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Abstract

Nowadays sample selection is drawing increasing attention.
By extracting and training only on the most informative sub-
set, sample selection can effectively reduce the training cost.
Although sample selection is effective in conventional super-
vised learning, applying it to Masked Image Modeling (MIM)
still poses challenges due to the gap between sample-level
selection and patch-level pre-training. In this paper, we in-
spect the sample selection in MIM pre-training and find the
basic selection suffers from performance degradation. We at-
tribute this degradation primarily to 2 factors: the random
mask strategy and the simple averaging function. We then
propose Patch-Aware Sample Selection (PASS), including
a low-cost Dynamic Trained Mask Predictor (DTMP) and
Weighted Selection Score (WSS). DTMP consistently masks
the informative patches in samples, ensuring a relatively ac-
curate representation of selection score. WSS enhances the
selection score using patch-level disparity. Extensive experi-
ments show the effectiveness of PASS in selecting the most
informative subset and accelerating pretraining. PASS exhibits
superior performance across various datasets, MIM methods,
and downstream tasks. Particularly, PASS improves MAE by
0.7% on ImageNet-1K while utilizing only 37% data budget
and achieves ∼1.7× speedup.

Introduction
Self-supervised pre-training has recently gained great atten-
tion due to its label-free nature and ability to learn informa-
tive representations. Among them, Masked Image Modeling
(MIM), motivated by the remarkable achievements of Masked
Language Modeling (MLM) (Devlin et al. 2018; Brown et al.
2020) in Natural Language Process (NLP) and the progress
of Vision Transformers (ViTs) (Dosovitskiy et al. 2020; Tou-
vron et al. 2021; Liu et al. 2021), has emerged as a propitious
pre-training paradigm for computer vision (CV). However,
MIM suffers from large computational burden due to its ex-
tensive model size and substantial data demand. A natural
way of mitigating is to eliminate the redundant data and train
only on the most informative ones, namely, sample selection.

Pioneer works (Paul, Ganguli, and Dziugaite 2021; Cole-
man et al. 2020; Feldman 2020; Mirzasoleiman, Bilmes, and
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For Camera ready

Figure 1: Illustration of the Basic Sample Selection for
Masked Image Modeling. It is noteworthy that we divide
the original MIM pre-training into two stages: pre-training
stage and sample selection stage.

Leskovec 2020; Killamsetty et al. 2021) have explored effi-
cient training with sample selection in Supervised Learning
(SL). However, there still lack successful practice in applying
sample selection to accelerate the MIM pre-training process.
We hypothesize this is due to the discrepancy between MIM
pre-training process and the supervised learning. In conven-
tional supervised training, a sample image is fed into the
model as a whole, namely, supervised learning operates at
the sample level. While in MIM pre-training, samples are
first partitioned into patches and masked image modeling
operates at the patch level. Taking MAE (He et al. 2022)
for example, the image patches are randomly masked and
the model reconstructs the masked patches according to the
visible ones. This discrepancy raises a significant question:
How can we effectively evaluate the importance of a sample
given the image patches?

The most natural and straightforward way is to directly
aggregate the reconstruction loss of the randomly masked
patches. Samples with larger aggregated loss are considered
more informative and thus picked. We name this strategy
Basic Sample Selection (BSS) as denoted in Figure 1. Mear-
while, following (Killamsetty et al. 2021), we apply a dy-
namic selection scheme, where the sample selection is con-
ducted periodically during the training process. However, we
find this BSS method incurs inevitable performance degra-
dation. we suspect the performance degradation stemming
from two aspects: 1. the inconsistency and inaccuracy of
the selection score due to random masking strategy. and 2.
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the ignorance of inter-patch disparity during patch loss ag-
gregation. To address these issues, we propose Patch-Aware
Sample Selection (PASS) for MIM, which includes the Dy-
namic Trained Mask Predictor (DTMP) and the Weighted
Selection Score (WSS). We assume that Patches with larger
reconstruction loss possess greater informativeness and are
more representative for sample importance. Therefore, for
consistent and accurate selection score, we propose a mask
predictor to consistently identify informative patches and
mask them. Furthermore, We empirically find that the predic-
tor can give relatively accurate estimation even after a short
training. So we update the predictor just for a few epochs
before each sample selection stage. In this way, the predic-
tor can dynamically keep up with the model pre-training
process, while avoiding excessive additional training cost.
As the predictor is trained to estimate the patch loss and
generate the mask, we name this dynamically trained mask
predictor (DTMP). For the disparity of patches during patch
loss aggregation, we recognize that simple average opera-
tion leads to score homogeneity, that is, numerous samples
may exhibit similar selection scores, which can undermine
the effectiveness of sample importance ranking. To further
distinguish different patches with the sample, we propose a
weighted sample selection strategy (WSS), which weights
patches according to their corresponding predicted loss dur-
ing loss aggregation. Finally, with this PASS, we are able to
evaluate the informativeness of samples in MIM pre-training.

PASS presents a generic sample selection method, which
enables seamless integration with various MIM methods
such as MAE and simMIM. PASS significantly acceler-
ates the pre-training process, while simultaneously main-
taining or even surpassing the performance of original MIM
methods. Extensive experiments are conducted on various
datasets (ImageNet-1K, MS-COCO, ADE20K, etc.) and
tasks(classification, detection, segmentation) to show its ef-
fectiveness. Specifically, our approach outperforms the orig-
inal MAE and simMIM across multiple datasets with only
37% sample budget and ≤59% time consumption.

The main contributions of this work are threefolds:
• We investigate sample selection in MIM pretraining, and

identify two factors that contribute to the decline in per-
formance when sample reduction is implemented.

• Then, We propose Patch-Aware Sample Selection (PASS),
which utilizes a Dynamic Trained Mask Predictor and
Weighted Selection Loss to maintain performance while
accelerating MIM pre-training with limited samples.

• Extensive experiments and ablation studies demonstrate
the effectiveness of PASS. PASS even outperforms the
original MIM across diverse datasets.

Related Works
Sample Selection
The remarkable performance of Deep Neural Networks (Si-
monyan and Zisserman 2014; He et al. 2016; Dosovitskiy
et al. 2020) primarily stems from their extensive training on
massive data. Sample selection, which extracts and trains on
the most informative subset to achieve efficient training on vo-
luminous data samples, is an effective approach in traditional

Supervised Learning (Loshchilov and Hutter 2015; Coleman
et al. 2020; Feldman 2020). One of the fundamental compo-
nents in sample selection is the definition of selection score.
Various score formats are proposed to accurately reflect the
importance of samples, including "forgetting events" (Toneva
et al. 2018), CE-loss (Jiang et al. 2019), uncertainty sam-
pling (Settles 2011; Citovsky et al. 2023) and gradient-based
methods (Paul, Ganguli, and Dziugaite 2021; Mirzasoleiman,
Bilmes, and Leskovec 2020). While the majority Sample
Selection studies primarily concentrate on Supervised Learn-
ing, recently a few researchers shifted their attention towards
sample selection in self-supervised learning. Among them,
(Ju et al. 2022) extends the coreset selection method to self-
supervised case with contrastive learning. (Sorscher et al.
2022) leverages k-means clustering to tell the easy/hard sam-
ple through a prototypicality metric. However, these methods
are designed for the sample-level self-supervised learning
(SSL) that operates on individual samples, rendering them un-
suitable for the currently popular patch-level SSL paradigm.

Masked Image Modeling
Masked Image Modeling (MIM) (He et al. 2022; Xie et al.
2022a; Bao et al. 2021; Zhou et al. 2021; Wei et al. 2022),
as a form of self-supervised pre-training (Chen et al. 2020;
Chen and He 2021; He et al. 2020), has garnered significant
attention from researchers. With the increasing popularity
of vision transformer (Dosovitskiy et al. 2020; Liu et al.
2021; Wang et al. 2021; Liu et al. 2022), MIM pre-training
demonstrates remarkable superiority over other SSL methods
and emerges as a propitious paradigm for pre-training in CV.
However, MIM pre-training suffers from a heavy training
budget due to the extensive model size and massive dataset
volume. In order to improve the efficiency of pre-training,
some studies focus on reducing the model complexity (Huang
et al. 2022; Li et al. 2022b; Guo et al. 2022; Wang et al. 2023),
while others investigate the module design that facilitates
rapid convergence of MIM (Li et al. 2022a; Zhang et al.
2022; Ren et al. 2023). However, few attention is paid to the
training acceleration with limited data samples. A few works
(El-Nouby et al. 2021; Tong et al. 2022; Xie et al. 2022b)
have investigated the performance of MIM under a limited
data. Nevertheless, none of them focuses on how to enhance
the performance within a limited pre-training data budget.

Approach
In this section, we first outline the preliminary of Masked
Image Modeling and Sample Selection. Then we adapt con-
ventional sample selection methods to MIM pre-training in
a straightforward way. However, the performance of this
simple strategy suffers from a noticeable degradation. We
show that it stems from the inconsistency and inaccuracy
selection score related to random masking, and ignorance of
inter-patch disparity in patch loss aggregation. Based on our
findings, we propose patch-aware sample selection (PASS)
whose framework is presented in Figure 2.

Preliminary
Here we introduce the concepts of Masked Image Modeling
and Sample Selection.
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Patch-aware loss aggregation in selection stage
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Figure 2: Illustration of the Patch-Aware Sample Selection (PASS) scheme for Sample Selection stage. The proposed Dynamic
Trained Mask Predictor (DTMP) and Weighted Selection Score (WSS) are indicated with red solid line box. Note that this DTMP
is used to generate mask only in sample selection stage, ensuring accurate and consistent representation of the selection score.

Masked Image Modeling. Mask image modeling learns
to extract visual representation by masking part of the input
image and reconstructing the left visible parts. Taking the
Masked Autoencoder (MAE) for example, given an input
image X ∈ RH×W×C , MIM methods first split it into a
set of patches x ∈ RM×N×(P 2C), where C is the number of
channels, (H,W ) is the resolution of the image. (P, P ) is the
spatial resolution of each image patch, and M = H/P and
N = W/P represent the numbers of rows and columns of the
resulting patches. A mask M ∈ {0, 1}M×N is then applied
on the image patches spatially. 1 indicates the corresponding
patch is masked (invisible) for the encoder, while 0 represents
the patch is visible. The visible patches xV = x⊙ (1−M)
are then fed into the MAE encoder E and decoder D, and the
model tries to reconstruct the masked patches xM = x⊙M
by optimizing the reconstruction loss as follows:

Lrec = ∥D(E(xV ))− xM∥2 (1)
Sample Selection. Sample selection accelerates training
by eliminating redundant data samples. The problem of con-
structing the most informative subset can be formulated as:

S∗ = argmax
S⊆T

F (S), s.t.
|S|
|T |

≤ ρ (2)

that is, find the subset S of train data T that maximize some
scoring function F (·) under a certain selection budget ρ|T |.
The scoring function F (·) evaluates how informative the sub-
set is. Previous works have explored various criteria: by the
loss incurred by S (Feldman 2020), by how frequently the
sample is forgotten during training (Toneva et al. 2018), and
by how much the subset can approximate the gradients (Feld-
man 2020; Killamsetty et al. 2021) etc. Here as suggested
by (Feldman 2020), we simply use the loss incurred to evalu-
ate the candidate samples.

Gap Between Sample and Masked Patches
Different from supervised learning which takes the image as
a whole, MIM pretraining operates at the patch level. Follow-
ing (Feldman 2020), which uses the loss incurred to indicate
the informativeness, the most straightforward way to adapt
sample selection to MIM is to aggregate all the reconstruction
loss on the predicted patches as the selection score:

Csel =
1

Ω(M)
M (D(E(xV )),xM ) , (3)

where E and D refer to encoder and decoder in Masked
Image Modeling. M(·, ·) represents the similarity measure-
ment (the ℓ2-distance in this paper), and Ω(M) is the number
of masked patches. As in Equation 3, during the selection
stage, we randomly mask patches and simply average the
patch-wise loss to measure the informativeness of the sample.
Samples with large aggregated loss are then used for subse-
quent training. The selection strategy is named basic sample
selection (BSS), outlined in Figure 1.

However, as shown later in Table 1, this basic sample
selection framework for MIM suffers from a noticeable per-
formance degradation. Reviewing the Equation 3, we found
two factors are not reasonable to reflect the sample selec-
tion score. The first is xM = x ⊙ M, which indicates the
selection score depends on the mask patches.It is evident that
different masked areas will affect the final sample importance.
Furthermore, we illustrate the inconsistency and inaccuracy
problem of selection score with random mask in Figure 3.
The second is the simple averaging function that aggregates
patch loss for scoring. The disparity between these masked
patches can provide additional information for ranking the
corresponding samples. However, simple averaging could
lead to score homogeneity, that is, numerous samples exhibit
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Figure 3: Examples of selection score with random mask in
different selection rounds. Grey patch denotes the masked
patch. Owing to the random mask, there exists inconsistency
of the selection score both between rounds and within a round.
For intra-round inconsistency, random mask may make some
samples mostly represented by simple patches(e.g. (b)(c) )
while the others mostly represented by complex patches(e.g.
(a)(d)). This discrepancy leads to inaccurate in the selection
scores within the round. Similarly, inter-round inconsistency
follows the same logic.

similar selection scores, which will ruin the effectiveness of
sample importance ranking. Then, we propose a Patch-Aware
Sample Selection (PASS) method for Masked Image Mod-
eling that leverages patch-level information with Dynamic
Trained Mask Predictor and Weighted Selection Score.

Dynamic Trained Mask Predictor
Inspired by some previous work on supervised sample se-
lection (Toneva et al. 2018; Paul, Ganguli, and Dziugaite
2021; Jiang et al. 2019; Wang et al. 2022), which utilize vari-
ous metric to select more informative samples, we consider
that this sample-level phenomenon also exists in patch-level.
Specifically, within the same sample, some patches may con-
tain abundant semantic information, while others may not.
Therefore, selecting appropriate patches to reflect sample
importance is essential in data selection stage.

Here we propose the Dynamic Trained Mask Predictor, a
low-cost plug-and-play module for patch-based sample se-
lection in Masked Image Modeling. With this module, we
consistently mask the informative patches in different sam-
ples and selection rounds, ensuring the ranking order of each
samples is relatively accurate and fair.

During selection, as illustrated in Figure 2, the crucial as-
pect lies in determining which areas to be masked within the
sample. The mask prediction function is defined as follows:

Mp(i, j) =

{
1, P(i, j) ∈ top-k(P),

0, otherwise,
(4)

where P = P(E(x)) is the output of mask predictor. P and
E refer to the predictor and encoder respectively. The value of
k in top-k is determined by the mask ratio and patch number
of the sample.After that, this generated mask can be utilized
in Equation 3 to obtain the corresponding selection score.

During training stage, we employ the Mean Squared Error
(MSE) loss function to optimize this mask predictor:

Lpp =
1

MN

M∑
i

N∑
j

((P(i, j)−Lrec (i, j))
2 ·M(i, j), (5)

where P is the output of mask predictor, Lrec is the detached
reconstruction loss for all patches before reduction corre-
sponding to Lrec, M is the mask.

Furthermore, we introduce a dynamic training scheme for
our mask predictor to reduce the training cost of the addi-
tional mask predictor while maintaining model performance.
As shown in Figure 4, the predictor doesn’t require too much
epochs to have a considerable ability of distinguishing the
informative patches. Given that we only utilize mask predic-
tor during selection stage, and our predictor does not require
a particularly high discriminative ability, we dynamically
modify the training loss function:

Ltrain =

{
Lrec + Lpp, epoch ∈ dt_list
Lrec, otherwise

(6)

where dt_list represents the allowed list of epochs for dy-
namic mask predictor training. Taking into account the dy-
namic changes in the subset during each sample selection, we
perform γ epochs training on mask predictor branch dynam-
ically before each sample selection stage. In this way, our
predictor can keep up with the model pre-training process,
while avoiding excessive additional training cost.

44

Figure 4: Visualization of the predictions of our mask predic-
tor. For each row, the subgraph displays the original image
on the left, followed by predictions from the predictor at dif-
ferent training epochs (10th, 20th, and 100th, respectively).

Weighted Selection Score
In this section, we enhance the simple average in the selection
score. As shown in Figure 2, even selected by mask predic-
tor, not all of the masked patches are informative and there
still exists disparity among these patches. In this case, using
a simple average function on these patches disregards the
patch-level information. To further differentiate the masked
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Method Pre-training
Data Budget

Pre-training
Time

CIFAR-10 STL-10 CIFAR-100 ImageNet-1K

Linear Finetune Linear Finetune Linear Finetune Linear Finetune

MAE 100% 1.0× 84.8 96.3 85.3 95.9 65.0 87.1 50.8 82.2
MAE-BSS 37% ∼0.41× 82.6 95.9 82.1 95.4 63.2 86.4 48.1 81.5
PASS (ours) 37% ∼0.59× 85.6 97.2 86.1 96.4 66.3 87.7 52.5 82.9

simMIM† 100% 1.0 × - 95.0 - 92.3 - 80.3 - 81.5
simMIM-BSS 37% ∼0.39× - 94.6 - 91.1 - 80.2 - 81.3
PASS (ours) 37% ∼0.45× - 97.1 - 92.7 - 81.7 - 82.1

Table 1: Top-1 accuracy (%) of finetuning and linear probing across STL10, CIFAR10/100, ImageNet-1K. BSS denotes Basic
Sample Selection. PASS denotes Patch-Aware Sample Selection. † denotes the result referring to (Liu, Gui, and Luo 2023).
Our proposed PASS achieves ∼1.7× and ∼2.2× acceleration on MAE and simMIM, respectively. Since simMIM is more
computationally intensive than MAE, it results in a higher speedup with the same selection modules.

patches, we introduce a weighted selection score. The weight
of masked patch can be determined as follows:

wi =

{
exp(pi/τ)

Σ
Ω(M)
j=1 exp(pj/τ)

, ∀pi, pj ∈ P

0, otherwise
(7)

where P = {P(i, j) : M(i, j) = 1}, pj represents the
j-th output of the mask predictor, τ is temperature hyper-
parameter, Ω(M) refers to the number of the masked patches,
wi denotes the i-th patch weight. Then we utilize this patch
weight to perform a weighted mean of the masked patch loss.
Finally we obtain the weighted selection score:

Csel = ∥W ⊙ (

d∑
k=1

(xR(:, :, k)− xp
M (:, :, k))2)∥1 (8)

where W is the weight tensor which stores the weights as-
sociated with each masked patch. xR = D(E(xp

V )) repre-
sents the reconstruction output with the predicted mask. d
denotes the embedding dimension. xp

V = x ⊙ (1 − Mp)
and xp

M = Mp, where Mp refers to the masked patches
generated from Dynamic Trained Mask Predictor. Finally,
combined with both DTMP and WSS, the pipeline of PASS
is illustrated in Algorithm 1 .

Experiments
Datasets and Experimental Setups
Our study primarily evaluates performance on linear probing,
classification finetune, object detection, instance segmenta-
tion, and semantic segmentation tasks in accordance with
the setting of MAE (He et al. 2022) and simMIM (Xie et al.
2022a). This section provide a comprehensive overview of
the utilized datasets and experimental settings.

Datasets. In this paper, we apply our method to popular
MIM methods (MAE, simMIM), and evaluate with the linear
probing and finetuning classification task on ImageNet-1K
(Deng et al. 2009). Furthermore, we test the transferabil-
ity of our method on other classification datasets such as
CIFAR-10/100 (Krizhevsky 2009) and STL-10 (Coates, Ng,
and Lee 2011). Additionally, to evaluate the generalization
on semantics tasks, we conduct object detection and instance
segmentation experiments on MS-COCO (Lin et al. 2014)
and semantic segmentation on ADE20K (Zhou et al. 2019).

Algorithm 1: Patch-Aware Sample Selection
Input:
Full dataset T , keeping ratio of ρ, encoder E , decoder D,
predictor P

1: for X ∈ T do
2: x = patchify(X)
3: P = P(E(x))
4: generate predicted mask as Equation (4)

Mp(i, j) =

{
1, P(i, j) ∈ top-k(P),

0, otherwise,
5: obtain patch weight according to Equation (7) :

wi =

{
exp(pi/τ)

Σ
Ω(M)
j=1 exp(pj/τ)

, ∀pi, pj ∈ P

0, otherwise
6: output selection score as Equation (8):

Csel = ∥W ⊙ Σd (D(E(xp
V ))− xp

M )
2 ∥1

7: end for
8: pick up |S| = ρ · |T | samples which have the highest

Csel
9: return subset S

Experimental Setup. We pre-train MAE and simMIM on
ImageNet-1K for 200 epochs following (He et al. 2022; Xie
et al. 2022a). Our method is applicable to various ViT back-
bones, although the experiments are mainly conducted with
ViT-B/16 encoder due to constrained computation resources.
For pre-training, we patchify the image of 224 × 224 into
14 × 14 patches. We adopt the model with decoder with 8
blocks for MAE, while for simMIM, a linear head is used
as the decoder. For fine-tuning, the decoder is omitted, and
a fully-connected layer with an n-way output (n =1000 for
ImageNet-1k) is appended to the output of the encoder as
the classifier. For linear probing, we only train the last linear
head while keeping the other layers frozen.

For PASS, we perform sample selection every 20 epochs
during pre-training. For the first 20 epochs, we use the full
training dataset, while for the following epochs, ρ|T | subset
is selected using PASS for training according to the pre-
defined data budget ρ. To keep the overall data budget con-
sistent with the pre-defined data budget, we terminate the
training once the pre-computed epoch is reached. We adopt a
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mask predictor consisting of nd (by default nd = 8) blocks
for the Dynamic Trained Mask Predictor (DTMP). While
for dynamic training, we set γ = 3. For Weighted Selection
Score (WSS), we set τ = 0.1. We set the mask ratio to 0.75
for MAE and 0.6 for simMIM, and the mask ratio remains
consistent between the selection stage and pre-training stage.
All experiments are conducted on 8 RTX-3090 GPUs.

Method
Detection Segmentation

APb APb
50 APb

75 APm APm
50 APm

75

Random Init 28.13 46.11 29.78 26.17 43.54 27.61
MAE 41.54 61.70 45.61 37.63 58.75 40.31
MAE-BSS 38.46 58.35 42.1 35.16 55.67 37.64
PASS (ours) 42.25 61.93 46.32 38.03 59.28 40.78

Table 2: Results of object detection and instance segmentation
on MS-COCO using Mask R-CNN. We adopt Mask R-CNN
with FPN, and report the bounding box APb and mask APm

on MS-COCO val2017.

ImageNet-1K Classification
We conduct pre-training of MAE and simMIM on ImageNet-
1K for 200 epochs, followed by finetuning and linear probing.
Additionally, we evaluate the transferability to other classi-
fication datasets such as STL10, CIFAR10 and CIFAR100
through finetuning and linear probing.

Finetuning Results. The results presented in Table 1
demonstrate a significant improvement in accuracy achieved
by our PASS method compared to Basic Sample Selection
(BSS) across all the datasets, thereby highlighting the su-
periority of our approach over selection with random mask.
Even compared with the original MAE or simMIM methods
that utilize 100% data budget for pre-training, our methods
achieve comparable or even superior results across all the
datasets with only 37% data budget. For example, our method
improves the finetune accuracy on ImageNet-1K by 0.7% and
0.6% for MAE and simMIM, respectively. Moreover, bene-
fiting from the small data budget, our method significantly
reduces the pre-training time by only requiring 59% and 45%
of the original pre-training time for these two MIM methods.

Linear Probing Results. The linear probing performance
of MAE is evaluated, As shown in Table 1. Utilizing only
37% pre-training data budget, our PASS improves the linear
probing accuracy on ImageNet-1K by 1.7% and 4.4% com-
pared with the original MAE and MAE-BSS, respectively.

Method DTMP WSS
ADE20K

mIoU aAcc mAcc
MAE / / 40.64 79.84 51.12
MAE-BSS / / 39.52 79.51 49.94
PASS (ours) ✓ / 41.83 80.87 52.20
PASS (ours) ✓ ✓ 42.28 80.88 52.54

Table 3: Results of semantic segmentation on ADE20K using
UperNet. The effectiveness of our DTMP and WSS modules
is validated using mIoU, aAcc, mAcc as the metrics.

Object Detection and Instance Segmentation on
MS-COCO
To further validate the learned visual representation of PASS,
we test our MAE pre-trained model on the MS-COCO (Lin
et al. 2014) object detection and instance segmentation. We
take the Mask R-CNN (He et al. 2017) framework with FPNs
(Lin et al. 2017) as the object detector, and apply our ViT-
B/16 to this detection framework according to ViTDet (Li
et al. 2022c) based on detectron2 (Wu et al. 2019). All pre-
trained models are finetuned on the MS-COCO train2017
for 1 × (12 epochs) with a resolution of 1024 × 1024 and
batch size 16. Then we evaluate on the MS-COCO val2017

As shown in Table 2, we report AP b for object detection
and APm for instance segmentation. We observe that our
method achieves the best result. Equipped with our method,
it not only outperforms the basic sample selection baseline
significantly, but also surpasses the original MAE. Our PASS
outperforms +0.71 APb and +0.4 APm on MS-COCO.Camera ready

27

Figure 5: Ablation study of our proposed DTMP and WSS
on ImageNet-1K finetuning.

Semantic Segmentation on ADE20K
We also evaluate our PASS on another dense prediction task,
semantic segmentation on the ADE20K (Zhou et al. 2019)
dataset. We utilize UperNet (Xiao et al. 2018) as the seg-
mentation model and conduct finetuning for 80k iterations
with a resolution of 512 × 512. To evaluate the performance,
we consider mean Intersection of Union (mIoU), all pixel
accuracy (aAcc), and mean accuracy of each class (mAcc)
as the evaluation metrics. As illustrated in Table 3, the ab-
lation study on ADE20K demonstrates the effectiveness of
our PASS method. In comparison to the original MAE, our
method achieves superior results with an improvement of
+1.64 mIoU, +1.04 aAcc, and +1.42 mAcc, respectively.

Ablation Studies
Here we conduct several ablation studies to verify the effec-
tiveness of our method.
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Effectiveness of DTMP and WSS. As illustrated in Figure
5, both DTMP and WSS effectively enhance the performance
in the proposed PASS, consistently improving performance
compared to the original MAE.

MAE Tr. Ep.
of P

Pre-training
time

Finetune
Top-1 Acc(%)

original 0 1x 82.22
+static-20 20 ∼0.61× 82.49
+static-100 100 ∼0.66× 82.54
+static-200 200 ∼0.72× 82.75
+DTMP 30 ∼0.59× 82.71

Table 4: Ablation study on dynamic training scheme. Each
model is pre-trained on ImageNet-1K for 200 epochs. Static-
N denotes that the mask predictor P is trained only in the first
N epochs, whereas the training of our DTMP mask predictor
keeps up with the selection stages

As shown in Table 4, DTMP achieves comparable accu-
racy with the lowest pre-training cost compared to the static
training examples. Note that the time of our 30 epochs dy-
namic training of P remains lower than the 20 epochs static
training due to the reduced data volume in the later epochs.

Camera ready

49

Figure 6: Impact of different τ . We evaluate each pre-trained
model with Top-1 finetune accuracy on ImageNet-1K.

Ablation Study of τ and mask ratio. For different hyper-
parameters, we maintain a fixed number of 200 pre-training
epochs for MAE, then report the top-1 finetuning accuracy
on ImageNet-1K. As depicted in Figure 6, we find that our
WSS gains a consistent improvement when τ < 1. While
τ ≥ 1, the performance of WSS gradually approaches that of
MAE with DTMP. This observation confirms our conjecture
of strengthening the importance of more informative patches,
since τ < 1, the more informative patches will get more
attention. As for the mask ratio, Table 5 shows that our PASS
gains more speedup compared to the corresponding MAE
pre-training with the mask ratio decreasing.

Mask Ratio(%) 40 60 75 90

Speedup Times 1.92× 1.83× 1.69× 1.51×
Top-1 Finetune Acc 82.72 82.89 82.95 82.25

Table 5: Impact of different mask ratios on ImageNet-1K
finetuning for our PASS method.

Different Data Budget. As shown in Figure 7, we perform
PASS on MAE with different data budget. Then we evalu-
ate these pre-trained model on 4 classification datasets with
linear probing. We observe a phenomenon of diminishing
marginal effect of data budget. When the data budget is extra
low, increasing data amount can achieve a significant im-
provement, but as the data budget increases, the performance
gains become increasingly limited.Camera ready

51

Figure 7: Ablation of different data budget across STL10,
CIFAR10, CIFAR100 and ImageNet-1K

Conclusion
In this paper, we pioneer to accelerate MIM pre-training by
Patch-Aware Sample Selection. PASS is a versatile method
that can be seamlessly integrated with various MIM tech-
niques, including MAE and simMIM. By leveraging the low-
cost Dynamic Trained Mask Predictor and Weighted Selec-
tion Loss, our approach achieves remarkable acceleration in
the pre-training phase without compromising performance.
In fact, in many cases PASS surpasses the performance of the
original MIM methods.
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