABA algorithm for the insertion and
deletion scores. A higher insertion score corresponds to a
more pronounced contribution of the input feature to the
classification outcome. Conversely, a lower deletion score
indicates an enhanced contribution of the input feature to
the result. Our method exhibits a notable performance bene-
fits on Inception-v3, closely trailing AGI on ResNet-50 and
VGG-16. Since MFABA algorithm achieves a significant
speed acceleration, we deem the trade-off to be both rea-
sonable and acceptable.

Area Under Accuracy Information Curve In Table. 2,
the employed evaluation criterion is the Area Under the
Curve (AUC) of the Accuracy Information. This metric
serves as an assessment tool to gauge the performance of in-
terpretable algorithms with regard to the predictive accuracy
of the model. It is evident that our method has achieved the
most favorable outcomes among all the competing methods.
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Model Method Insertion
score

Deletion
score AUC

Inception-v3 SM 0.2792 0.0445 0.5150
Inception-v3 IG 0.3215 0.0445 0.5180
Inception-v3 BIG 0.4840 0.0557 0.5200
Inception-v3 AGI 0.4629 0.0590 0.5178
Inception-v3 SMOOTH 0.5368 0.0640 0.5389
Inception-v3 SHARP 0.5407 0.0627 0.5367
ResNet-50 SM 0.1441 0.0387 0.4714
ResNet-50 IG 0.1467 0.0302 0.4823
ResNet-50 BIG 0.2911 0.0485 0.4759
ResNet-50 AGI 0.3695 0.0383 0.4772
ResNet-50 SMOOTH 0.3211 0.0574 0.4854
ResNet-50 SHARP 0.3237 0.0566 0.4857

VGG16 SM 0.1018 0.0297 0.4257
VGG16 IG 0.0973 0.0249 0.4431
VGG16 BIG 0.2274 0.0390 0.4356
VGG16 AGI 0.2910 0.0320 0.4359
VGG16 SMOOTH 0.2808 0.0424 0.4540
VGG16 SHARP 0.2856 0.0410 0.4540

Table 2: Insertion score (the higher the better), deletion
score (the lower the better), and AUC (the higher the better),
SMOOTH and SHARP are variants of our Method MFABA

FPS Results
We use FPS, which refers to the number of frames per sec-
ond (FPS) processed by the algorithms, to evaluate the algo-
rithm processing speed. The hardware for our experiment
includes: RTX 3090(24GB)*1 for GPU, 24 vCPU AMD
EPYC 7642 48-Core for CPU and 80GB RAM. To com-
prehensively evaluate the algorithm efficiency, we have con-
ducted two separate tests including single image testing and
multiple images testing.

The single image test is the calculation time for one image
at a time. An average result is obtained against the experi-
ment datasets. For the multiple images testing, we count the
maximum number of images being processed per second at
the same time with the same specified hardware conditions.
We have run the experiment for three times, and the aver-
age value is returned. We observed that, MFABA requires
a smaller shared memory in GPU environment. Thus, with
MFABA, we are able to deploy a larger batch size of images
for attribution computation.

Dataset Method BIG IG AGI MFABA

CIFAR10 ResNet-50 1.35 24.64 0.14 136.96

CIFAR100 ResNet-50 1.36 24.29 0.15 162.74

ImageNet ResNet-50 0.37 6.76 0.28 51.58

ImageNet EfficientNet 0.32 10.42 0.21 39.97

Table 3: FPS Results of BIG, IG, AGI, MFABA Algorithms

In Table 3, the results for multiple images testing is pre-
sented. MFABA has demonstrated its superiority over the
other state-of-the-art methods, achieving a speed increase of
more than 101 times compared to BIG (for CIFAR10 dataset
with ResNet-50 model), and up to 139.26 times faster than
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Figure 5: Insertion and Deletion score

BIG (for ImageNet dataset with ResNet-50). In comparison
with IG (for ImageNet with EfficientNet), MFABA achieves
near 4 times speed increase, and near 8 times faster for Im-
ageNet dataset with ResNet-50. For AGI method, MFABA
is at least 181.25 times faster for ImageNet with ResNet-50,
and over 1000 times for CIFAR100 with ResNet-50. Over-
all, MFABA has achieved the best performance in all cat-
egories of the experiments with the datasets of CIFAR10,
CIFAR100 and ImageNet.

Conclusion
In this paper, we present MFABA algorithm, a more faithful
and accelerated attribution algorithm for deep neural net-
works interpretation. It includes two versions: sharp and
smooth. We also provide the proof for the axiomatic deriva-
tion process for MFABA, which supports the two fundamen-
tal axioms of Sensitivity and Implementation Invariance.
A large scale experiment shows the state-of-the-art perfor-
mance of MFABA. In addition, we provide an in-depth anal-
ysis and experimental evidence, highlighting how aggres-
sive samples can substantially contribute to the attribution
output. The complete replication package is open-sourced,
and we hope it will contribute to future research in advanc-
ing trustworthy AI. It is important to note, however, that
our evaluation is currently limited to the conventional im-
age dataset, omitting more intricate image tasks. Future ef-
forts will encompass the application of MFABA in various
scenarios to comprehensively assess the performance.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17234



References
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