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Abstract

While decentralized training is attractive in multi-agent re-
inforcement learning (MARL) for its excellent scalability
and robustness, its inherent coordination challenges in col-
laborative tasks result in numerous interactions for agents to
learn good policies. To alleviate this problem, action advis-
ing methods make experienced agents share their knowledge
about what to do, while less experienced agents strictly fol-
low the received advice. However, this method of sharing
and utilizing knowledge may hinder the team’s exploration
of better states, as agents can be unduly influenced by sub-
optimal or even adverse advice, especially in the early stages
of learning. Inspired by the fact that humans can learn not
only from the success but also from the failure of others,
this paper proposes a novel knowledge sharing framework
called Cautiously-Optimistic kNowledge Sharing (CONS).
CONS enables each agent to share both positive and negative
knowledge and cautiously assimilate knowledge from others,
thereby enhancing the efficiency of early-stage exploration
and the agents’ robustness to adverse advice. Moreover, con-
sidering the continuous improvement of policies, agents value
negative knowledge more in the early stages of learning and
shift their focus to positive knowledge in the later stages. Our
framework can be easily integrated into existing Q-learning
based methods without introducing additional training costs.
We evaluate CONS in several challenging multi-agent tasks
and find it excels in environments where optimal behavioral
patterns are difficult to discover, surpassing the baselines in
terms of convergence rate and final performance.

Introduction
Cooperative multi-agent reinforcement learning (MARL)
has attracted much attention in recent years due to its ability
to solve complex real-world problems, such as multi-robot
control (Willemsen, Coppola, and de Croon 2021) and traf-
fic scheduling (Zhang et al. 2019). Most of the currently
proposed MARL algorithms follow the paradigm of cen-
tralized training and decentralized execution (CTDE) (Lowe
et al. 2017; Rashid et al. 2018; Son et al. 2019; Peng et al.
2021), where a centralized critic collects information from
all agents during the training phase to learn decentralized
agent policies. However, this paradigm struggles with the
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huge joint state-action spaces that grow exponentially with
the number of agents, and the ideal conditions for deploying
centralized critics are often lacking in reality. In contrast, the
paradigm of decentralized training and decentralized execu-
tion (DTDE) (Tan 1993; Tampuu et al. 2017) is more scal-
able and robust, and more adaptable to harsh real-world con-
ditions, as it does not require a centralized critic.

While the DTDE paradigm has many advantages, it in-
evitably faces coordination difficulties in collaborative tasks
due to the lack of an explicit centralized coordinator and
partial observability. Agent teams that follow the DTDE
paradigm often need to spend a lot of time exploring to
develop good strategies. To alleviate this problem, some
communication-based MARL methods focus on allowing
proper exchange of local information about observations
among agents while following the DTDE paradigm. This
information can be regarded as the perceptual-level knowl-
edge, allowing agents to make decisions from a broader per-
spective. It is usually fed directly into the receiver’s net-
work (Jiang and Lu 2018; Singh, Jain, and Sukhbaatar 2019;
Ding, Huang, and Lu 2020), which expands the local policy
spaces of agents and significantly increases the training bur-
den. Furthermore, high-dimensional information in the net-
work has uncertainty and uninterpretability.

Unlike general communication-based methods, action
advising shares policy-level rather than perceptual-level
knowledge in a more direct and explainable manner, where
more experienced agents advise less experienced agents on
the best actions and the suggested actions will be executed
directly by the advisees. This scheme speeds up coordina-
tion among agents and resembles the common way humans
communicate—we often provide helpful advice based on
our knowledge and beliefs rather than simply providing our
own information. However, agents may give many subopti-
mal or even poor suggestions, especially in the early stages
of learning. These inappropriate suggestions not only waste
precious communication budget, but also hinder the team
from further exploring better states, diminishing the advan-
tages of action advising in complex environments that re-
quire extensive exploration. Furthermore, the suggestions
provided are also one-sided.

To make knowledge sharing more comprehensive and
mitigate the negative impacts of inappropriate knowl-
edge, we propose a novel knowledge sharing framework
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called Cautiously-Optimistic kNowledge Sharing (CONS)
1. Specifically, inspired by the fact that humans can learn
not only from the success of others but also from their fail-
ure, CONS agents share experiences of both failure and
success (i.e., negative and positive knowledge) simultane-
ously, whereas previous works only involve the latter. Un-
like agents in other action advising methods, CONS agents
do not simply adopt the suggested actions after receiving
knowledge from others. Instead, they incorporate the re-
ceived knowledge by softly updating their action proba-
bilities, thereby forming new policy. Subsequently, CONS
agents conduct targeted exploration based on their new pol-
icy and their confidence. They are optimistic due to the be-
lief that sharing and learning from negative knowledge is
beneficial; at the same time, they are cautious due to not
blindly following the acquired knowledge. It should to be
emphasized that CONS only affects the action selection of
the agent, not the training process of the underlying algo-
rithm. Therefore, CONS can be easily integrated into ex-
isting Q-learning based methods without introducing ad-
ditional training overhead. Experimental results show that
CONS performs well in environments where the optimal be-
havioral patterns are harder to discover compared to subop-
timal ones, surpassing the baselines in terms of convergence
rate and final performance.

Related Work
Decentralized Training and Decentralized
Execution (DTDE)
With excellent scalability and robustness, DTDE is a
promising paradigm for using MARL to solve real-world
problems. There is no centralized critic in DTDE paradigm
so agents only use local information to make decisions
during both training and execution. The most straightfor-
ward way to use the DTDE paradigm in MARL is to
make each agent run a single-agent reinforcement learn-
ing algorithm independently (Tan 1993), such as indepen-
dent Q-learning (IQL) (Tampuu et al. 2017) and indepen-
dent PPO (IPPO) (de Witt et al. 2020). In addition to the
aforementioned intuitive algorithms, some works also fo-
cus on other aspects of decentralized training. Hysteretic
Q-learning (Matignon, Laurent, and Le Fort-Piat 2007) and
lenient Q-learning (Palmer et al. 2018) let agents be op-
timistic and appropriately ignore value penalties, thereby
promoting team cooperation. Ideal independent Q-learning
(I2Q) (Jiang and Lu 2022) alleviates environmental non-
stationarity by having each agent model an ideal transition
function and perform independent Q-learning on it. Please
note that this paper focuses on knowledge sharing rather
than decentralized algorithms, so we directly use deep recur-
rent Q-network (DRQN) (Hausknecht and Stone 2015) as an
instance of the underlying algorithm to implement CONS.

Knowledge Sharing
Knowledge sharing speeds up learning, fosters coordination
among agents, and has various forms.

1We provide open-source implementations of CONS in
https://github.com/byw0919/CONS

Communication. Communication-based methods usually
share local observations (or observation embeddings) of
agents. ATOC (Jiang and Lu 2018) agent uses an attention
unit to decide whether to communicate or not, and if so,
selects several collaborators in its observable field to com-
municate. IC3Net (Singh, Jain, and Sukhbaatar 2019) ex-
tends CommNet (Sukhbaatar, Szlam, and Fergus 2016) by
using the gating mechanism to determine whether to broad-
cast messages on a common channel. I2C (Ding, Huang, and
Lu 2020) agent learns prior knowledge for agent-agent com-
munication through causal effect to capture the necessity of
communication. GA-Comm (Liu et al. 2020) employs at-
tention to decide which pair of agents can communicate,
thereby learning a shared undirected communication graph.
However, these methods all expand local policy spaces of
agents and make learning more difficult.

Experience Sharing. Agents in experience sharing meth-
ods like SEAC and SEQL (Christianos, Schäfer, and Al-
brecht 2020) acquire the trajectories of others as off-policy
data to train their own networks, without increasing learn-
ing complexity. However, the strong assumption that agents
have access to others’ private trajectory data and the huge
amount of information exchanged make it less attractive.

Advising Mechanism. Advising mechanism shares
policy-level knowledge, where less experienced agents can
take good actions without making decisions themselves.
Unfortunately, many methods based on advising mechanism
assume the teacher has a well-trained policy (Ilhan, Gow,
and Perez Liebana 2021; Anand et al. 2021; Guo et al.
2023), or have a centralized information structure (Omid-
shafiei et al. 2019; Kim et al. 2020; Gupta et al. 2021), or
increase training overhead (Ilhan, Gow, and Perez Liebana
2021), or are limited to two agents (Omidshafiei et al. 2019;
Kim et al. 2020). Two works that are similar to ours are
AdHocTD (da Silva, Glatt, and Costa 2017) and PSAF (Zhu
et al. 2021), but both are based on tabular Q-learning and
lack robustness to suboptimal advice. Unlike the mentioned
knowledge sharing methods, CONS agents modify their
action probabilities according to the received policy-level
knowledge, and then explore in a targeted manner based
on the modified probabilities, avoiding increased training
overhead and being robust to suboptimal advice. Moreover,
CONS agents learn from scratch and can act as both
teachers and students during the learning process.

Background
Problem Formulation
A general cooperative multi-agent reinforcement learning
problem can be typically modeled as a partially observ-
able Markov games for n agents (Littman 1994), which is
defined by the tuple (N ,S,O,A,Ω,P, {Ri}i∈N , γ). Here
N = {1, . . . , n} is the set of agents; S is the state space;
O = O1 × . . . × On is the joint observation space; A =
A1 × . . . × An is the joint action space. At each time
step, each agent i ∈ N can only access local observations
oi ∈ Oi drawn from the observation function Ω(s, i) where
s ∈ S , and then choose an action ai ∈ Ai according to
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its policy πi(a
i|oi) : Oi 7→ Ai. The transition function

P(s′|s,a) : S × A 7→ ∆(S) returns a distribution over
successor states s′ given state s and joint action a. After
that, each agent i receives an individual reward rit based on
its reward function Ri : S × A × S 7→ R at time step t.
The purpose of each agent i is to find a policy πi that max-
imize its expected discounted return E[

∑H
t=0 γ

trit|πi] over
horizon H , where γ is the discount factor.

In this work, we focus on general cooperative tasks that do
not require agents to share the same reward at each time step,
but share the same behavior patterns that lead to rewards.
Besides, we assume O1 = . . . = On = O and A1 = . . . =
An = A.

Advising Mechanism
Advising mechanism is an efficient, scalable knowledge
sharing paradigm, where experienced agents (acting as
teachers) give advice to less experienced agents (acting as
students) on what to do based on their positive knowledge.
CONS follows the teacher-student relationship in the advis-
ing mechanism, but innovates in the content of advice and
the way of using advice. To make our work easy to under-
stand, here we introduce a promising advising framework,
AdHocTD (da Silva, Glatt, and Costa 2017), which focuses
on when to ask for and when to give advice within two bud-
gets: bask and bgive. To encourage agents to engage in these
behaviors only in critical states, the probabilities for them to
ask for and give advice can be calculated as

Pask(s) = (1 + υa)
−f(s) (1)

and
Pgive(s) = 1− (1 + υg)

−g(s)
, (2)

respectively. f(s) =
√

nvisit(s) is the confidence func-
tion of asking for advice for the current state s, where
nvisit(s) is the number of times the agent has visited s.
g(s) = f(s)|maxa Q(s, a) − mina Q(s, a)| is the confi-
dence function of giving advice for the state s, where Q is
the agent’s Q-network and |maxaQ(s, a) − minaQ(s, a)|
measures the importance of state s. In the above two equa-
tions, υa and υg are pre-defined scaling variables. When re-
ceiving one advice, an AdHocTD agent follows it exactly;
when receiving more than one advice, it selects the executed
action through a majority vote.

Independent Q-learning
Independent Q-learning (IQL) (Tampuu et al. 2017) com-
bines deep Q-network (DQN) (Mnih et al. 2015) with
independent learning (Tan 1993), where each agent runs
the DQN algorithm independently. The Q-function of each
agent i that estimates the value of each state-action pair
is Qπ(s, a) = E[R|st = s, at = a] (the super-
script i is omitted for simplicity), where π is its pol-
icy, R is its total discounted return, s is the current state
and a is the action it chooses. The optimal Q-function
Q∗(s, a) = maxπ Q

π(s, a) obeys the Bellman optimality
equation Q∗(s, a) = Es′ [r+γmaxa′ Q∗(s′, a′)]. DQNs are
optimized by minimizing

L(θ) = E(s,a,r,s′)∼D[y −Q(s, a; θ))2], (3)

Figure 1: An overview of CONS. Student: Φi receives
oi, sends it with ni

oi to activate M i with the probabil-
ity Pask(oi). If M i is activated, it assembles oi, ni

oi and
maxQi(oi, ·) into a student request message mi

s and broad-
casts it. Upon receiving messages mji

t from the teachers
j ∈ Ns (Ns is the set of agents sharing knowledge), U i

modifies the original πi(·|oi) that derived from Qi(oi, ·) ac-
cording to the messages and then samples an action ai from
the modified policy. Teacher: Ψ j decides whether to share
knowledge with agent i according to mi

s, and if so, activates
module T i. Module T i extracts positive knowledge ajb and
pjb as well as negative knowledge ajw and pjw from its pol-
icy πj(·|oi), and then combines them with its prestige Λj

oi

to form a teacher message mji
t to reply to agent i.

where D is experience replay buffer and y = r +
γmaxa′ Q(s′, a′; θ̄). The parameters θ̄ of the agent’s target
network are periodically copied from θ and remain constant
for a certain number of iterations. Other variants of DQN,
such as DRQN (Hausknecht and Stone 2015), can also be
combined with independent learning while keeping the loss
function unchanged in form.

Method
In this section, we propose CONS, a novel knowledge shar-
ing framework that leverages two types of knowledge and
reduces the negative effects of suboptimal knowledge on
agents. We first introduce policy confidence to quantify the
level of certainty of the agent’s policy and then provide a de-
tailed description of the three stages of CONS. Please note
that knowledge sharing is initiated only after agents have
interacted with the environment for a short period to avoid
ineffective sharing in the very early stages. Without loss of
generality, we assume that in the following, agent i takes the
role of student, while the other agents may take the role of
teachers (uniformly represented as j). Figure 1 shows how
CONS works after sharing is initiated.

Policy Confidence
Policy confidence should assess the certainty of agent pol-
icy under certain observation o across different |A|. So we
define it as the min-max normalized value of the standard
deviation of the action probability distribution:

Γo =
σo −min(σo)

max(σo)− 0
=

|A|σo√
|A| − 1

. (4)
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In the above equation, σo denotes the standard deviation
of the action probability distribution π(·|o) conditioned on
observation o and A denotes the agent’s action space. σo

reaches its maximum value when only one action has the
maximum probability of 1, while its minimum value occurs
when the probabilities of all actions are equal to 1

|A| . π(·|o)
is derived from the Boltzmann distribution

π (a | o) = eQ(o,a)/T∑
k e

Q(o,ak)/T
= pa, (5)

where pa is the probability of action a and T is the temper-
ature parameter used to adjust the randomness of decisions
and we set it to 1.

Stage 1: Student Sends Request
After knowledge sharing is initiated, agent i checks its bud-
get biask. If not exhausted, it broadcasts a student request
message mi

s with the probability of Pask(oi) calculated by
Eq. 1, where oi is its current observation; otherwise, it sam-
ples an action from its own policy. In addition to oi, mi

s also
includes ni

oi and maxQi(oi, ·), representing the number of
times agent i has observed oi and its corresponding maxi-
mum Q-value respectively.

Stage 2: Teacher Shares Knowledge
Teachers in CONS share both positive and negative knowl-
edge regarding oi with the student. Upon receiving mi

s =

(oi, n
i
oi ,maxQi(oi, ·)), agent j first checks its budget bjgive.

If the budget is exhausted, no response will be provided;
otherwise, agent j decides whether to share policy-level
knowledge about oi with agent i based on mi

s, nj
oi and

maxQj(oi, ·). CONS agents are well-intentioned, aiming to
share knowledge only at appropriate times, thereby avoiding
any potential misinformation. Specifically, the module T j in
Figure 1 is activated for knowledge extraction only when
agent j has more or better experience compared to agent
i with respect to observation oi. This activation condition,
which also helps reduce unnecessary communication over-
head, can be expressed as

1nj
oi

>ni
oi

+ 1maxQj(oi,·)>maxQi(oi,·) > 0, (6)

where 1 is the indicator function. If this inequality holds, it
implies that agent j either has observed oi more frequently
or taken more valuable actions under the observation oi
compared to agent i. If T j is activated, it extracts the knowl-
edge to be shared from the policy distribution πj(·|oi) de-
rived from Eq. 5. Along with decision-related knowledge,
agent j also shares its local information with agent i so
that agent i can calculate the weights of each responding
teacher. Specifically, the teacher message replied by agent
j is mj

t = (ajb, p
j
b, a

j
w, p

j
w,Λ

j
oi), where ajb and pjb represent

the best action and its probability, ajw and pjw represent the
worst action and its probability, and Λj

oi represents the pres-
tige of agent j. This observation-specific prestige should re-
flect agent j’s familiarity with oi and confidence in making
decisions under oi, which can be defined as

Λj
oi =

√
nj
oi × Γj

oi , (7)

where Γj
oi is the policy confidence of agent j under oi de-

rived from Eq. 4.

Stage 3: Student Utilizes the Acquired Knowledge
CONS agents are optimistic—they believe that the teacher’s
sharing is well-intentioned, and their knowledge, whether
positive or negative, can be beneficial to themselves. How-
ever, CONS agents are also cautious—they do not blindly
trust that the teachers’ knowledge is always correct. There-
fore, upon receiving knowledge from teachers, CONS
agents carefully adjust their action probabilities and conduct
targeted exploration based on their new policies. This pro-
cess of absorbing and utilizing knowledge involves several
specific details, which we will describe below.

The Changing Weights of Positive Knowledge and Nega-
tive Knowledge. In challenging tasks, agents initially face
failure and gain more success as their policies improve.
Therefore, negative knowledge is valuable in the early learn-
ing period as it helps agents narrow down their exploration
space, while positive knowledge becomes more valuable
later on as it as it enables agents to accomplish tasks more
effectively. CONS adjusts weights for positive and negative
knowledge, denoted as wp and wn respectively, increasing
the former and decreasing the latter progressively during
learning. The sum of the two weights is always equal to 1.
Specifically, we use

h(x) =
1

1−a
ei
· x+ a

(8)

to generate wn for the xth episode, then wp can be obtained
by wp = 1 − wn. In the above equation, ei is the episode
when knowledge sharing is initiated and a is an hyperparam-
eter that used to adjust the descent rate of wn. After knowl-
edge sharing is initiated, wn first decreases rapidly from 1,
followed by a progressively slower decline. We avoid using
a linear function because agents should quickly shift their
focus to positive knowledge, which aligns with the intu-
ition that negative knowledge is more important than pos-
itive knowledge only in the early stages of learning.

Soft Updating of Action Probabilities. The CONS
agents modify their action probabilities according to the
received teachers’ knowledge. They regard the probabili-
ties within each teacher’s knowledge as the update targets
for their corresponding actions, and perform multi-objective
soft updates while taking into account the weights assigned
to positive knowledge, negative knowledge and individual
teachers. Assume that agent i has acquired positive knowl-
edge and negative knowledge about action am from teach-
ers in set N b

m and set Nw
m respectively, that is, am = akb =

alw
(
k ∈ N b

m, l ∈ Nw
m

)
. Then agent i modifies the original

probability pim of am using the following equation:

p̃im = pim + wp

∑
k

wk · τ
(
pkb − pim

)
· 1pk

b>pi
m

+ wn

∑
l

wl · τ
(
plw − pim

)
· 1pl

w<pi
m
,

(9)
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Algorithm 1: Sample an action ai to be executed through
targeted exploration.

Require: The new policy π̃i(·|oi) and its confidence Γ̃.
1: With probability Γ̃ do
2: ai ← argmax

a
π̃i(a|oi) ▷ Sample the best action

3: With probability 1− Γ̃ do
4: Divide [0, 1] into |A| − 1 equal intervals
5: if Γ̃ is in the qth interval in ascending order then
6: Remove the worst q actions from π̃i.

▷ q ∈ 1, 2, . . . , (|A| − 1)
7: Normalize the remaining action probabilities to

policy Π to be sampled.
8: ai ← sample(Π)

return ai

where p̃im is the modified intermediate probability of action
am for agent i to be subsequently normalized through soft-
max. τ ∈ (0, 1) controls the update rate, and the indica-
tor function is used to mask inappropriate modifications. wk

and wl represent the weights of teacher k and l respectively,
which are calculated based on the prestige Λk and Λl (the
subscript oi is omitted for simplicity) using the following
equation:

wk =
eΛ

k∑
k e

Λk , wl =
eΛ

l∑
k e

Λl . (10)

The probabilities of other actions in A that are considered
best or worst by teachers can be modified in the same way.

Sample An Action. After completing all necessary proba-
bility modifications, agent i obtains a new policy π̃i(·|oi) by
performing softmax normalization on all probabilities, and
then calculates its new policy confidence Γ̃ (the superscript
i and the subscript oi are omitted for simplicity). The policy
π̃i(·|oi) is derived by cautiously absorbing the knowledge
from all teachers, which integrates their experiences. Based
on π̃i and Γ̃, agent i performs targeted exploration to sample
an action ai to be executed as algorithm 1 shows.

Why do CONS agents explore after excluding several ac-
tions? (i) Exploration (rather than taking the best action) is
to gain a comprehensive understanding of the task and avoid
getting stuck in a suboptimal solution; (ii) Excluding some
low-probability actions can improve their exploration effi-
ciency. In addition, the way CONS agents choose actions
also conforms the following intuitions. A small value of Γ̃
indicates that the probabilities of each action are similar,
thus agent i should prioritize exploration. Interestingly, at
this juncture, there is a low probability of directly sampling
the best action, and an action will be sampled from a larger
subset of A. A large value of Γ̃ indicates the exact opposite,
i.e., agent i has a high probability of taking the best action
directly, and its exploration is more limited.

Experiments
In this section, we evaluate the effectiveness of CONS in
three cooperative multi-agent tasks: patient gold miner, find

(a) (b) (c)

Figure 2: Illustrations of three environments. (a) Patient gold
miner (PGM). (b) Find the treasure (FT). (c) Cleanup.

the treasure and cleanup. Additionally, we study ablations
to further demonstrate the significance of negative knowl-
edge sharing, cautious absorption of knowledge and targeted
exploration on the team learning efficiency. Lastly, we dis-
cuss the limitations of CONS. We mainly compare CONS
with I2Q (Jiang and Lu 2022), SEQL (Christianos, Schäfer,
and Albrecht 2020), GA-Comm (Liu et al. 2020), Ad-
HocTD (da Silva, Glatt, and Costa 2017) and IQL (Tampuu
et al. 2017). The diversity exploration method MAVEN (Ma-
hajan et al. 2019) is also included in the evaluation of the find
the treasure task, where agents receive global rewards. For
all experiments, unless otherwise stated, we run 10 evalua-
tion episodes without any sharing or exploration every 10k
episodes. More training details and environment settings can
be found in Appendix (Ba et al. 2023).

Patient Gold Miner
Task Settings. In the patient gold miner (PGM) environ-
ment, depicted in Figure 2(a), a group of n agents act as
miners aiming to maximize their gold collection. To obtain
a piece of gold and receive an individual reward of rg , an
agent must spend Td time steps at a gold mine. However,
each step incurs an individual penalty of -1. In addition to the
Ng gold mines, agents can also get rewards from Np stone
piles without any additional penalties. Each agent can gather
one stone per step and receive an individual reward of 0.3.
They can obtain a maximum of Ts stones from a stone pile
and one piece of gold from a gold mine. Collecting stones
is an easy-to-learn suboptimal behavior, while mining gold
is an optimal yet highly risky behavior due to rewards being
deeply hidden behind penalties. We conduct experiments un-
der two different settings, as detailed in Table ??. Note that
the task difficulty is determined by the ratio of Td to the
episode length L, not by n. A larger ratio significantly re-
duces the probability of agents finding the optimal strategy,
making PGM-3ag more challenging than PGM-6ag.

Results. Figure 3(a) shows that CONS outperforms other
baselines both in sample efficiency and final performance.
It achieves performance equivalent to AdHocTD and IQL in
only half the number of episodes and eventually surpasses
them. The IQL agents must independently explore the envi-
ronment to discern the higher value of gold mines. For Ad-
HocTD, the preference of experienced agents towards sub-
optimal behavior is propagated throughout the entire team,
leading to a suboptimal outcome. I2Q spends a lot of time
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Exp name Grid size Agent view N Ng Td Rg Np Ts L Td/L

PGM-6ag (easier) 12x12 5x5 6 2 10 30 3 10 50 20%
PGM-3ag (harder) 8x9 3x5 3 1 8 20 2 8 25 32%

Table 1: Two settings for Patient Gold Miner (PGM) environment

(a) (b) (c) (d)

Figure 3: Experimental results of PGM task. (a-b) Mean evaluating episode returns for the whole team across 5 seeds on PGM-
6ag and PGM-3ag with the 95% confidence interval shaded. (c-d) The utilization of requesting budget by CONS agents and
AdHocTD agents in PGM-6ag and PGM-3ag.

learning the ideal transition model in the early stages, re-
sulting in slower performance improvement. SEQL agents
hardly benefit from others’ trajectories due to the rarity of
high-value trajectories in this task. Instead, they are overly
influenced by numerous suboptimal trajectories, making the
discovery of high-value states even more difficult. Despite
the provision of richer information for agents’ decision-
making, the communication messages in GA-Comm have
limited impact on facilitating the transition from subopti-
mal behavioral patterns to optimal ones. Compared to the
methods above, CONS agents cautiously assimilate the ac-
quired positive and negative knowledge to update their pol-
icy and conduct targeted exploration, thereby achieving a
higher learning rate and better performance. Figure 3(b)
shows that CONS still outperforms other baselines on this
harder task, and its advantage is more pronounced. All base-
lines exhibit a relative performance decrease, indicating that
the aforementioned issue worsens with an increase in en-
vironmental difficulty. Figure 3(c) and (d) depict the uti-
lization of requesting budget bask by CONS and AdHocTD
agents throughout the entire learning process. In both set-
tings, CONS agents consistently exhibit significantly lower
average budget utilization compared to AdHocTD agents, at
30.1% and 33.5% of the budget used by AdHocTD agents,
respectively. This is primarily because CONS avoids many
inappropriate knowledge sharing through Eq. 6. The learn-
ing curves and budget utilization indicate that CONS can
achieve better performance with less knowledge sharing.

Find the Treasure
Task Settings. In find the treasure (FT) environment de-
picted in Figure 2(b), 4 agents must collaborate to search for
a single treasure hidden within one of the 6 red boxes. Col-
lecting this treasure yields a team reward of +15. There are
also 3 yellow boxes in this environment, each containing a
coin that brings a team reward of +2. Each agent has an ac-

(a) (b)

Figure 4: FT task: (a) Mean evaluating episode returns for
the whole team across 4 seeds with the 95% confidence in-
terval shaded. (b) The ratios of opened boxes and collected
items to the total number of corresponding entities within
400 evaluation episodes.

tion space of [up, down, right, left, open, pick up, stay].To
open a box, both agents must perform the open action on it
simultaneously. The items inside the box can only be col-
lected when at least one agent performs the pick up action at
the opened box. Opening a yellow box incurs a team cost of
-1, while opening a red box incurs a team cost of -2.

Results. As shown in Figure 4(a), the I2Q, SEQL and GA-
Comm agents completely failed in this sparse reward task.
The diversity exploration method MAVEN also has unsat-
isfactory performance, suggesting that blind exploration can
be counterproductive. IQL and AdHocTD perform relatively
well, surpassing MAVEN. However, CONS learns faster and
achieves higher rewards compared to them. CONS agents
exhibit better coordination than IQL agents due to knowl-
edge sharing, and demonstrate greater robustness to subop-
timal knowledge compared to AdHocTD agents due to the
cautious absorption and rational utilization of knowledge.
We run 400 evaluation episodes for each algorithm after
training and record the counts of opened boxes (red and yel-
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low) and collected items (coins and treasures). Figure 4(b)
shows the ratios of opened boxes and collected items to the
total number of corresponding entities for CONS and base-
lines (I2Q and SEQL are omitted due to poor performance).
The CONS agents have the best grasp of the environment—
they effectively balance the objectives of opening red boxes
for treasure search and yellow boxes for coin collection, thus
achieving excellent performance.

Cleanup
Task Settings. Cleanup (Yang et al. 2020) is a classic pub-
lic goods game where agents can earn rewards by collecting
apples whose growth rate is negatively correlated with the
amount of waste in the river. Waste is generated uniformly
in the river with a probability of 0.5 per time step until 40%
of the river is covered, at which point apples will not grow
either. All agents can fire the cleaning beam, which can clean
the waste within three cells above the agent. Figure 2(c) il-
lustrates the cleanup task where 4 agents collaborate to col-
lect apples in an 8 × 8 grid world. Obviously, the agents in
this task need a well-coordinated division of labor so that the
team can obatain more rewards.

Results. Cleanup without suboptimal interferences is a
simpler task compared to the previous two. However, GA-
Comm and SEQL fail completely, as shown in Figure 5.
Despite achieving acceptable final convergence results, both
IQL and AdHocTD exhibit significant performance decline
during the middle stage of learning. This decline can be at-
tributed to agents oscillating between the roles of cleaner
and collector, leading to inefficient waste cleaning. Notably,
AdHocTD shows a more prominent performance drop as
action advice worsens this oscillation. Compared with I2Q
that performs greedy experience exploitation, the mecha-
nisms in CONS may slightly slow down the learning speed
in the early stage. However, CONS efficiently utilizes shared
knowledge to fully explore the environment and eventually
outperforms I2Q. In a word, CONS benefits from sharing
two types of knowledge and avoids the drawbacks of tradi-
tional advising mechanism, resulting in good performance.
Furthermore, Figure 5(b) shows that CONS agents only
use 8% of the requesting budget used by AdHocTD agents,
again demonstrating the superior performance of CONS.

(a) (b)

Figure 5: (a) Mean evaluating episode returns for the whole
team across 3 seeds with the 95% confidence interval
shaded. (b) The utilization of requesting budget by CONS
agents and AdHocTD agents.

Figure 6: Ablation studies on PGM-6ag. Mean team training
rewards are plotted with the 95% confidence interval shaded.

Discussions
Ablations. To understand the outstanding performance of
CONS, we conduct ablation studies on PGM-6ag to evalu-
ate the contribution of its key innovations: negative knowl-
edge sharing, cautious knowledge absorption and targeted
exploration. We denote CONS without negative knowledge
sharing as CONS-wo-N, CONS without positive knowledge
sharing as CONS-wo-P, and CONS without targeted explo-
ration (i.e., agents sample actions directly from the modified
probability distribution) as CONS-wo-TE. Additionally, the
original CONS and AdHocTD are also included in the abla-
tion study. As shown in Figure 6, CONS-wo-P outperforms
CONS-wo-N, and CONS outperforms CONS-wo-P, indicat-
ing that negative knowledge may be more crucial than pos-
itive knowledge in challenging tasks, but the presence of
positive knowledge can further enhance performance. Addi-
tionally, CONS-wo-TE performs similarly to AdHocTD in
the early stages of learning but eventually surpasses it sig-
nificantly. This indicates that cautious absorption of others’
knowledge indeed enhances the agents’ robustness to subop-
timal advice, thus avoiding falling into suboptimal solutions.
The ablation study results show the effectiveness of negative
knowledge sharing, cautious knowledge absorption and tar-
geted exploration.

Limitations. CONS is ideal for complex tasks that require
extensive exploration or where agents are prone to getting
trapped in suboptimal solutions. However, when the optimal
strategy is evident or no suboptimal solutions exist, strictly
following advice would be better as the targeted exploration
in CONS may slightly slow down the learning process. In
addition, CONS currently relies on observation counters and
value-based underlying algorithms, making it suitable only
for discrete tasks for now.

Conclusion and Future Work
In this paper, we propose CONS to maximize the benefits
of knowledge sharing for agents. The CONS agents share
both positive and negative knowledge optimistically and
absorb others’ knowledge cautiously. Experimental results
show that CONS can significantly improve learning speed
and final performance in challenging tasks. For future work,
we will extend the underlying idea of CONS to continuous
tasks by designing additional networks to replace counters
and utilizing action discretization technologies.
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