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Abstract

Value function factorization has achieved great success in
multi-agent reinforcement learning by optimizing joint action-
value functions through the maximization of factorized per-
agent utilities. To ensure Individual-Global-Maximum prop-
erty, existing works often focus on value factorization using
monotonic functions, which are known to result in restricted
representation expressiveness. In this paper, we analyze the
limitations of monotonic factorization and present ConcaveQ,
a novel non-monotonic value function factorization approach
that goes beyond monotonic mixing functions and employs
neural network representations of concave mixing functions.
Leveraging the concave property in factorization, an itera-
tive action selection scheme is developed to obtain optimal
joint actions during training. It is used to update agents’ local
policy networks, enabling fully decentralized execution. The
effectiveness of the proposed ConcaveQ is validated across
scenarios involving multi-agent predator-prey environment
and StarCraft II micromanagement tasks. Empirical results
exhibit significant improvement of ConcaveQ over state-of-
the-art multi-agent reinforcement learning approaches.

Introduction
Joint decision-making in multi-agent reinforcement learning
(MARL) often requires dealing with an exponential expan-
sion of the joint state-action space as the number of agents
increases. To this end, recent MARL algorithms (Sunehag
et al. 2018; Wang et al. 2021a; Rashid et al. 2018; Zhang
et al. 2021; Wang et al. 2021b) often leverage value-function
factorization techniques – which optimize joint action-value
functions through the maximization of factorized, per-agent
utilities – to improve learning and sampling efficiency.

Current value factorization methods mostly adhere to the
Individual-Global-Max (IGM) (Rashid et al. 2018) principle,
which asserts the coherence between joint and individual
greedy action selections. It requires value function factoriza-
tion to be strictly monotonic, i.e., if local agents maximize
their local utilities, the joint value function can attain the
global maximum. While such monotonic factorization facil-
itates efficient maximization during training and simplifies
the decentralization of the learned policies, it is restricted to
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monotonic value function representations and may lead to
poor performance in situations that exhibit non-monotonic
characteristics (Rashid et al. 2020). In response to the limited
representation expressiveness due to monotonic factorization,
recent works have considered a number of mitigation strate-
gies, e.g., WQMIX (Rashid et al. 2020) that formulates a
weighted projection toward monotonic functions, QTRAN
(Son et al. 2019) that utilizes an additional advantage value
estimator, QPLEX (Wang et al. 2021a) that leverages a duel-
ing structure, and ResQ (Shen et al. 2022) that introduces an
additional residual function network. However, these meth-
ods tend to compensate for the representation gap caused
by monotonic factorization, subject to the IGM principle.
QTRAN exhibits low sample efficiency and QPLEX may
obtain suboptimal results, while WQMIX tends to possess
high approximation errors in non-optimal actions, and it is
difficult for ResQ to find the optimal actions for a scenario
requiring highly-coordinated agent exploration (Shen et al.
2022). Going beyond monotonicity and IGM while ensuring
decentralized action selection is still an open question.

The pivotal insight in this paper is that monotonic value-
function factorization may not be necessary for enabling local
action selections in MARL. Indeed, we show that monotonic
factorization under IGM may lead to suboptimal policies
that only recover an arbitrarily small fraction of optimal
global actions that are achievable through an ideal policy
with full observability. Instead, we propose a novel approach
of concave value-function factorization for high represen-
tation expressiveness, called ConcaveQ. It employs a deep
neural network representation of concave mixing networks
for value-function decomposition. The concave mixing net-
work estimates the joint action-value output Qtot through
a concave function fconcave of the input local utilities Qi

conditioned on agent i’s local observation and action choice,
that is, Qtot = fconcave(Q1, ..., Qn). We propose a deep neu-
ral network representation of the concave mixing function
fconcave. It enables a novel concave value-function factoriza-
tion in MARL.

Due to the lack of IGM under concave mixing functions,
the global optimal joint actions are not necessarily consistent
with the optimal actions of local agents. ConcaveQ tackles
this problem through an iterative action-selection algorithm
during training, which attains optimality using the concavity
property of the proposed value-function factorization. To sup-
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port fully decentralized execution, we note that the optimal
joint action cannot be obtained directly from maximizing the
local agent utilities Qi. ConcaveQ adopts a soft actor-critic
structure with local policy networks for distributed execution,
such that each local agent can select the best action accord-
ing to its own local policy network, which are corrected by
the concave value networks during training. It also allows
auxiliary information such as entropy maximization to be
exploited for effective learning.

For evaluation, we demonstrate the performance of Con-
caveQ on SMAC maps and predator-prey tasks. We compare
ConcaveQ with several state-of-the-art value factorization
methods on various MARL datasets. The experimental re-
sults show that ConcaveQ outperforms multiple competitive
value factorization methods, especially on difficult tasks that
require more coordination among the agents since monotonic
factorization restricts global value-function estimate and hin-
ders the effective training of agents. Our numerical results
show significant improvement over SOTA baselines in Star-
Craft II micromanagement challenge tasks regarding higher
reward and convergence speed.

Background

Value Decomposition. Value function decomposition is a
paradigm for cooperative multi-agent reinforcement learn-
ing (MARL) that aims to learn a centralized state-action
value function that can be decomposed into individual agent
values. Value decomposition approaches can reduce the
complexity and improve the scalability of MARL prob-
lems. Two prominent examples of value function decom-
position methods are VDN and QMIX, which both assume
that the centralized action value Qtot is additive or mono-
tonic with respect to the agent values Qi. VDN simply
sums up the agent values to obtain Qtot = Σn

i=1Qi(τi, ui),
while QMIX uses a mixing network to combine the lo-
cal agent utilities in a monotonic way. QMIX enforces the
monotonicity through a constraint on the relationship be-
tween Qtot(s,u) = fθ(s,Q1(τ1, u1), ..., Qn(τn, un)) and
each Qi, that is, ∂Qtot(τ ,u)

∂Qi(τi,ui)
> 0, ∀i ∈ N . The mono-

tonicity constraint ensures that the optimal joint action for
the global reward Qtot is also optimal for each agent’s
local utility Qi, where the mixing function fθ is formu-
lated as a feed-forward network parameterized by θ. The
weights of the mixing network are produced by indepen-
dent hyper-networks, which take the global state as input
and use an absolute activation function to ensure that the
mixing network weights are non-negative to enforce the
monotonicity. Then QMIX is trained end-to-end to mini-
mize the squared TD error on mini-batch of b samples from
the replay buffer as Σb

i=1 (Qtot(τ ,u, s; θ)− ytot)
2, where

ytot = r + γmaxu′Qtot(τ
′,u′, s′; θ′), r is the global re-

ward and θ′ is the parameters of the target network whose
parameters are periodically copied from θ for training stabi-
lization.
Weighted QMIX Projection. QMIX (Rashid et al. 2018)
projects Qtot to the restricted function class Qmix by mini-

mizing the projection loss:

argmin
q∈Qmix

∑
u∈U

(T ∗Qtot(s,u)− q(s,u))2. (1)

Weighted QMIX (Rashid et al. 2020) extends the idea of
monotonic mixing by introducing a weighting function into
the QMIX projection operator to bias the learning process
towards the best joint action. The weighted projection can be
described as:

argmin
q∈Qmix

∑
u∈U

(w(s, u)Q(s, u)− q(s, u))2 (2)

where w is the weighting function that is added to place more
importance on optimal joint actions, while still anchoring
down the value estimates for other joint actions. Weighted
QMIX can be viewed as a projection onto monotonic mixing
function space using weighted distance.

Related Work
Value Factorization Approaches. Value Factorization ap-
proaches are widely adopted in value-based MARL (Hu et al.
2021; Wang et al. 2021b; Zhou, Lan, and Aggarwal 2023;
Gogineni et al. 2023; Mei et al. 2023). Current value factoriza-
tion methods mostly adhere to the monotonic IGM principle,
such as VDN(Sunehag et al. 2018) and QMIX(Rashid et al.
2018). VDN (Sunehag et al. 2018) represents the joint state-
action value function Qtot as a sum of per-agent utilities
Qi. QMIX(Rashid et al. 2018) employs a mixing network to
factorize the Qtot in a monotonic manner. The monotonicity
constraint ensures that the optimal joint action for the global
reward Qtot is also optimal for each agent’s local utility
Qi. However, these two decomposition methods suffer from
structural constraints, limiting the range of joint action-value
functions they can effectively represent.

To compensate for the restricted expressiveness of mono-
tonic representation, recent works have explored several miti-
gation strategies. Specifically, WQMIX (Rashid et al. 2020)
applies a weighted projection to QMIX, which attaches more
importance to the optimal joint actions when minimizing
training errors. In WQMIX, finding the optimal weight re-
mains an open problem. Furthermore, the approximation
errors are high for non-optimal actions. QTRAN (Son et al.
2019) incorporates an additional advantage value estimator
and imposes a set of linear constraints. QPLEX (Wang et al.
2021a) leverages a dueling structure involving value and
advantage functions. ResQ (Shen et al. 2022) masks some
state-action value pairs and introduces an additional resid-
ual function network. Apart from mitigation strategies, there
are also various MARL actor-critic methods, such as MAD-
DPG (Lowe et al. 2017), MAAC (Iqbal and Sha 2019), and
COMA (Foerster et al. 2018), which use centralized critics
and decentralized actors. PAC (Zhou, Lan, and Aggarwal
2022) decouples individual agents’ policy networks from
value function networks to leverage the benefits of assisted
value function factorization. VDAC (Su, Adams, and Beling
2021) combined actor-critic structure with QMIX for the joint
state-value function estimation. DOP (Wang et al. 2021b) em-
ploys a network similar to Qatten (Yang et al. 2020) for policy
gradients with off-policy tree backup and on-policy TD.
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From the previous works mentioned above, we can see a
series of works conducted within the confines of the mono-
tonic assumption. However, few of them consider the non-
monotonic case. To the best of our knowledge, this paper is
the first one considering the MARL in the concave scenario,
which is a general case in non-monotonic scenarios.

Characterizing Limitations of Monotonic
Factorization

Monotonic factorization restricts the family of global ac-
tion value functions that can be represented. More precisely,
Qtot(s,u) = fθ(s, Q1(τ1, u1), ..., Qn(τn, un)) implies that
if u∗

1 = argmaxQ1(τ1, u1) is the optimal action choice for
agent 1, u∗

1 must also be optimal for all other states with
varying τ2, . . . , τn. We analyze this restriction and show how
it makes monotonic factorization ineffective in representing
complex global value functions.

Considering a Markov decision process (MDP) with n
agents, where the state of agent i is denoted by si ∈ S and
action by ui ∈ A, for i = 1, 2, ..., n, composing a joint state s
and joint action u. Let Qi(si, ui) be local agent value utilities,
Qjt(s, u) be the unrestricted ground truth of joint action-
value function, and Qmono(s, u) be an arbitrary monotonic
factorization estimate of Qjt(s, u). Ideally, the monotonic
factorization estimate Qmono should be able to recover the
exact optimal action selections of Qjt. We define Smono as
the state set, where Qmono and Qjt have the same optimal
joint action, i.e.,

Smono = {s : argmaxQmono(s, u) = argmaxQjt(s, u)}

We show that |Smono| can be arbitrarily small compared to
the state space |S|n, when the global maximums are uni-
formly distributed in Qjt(s, u). Thus, monotonic factoriza-
tion could only recover an arbitrarily small fraction of action
choices.

Theorem 1 When n ≥ log|S|(2|A| · log2|A|) + 1 and the
optimal action choices in Qjt are uniformly distributed, for
any monotonic factorization, we have E(|Smono|)

|S|n ≤ e+1
|A| ·

δn−1 for some constant δ ∈ (0, 1).

Proof Sketch. We give a sketch of the proof and provide the
complete proof in Appendices. Our key idea is to convert the
problem into a classic max-load problem (Czumaj 2004).
Step1: Formulate as max-load bin-ball problem. For each
agent i and state s, we consider the optimal action of Qmono

as ball i. Thus, Qjt and Qmono have the same optimal action
for agent i if ball i is placed in the bin corresponding to the
optimal action of Qjt.

Let Xi denotes that ball i is in bin i, that is, Qjt and Qmono

have the same optimal action for agent i, then we have:

E(|Smono|) = ΣsP (X1)·P (X2|X1)·...·P (Xn|Xn−1...X1)

Define Yi as the load of bin i, that is, the state space such
that Qjt and Qmono have the same optimal action for agents
except for agent i. Note that the global maximum of Qjt is
uniformly distributed over different states, we then analyze
P (X1):

P (X1) =
E(Σs2...snX1)

|S|n−1
≤ E(maxiYi)

|S|n−1
(3)

Step2: Analyze the probability distribution of the load. Ac-
cording to the Chernoff bound and the Union bound, we have:
when n ≥ log|S|(2|A| · log2|A|) + 1,

E(maxiYi) ≤
(e+ 1) · |S|n−1

|A|
. (4)

where |A| ≥ 1 is the size of action space.
Applying Eq. (4) to Eq. (3) and Eq. (3), we have:

P (X1) ≤
e+ 1

|A|
(5)

Using the same argument repeatedly for agents i = 2, . . . , n,
we can choose δ = mini(P (Xi|Xi−1...X1)) and 0 < δ < 1.
Plugging these inequalities into E(|Smono|), it yields the
desired result E(|Smono|)

|S|n ≤ e+1
|A| · δn−1.

Our analysis shows that a monotonic mixing can only re-
cover an arbitrarily small fraction of global value function
maximums, as the number of agents or the size of action
space increases. Our proposed ConcaveQ addresses the rep-
resentation issue by introducing a concave mixing network
to value function factorization, to enhance the representation
ability for better performance. Since the IGM principle no
longer holds under concave mixing functions, the greedy ac-
tion selection by maximizing local agent Q values can not
be adopted. Note that concave optimization has good conver-
gence properties (Karush 1939), that is, a concave function
has only one global maximum and the maximum can always
be obtained using iterative methods. Therefore, ConcaveQ
tackles the action selection problem by optimizing the joint
value function in an iterative manner. As for execution, note
that the optimal joint action cannot be obtained directly from
maximizing the local agent Qi, we adopt a soft actor-critic
policy network in ConcaveQ that uses factorized policies to
support distributed execution, such that each local agent can
select the best action according to its own local policy net-
work which will be corrected by the Concave value networks
during training while exploiting auxiliary information for
learning. Moreover, entropy maximization is also used to en-
hance effective exploration. As for concave mixing networks,
there is always a concave mixing way that can recover the
global maximum.

Proposition 1 For any state s, there is always a concave
function Qc(s, u) that recovers the global maximum of
Qjt(s, u) with the same optimal action.

Proof Sketch. For any state s, let f1(u) = Qjt(, u) and
f2(u) = -Qjt(, u). According to Fenchel–Moreau theorem
(Borwein and Lewis 2006), the biconjugate function of f2(u)
is a convex function g(u) = f∗∗

2 (u) and h(u) = −f∗∗
2 (u) is

a concave function. g(u) and h(u) satisfies:

g(u) ≤ f2(u), (6)

h(u) ≥ f1(u). (7)
Suppose the optimal joint action of f1(u) and h(u) are u∗

f1

and u∗
h respectively, if we shift h(u) by (−u∗

f1
+ u∗

h), the
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Figure 1: The overall architecture of ConcaveQ. The concave mixing network represents Qtot as a concave function of local Qa.
With the help of iterative action selection, we can select the optimal actions during training. As for the execution process, the soft
policy network is used to find the optimal actions.

shifted concave function has the same optimal action as f1(u).
In other words, for any state s, there is always a concave
function that has the same optimal action as Qjt(s, u).

The key to our method is the insight that it is not neces-
sary to use the monotonic factorization of QMIX to extract
decentralized policies that are fully consistent with their cen-
tralized counterpart. Next, we will discuss concave mixing
network design and our ConcaveQ framework to support
fully decentralized execution.

Method

Since concave factorization may not satisfy the IGM prin-
ciple, we introduce an iterative action selection algorithm
to ensure optimal joint action selection during training. It
iteratively optimizes each agent’s action selection with all
other agent’s actions and local utilities fixed. Due to the con-
cave property of the mixing function, the iterative algorithm
converges to global optimal actions. Note that this iterative
action selection does not directly allow decentralized exe-
cution. To this end, we further leverage the soft actor-critic
framework to train local factorized policies for distributed
execution. Figure 1 shows the architecture of our learning
framework. There are four main components in ConcaveQ :
(1) a concave Qtot utilizing per-agent local utilities, where a
concave function serves as the mixing network (2) an unre-
stricted joint action estimator Q̂∗, which serves as a baseline
estimator of the true optimal value function Q∗ (3) an iter-
ative action-selection module to seek for the optimal joint
action during training, and (4) a soft-policy network that
allows for the utilization of a soft actor-critic network that
consists of local policy networks and local value networks to
perform decentralized execution.

Concave Mixing Network Design
The concave mixing network constrains the output of the net-
work to be a concave function of the inputs, which covers a
large class of functions and allows efficient inference via op-
timization over inputs to the network. Moreover, the concave
feature ensures that maximizing the output of the network
leads to only one solution. This means that theoretically there
won’t be local maximum or multiple solutions that may con-
fuse the inference process. Concave mixing network has a
suitable property specifically for value function factorization-
based multi-agent reinforcement learning problems, that is,
local maximization equals global maximization and it can be
obtained through iterative methods, which is of great use in
our case.

We first consider a k-layer, fully connected network as
shown in the left part of Figure 1. A concave neural network
is defined over the input x for i = 0, ..., k − 1 using such
architecture:

zi+1 =


W

(z)
0 x+ b0, i = 0

ri(W
(z)
i [z1, ..., zi] + bi), i = 1, ..., k − 2

−W
(z)
i [z1, ..., zi] + bi, i = k − 1

(8)

where zi denotes the layer activations, ri are non-linear
activation functions, and θ = (W

(z)
0:k−1, b0:k−1) are the pa-

rameters of linear layers. We can model the concave mixing
network as:

f(x; θ) = zk (9)

Theorem 2 The mixing network f is concave in x provided
that all W (z)

1:k−1 are non-negative, and all functions ri are
convex and non-decreasing.
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We delineate the proof and the detailed proof is provided
in Appendices. The proof is simple and follows from the
fact that non-negative sums of convex functions are also
convex and that the composition of a convex and convex
non-decreasing function is also convex, and that the negative
of a convex function is a concave one (Boyd and Vanden-
berghe 2004). In our framework, we satisfy the constraint
that the ri should be convex non-decreasing via nonlinear ac-
tivation units, specifically we adopt the rectified linear func-
tions. The constraint that the W (z) terms be non-negative
is somewhat restrictive, but because the bias terms can be
negative, the network still has substantial representation
power. In our multi-agent reinforcement learning setting, we
model Qtot(s, u; θ) using an input-concave mixing function
and select actions under the concave optimization problem
u∗(s) = argmaxuQtot(s, u; θ). We have 4 layers, k = 4 and
the weights W (z)

0:k−1 are generated by hypernetworks. Each
hypernetwork takes the state s as input and consists of a sin-
gle linear layer, succeeded by an absolute ReLU activation
function, to generate the non-negative weights.

Iterative Action-Selection and Local Policies
We note that the optimal joint action of Qtot cannot be ob-
tained directly from maximizing Qi since the mixing function
is concave rather than monotonic. Hence it is almost impossi-
ble to directly find the maximum Qtot and the corresponding
joint action selections u∗ such that u∗ = argmaxuE[Q(s, u)],
as this takes O(|U ||n|) iterations to find the maximum. One
of the key insights underlying this method is that although it
is impractical to find u∗ directly: however, its local estima-
tion and local optimum u∗ = argmaxuE[Q∗(s, τ, ·)], which
takes O(|U | ∗ |n|) time, is possible to find which will up-
date the concave mixing network and local policy network
asymptotically.

To illustrate this problem, we consider the comparison
between the action selection from the monotonic mixing
network and concave mixing network: in value-based meth-
ods with a monotonic mixing network, each agent chooses
ui
t = argmax(qi(τ it )), i.e. each agent chooses the action with

the best local value thus getting an optimal global value;
however, when the utilizing a concave mixing network for a
more general value function factorization, we can maximize
E[Q∗(s, τ, ·)] via iterative action selection.

Next, since the mixing network is non-monotonic (con-
cave), we can no longer follow the IGM principle to adopt
actions that maximize individual values from the local value
networks. Instead, we adopt a soft actor-critic policy network
that uses factorized policies to enable distributed execution,
such that each local agent can choose the best action accord-
ing to its local policy network which will be corrected by
the concave value networks during training while exploiting
auxiliary information for learning. Under a soft-actor-critic
paradigm, each agent can choose ui

t = argmax(πi(τ it )) such
that E[Q∗(s, τ, u)] = max(E[Q∗(s, τ, ·)]). This ensures that
the concave mixing network could factorize concave value
functions while each local agent could choose their best ac-
tions based on local policy in a decentralized manner during
execution. Previous studies have demonstrated that Boltz-
mann exploration policy iteration can guarantee policy im-
provement and optimal convergence with infinite iterations

and complete policy evaluation. With factorized policy, we
have local policy trained with the following:

Lπ(θ) = ED [α logπ (ut|τt)−Qπ
tot (st, τt,ut)]

= −qπ
(
st,Eπi

[
qi

(
τ i
t , u

i
t

)
− αi log πi

(
ui
t|τ i

t

)])
(10)

where qπ is the local value network with ui ∼ πi(oi), D is
the replay buffer for sampling training data, and the parameter
α from soft-actor-critic controls how much the agents prefer
actions with higher expected rewards over actions with more
explorations. We introduce the training of the local value
network and other components in the following sections. The
algorithm has a more vital exploration ability and a higher
level of generalization.

Training ConcaveQ
We have presented the components of our approach so far.
Next, we describe how to implement and train our novel RL
algorithm that scales well under DEC-POMDP. During the
decentralized execution phase, only the agent network (local
policy in Fig.1) is active with actions chosen greedily from
each local policy network as ui

t = argmax(πi(τ it )), ensuring
full CTDE.

The Q̂∗ architecture (Green part in Fig. 1) is used as the
estimator for Q∗ from unrestricted functions, where it serves
as a mixing network using a feed-forward network that takes
its local utilities. Together with the proposed concave mixing
network, they are trained to reduce the following loss:

LQ̂∗(θ) =
∑
i

(Q̂∗(s, τ , û)− yi)
2 (11)

LConcaveQ(θ) =
∑
i

w(s, u)(Qtot(s, τ , u)− yi)
2 (12)

where û = argmaxû Qtot(τ
′, û′, s′;θ) is from local iter-

ative action selection, yi = r + γQ̂∗(s′, τ ′, û) and θ′ is
the parameters of the target network that are periodically
updated to stabilize the training. w(s,u) is the weighting
function with w = 1 if Qtot(s, τ,u)− yi < 0, w = 0.5 oth-
erwise as suggested in WQMIX (Rashid et al. 2020). Then
all components are trained in an end-to-end manner as:

L(θ) = Lπ + LQ̂∗ + LConcaveQ (13)

We provide detailed derivations and pseudo-code for the
training process in the appendices.

Experiment Results
In this section, we present our experimental results with the
state-of-the-art methods on Predator-Prey and the StarCraft
II Multi-Agent Challenge (SMAC)(Samvelyan et al. 2019).
For fair evaluations, the hyper-parameters of all algorithms
under comparison as well as the optimizers are the same.
Each experiment is repeated 3 times with different seeds. The
presented curves are smoothed by a moving average filter
with its window size set to 5 for better visualization. More
implementation details and experimental introduction and
settings can be found in the Appendices.
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(a) Punishment p = 0.0 (b) Punishment p = −0.5

(c) Punishment p = −1.5 (d) Punishment p = −2.0

Figure 2: Average reward on the Predator-Prey tasks.

(a) 3s vs 5z (hard) (b) 5m vs 6m (hard) (c) 27m vs 30m (Super hard)

(d) 6h vs 8z (Super hard) (e) Corridor (Super hard) (f) MMM2 (Super hard)

Figure 3: Average test win rate on the SMAC tasks.

Predator Prey

Predator-Prey is a complex partially observable multi-agent
environment, where 8 agents cooperate as predators to hunt

8 prey within a 10× 10 grid. If two or more adjacent preda-
tor agents carry out the catch action simultaneously, it is a
successful catch and the agents receive a reward r = 10. A
failed attempt where only one agent captures the prey will
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receive a punishment reward p ≤ 0. The more negative p is,
the higher level of coordination is needed for the agents.

We select multiple state-of-the-art MARL approaches as
baseline algorithms for comparison, which includes value-
based factorization algorithms (i.e., QMIX in (Rashid et al.
2018), WQMIX in (Rashid et al. 2020), PAC in (Zhou, Lan,
and Aggarwal 2022), QPLEX in (Wang et al. 2021a), and
RESQ in (Shen et al. 2022)), and decomposed actor-critic
approaches (i.e., FOP (Zhang et al. 2021) ). Fig 2 shows
the performance of our scheme and the six baselines when
punishment p varies from 0 to −2, in which the x-axes and
y-axes represent the number of training episodes and the test
mean rewards, respectively. According to the curves in Fig 2,
the following results can be observed. (1) When p = 0, CON-
CAVEQ, PAC, WQMIX, and QMIX can learn good policies
and obtain the highest reward when they have been trained
for more than 50 episodes. In other words, the performance
of our algorithm is as good as the state-of-the-art works. (2)
When punishment gets larger, i.e. p = −0.5, p = −1.5 and
p = −2.0, only CONCAVEQ and WQMIX can still achieve
high rewards within 60 episodes while CONCAVEQ is able
to converge faster than WQMIX, the others gradually fail due
to their monotonicity constraints or representational limits.
These results demonstrate CONCAVEQ’s ability in challeng-
ing cooperative MARL tasks that require non-monotonic
action selections.

StarCraft II Multi-Agent Challenge (SMAC)

In SMAC, agents are divided into two teams to cooperate
with allies and compete against enemies or against the other
team controlled by the built-in game AI. In the simulation, the
agents act according to their local observations and learning
experiences.

Note that the state-of-the-art algorithms have already
achieved a very good performance on the easy and
medium maps, which makes it difficult to present clear
comparisons and potential improvements. We carry out
our experiment in six maps consisting of two hard
maps (3s vs 5z, 5m vs 6m) and four super-hard maps
( 27m vs 30m, 6h vs 8z, MMM2, corridor). The
baseline algorithms are the same as those in the Predator-Prey
environment.

Details of the environment setting and other training details
like network hyperparameters can be found in Appendices.

The performance of our algorithm and baselines in hard
and super hard maps are presented in Figure 3, in which the
x-axes and y-axes represent the number of training episodes
and the test win rate, respectively. For almost all scenarios,
we found that our algorithm is able to converge faster and
deliver a higher win rate. Especially on the 6h vs 8z map,
CONCAVEQ significantly outperforms other baselines by
a large margin. We note that the 6h vs 8z map requires a
sophisticated strategy to take the win, where one unit draws
firepower from the enemy units while circling around the
edge of the map so the rest friendly units can deliver damages.
This implies CONCAVEQ imposes a higher capability of
exploration and function representational abilities.
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Figure 4: Ablations results comparing CONCAVEQ and its
ablated versions on SMAC map 3s vs 5z

Ablation Studies
We carry out ablation experiments to demonstrate the effec-
tiveness and contribution of each core component introduced
in CONCAVEQ on 3s vs 5z scenario in SMAC. As shown
in Fig.4 we consider verifying the effect of (1) concave mix-
ing network by replacing it with 4-layer monotonic network
as CONCAVEQ linear, (2) iterative action selection which
removes the iterative procedure as CONCAVEQ no iter, (3)
soft policy network which removes the soft policy network
as CONCAVEQ no policy, (4) disable both iterative action
selection and soft policy network as CONCAVEQ disabled,
(5) further remove the central Q∗ as CONCAVE no Q∗. The
results show that CONCAVEQ overperforms these ablated
versions. CONCAVEQ no iter has lower rewards than CON-
CAVEQ due to a lack of iterative action selection which is
unfavorable to finding the optimal actions. Removing the
soft policy network also leads to performance drop due to
lack of proper action selection scheme during execution. The
reward of CONCAVEQ linear grows slowly at first as lin-
ear layers have weaker representation ability than concave
mixing networks. CONCAVEQ no Q∗ suffers from the most
significant performance drop after most core components are
removed from the original design. Such results validate how
each component is crucial for achieving performance through
experiments.

Conclusions
In this paper, we propose ConcaveQ, a novel non-monotonic
value function factorization approach, which goes beyond
monotonic mixing functions that are known to have limited
representation expressiveness. ConcaveQ employs neural net-
work representations of concave mixing functions. An itera-
tive action selection scheme is developed to obtain optimal
action during training, while factorized policies using local
networks are leveraged to support fully decentralized execu-
tion. We evaluate the proposed ConcaveQ on predator-prey
and StarCraft II tasks. Empirical results demonstrate substan-
tial improvement of ConcaveQ over state-of-the-art MARL
algorithms with monotonic factorization.
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