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Abstract

Efficient collaboration in the centralized training with decen-
tralized execution (CTDE) paradigm remains a challenge in
cooperative multi-agent systems. We identify divergent action
tendencies among agents as a significant obstacle to CTDE’s
training efficiency, requiring a large number of training sam-
ples to achieve a unified consensus on agents’ policies. This
divergence stems from the lack of adequate team consensus-
related guidance signals during credit assignments in CTDE.
To address this, we propose Intrinsic Action Tendency Con-
sistency, a novel approach for cooperative multi-agent rein-
forcement learning. It integrates intrinsic rewards, obtained
through an action model, into a reward-additive CTDE (RA-
CTDE) framework. We formulate an action model that en-
ables surrounding agents to predict the central agent’s ac-
tion tendency. Leveraging these predictions, we compute a
cooperative intrinsic reward that encourages agents to match
their actions with their neighbors’ predictions. We establish
the equivalence between RA-CTDE and CTDE through theo-
retical analyses, demonstrating that CTDE’s training process
can be achieved using agents’ individual targets. Building on
this insight, we introduce a novel method to combine intrin-
sic rewards and CTDE. Extensive experiments on challenging
tasks in SMAC and GRF benchmarks showcase the improved
performance of our method.

Introduction
Cooperative multi-agent reinforcement learning (MARL) al-
gorithms have shown the great capacity and potential to
solve various real-world multi-agent tasks, such as auto-
matic vehicles control (Sallab et al. 2017; Zhou et al. 2020b),
traffic intelligence (Cao et al. 2012; Mushtaq et al. 2023;
Wiering et al. 2000), resource management (Motlaghzadeh
et al. 2023; Sallab et al. 2017), game AI (Berner et al. 2019;
Lin et al. 2023) and robot swarm control (Dahiya et al. 2023;
Hüttenrauch, Šošić, and Neumann 2017). In a cooperative
multi-agent system (MAS), every agent relies on their lo-
cal observation to cooperate toward a team goal and the
environment feedbacks a shared team reward. There exist
two major challenges in cooperative MAS: partial observ-
ability and scalability. Partial observability refers to the fact
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Figure 1: The illustration of the consistent action tendency.
In (a) and (b), our agents’ health value is lower than the
enemies’. At this point, attacking either Enemy 1 or 2 si-
multaneously are the two best team policies. In (a), Agent 1
and Agent 2 attack enemies separately without agreeing on
a team policy. On the contrary, agents in (b) achieve a con-
sistent goal policy and agree to attack a common enemy. To
reflect the policy consistency among agents, we propose the
concept of action tendency. It reflects the policy distribution
of agents toward different actions. We propose this action
tendency notion to distinguish it from policy, which is usu-
ally the epsilon-greedy of Q functions only concerning the
largest output in value-based approaches.

that agents can only access their local observations, result-
ing in unstable environments. Scalability refers to the chal-
lenge that the joint spaces of states and actions increase ex-
ponentially as the number of agents grows. To tackle these
issues, Centralized Training with Decentralized Execution
(CTDE) paradigm is proposed (Sunehag et al. 2017), which
allows agents to access the global state in the training stage
and take actions individually. Given the CTDE paradigm,
massive deep MARL methods have been proposed includ-
ing VDN (Sunehag et al. 2017), QMIX (Rashid et al. 2020),
QTRAN (Son et al. 2019), QPLEX (Wang et al. 2020b) and
so forth. Their excellent performance can be attributed to
the credit assignments, as rewards are critical as the most di-
rect and fundamental instructional signals to drive behaviors
(Silver et al. 2021; Zheng et al. 2021; Mguni et al. 2021).

However, it turns out that the sparse team rewards pro-
vided by many MAS environments cannot supply sufficient
guidance for coordination behaviors, which results in inef-
ficient training (Matignon, Laurent, and Le Fort-Piat 2012).
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We analyze the QMIX training process and realize that nu-
merous unsuccessful episodes are caused by the inconsis-
tency of team policy goals among agents like Figure 1 (a).
Among these episodes, each agent’s action tendency is not
unified to the same global policy. We argue that the reward
in MAS is the most essential instructional signal to drive be-
haviors and ascribe agents’ action tendency inconsistency to
CTDE’s lack of sufficient team consensus guidance signals.

An effective solution to this challenge is to add intrin-
sic rewards into the CTDE paradigm. There exist two ma-
jor problems: how to design an intrinsic reward to guide
agents’ unified action tendency and how to integrate the in-
trinsic rewards into the CTDE framework? In MARL, there
are plenty of works designing intrinsic rewards including
curiosity-based incentives (Böhmer, Rashid, and Whiteson
2019; Hernandez-Leal, Kartal, and Taylor 2019; Iqbal and
Sha 2019; Zhang et al. 2023), the mutual influence among
agents (Chitnis et al. 2020; Jaques et al. 2019; Wang et al.
2019) and other specific designs (Strouse et al. 2018; Ma
et al. 2022; Mguni et al. 2021; Du et al. 2019). However,
most of them are designed to enhance exploration and em-
ployed in independent training ways, which suffer from un-
stable dynamics of environments. To ease the latter prob-
lem, EMC (Zheng et al. 2021) proposed a curiosity-driven
intrinsic reward and incorporated it into the CTDE training
paradigm. Yet it averages the calculated intrinsic rewards
and directly adds them to the global team reward, which re-
sults in losing the diversity of the intrinsic reward’s adjust-
ment toward credit assignments for each agent.

In this work, we propose our novel Intrinsic Action Ten-
dency Consistency for the cooperative multi-agent rein-
forcement learning method. We hope to design intrinsic re-
wards on the basis of CTDE, so as to achieve consistent team
policy goals among agents in the training process. Specifi-
cally, we first propose an action model to predict the central
agent’s action tendency. We define our intrinsic reward as the
surrounding agents’ action tendency prediction error toward
the central agents. It encourages the central agent to take ac-
tions matching the prediction of their neighbors. After that,
we propose theoretical analyses on CTDE and convert it into
an equivalent variant, RA-CTDE. To appropriately utilize N
intrinsic rewards like IQL (Tan 1993) training paradigm, we
equivalently transform the original global target of CTDE
into N ones. At last, we incorporate our action model based
intrinsic reward into RA-CTDE and denote it by IAM. We
integrate our method into QMIX and VDN, and conduct ex-
tensive experiments in StarCraft II Micromanagement envi-
ronment (Samvelyan et al. 2019) (SMAC) and Google Foot-
ball Research environment (Kurach et al. 2020) (GRF). Em-
pirical results verify that our method achieves competitive
performance and significantly outperforms other baselines.

Key contributions are summarized as follows: 1) We pro-
pose an action model based intrinsic reward measured by
predicting the central agent’s action tendency. 2) From a the-
oretical perspective, we address the issue of CTDE being un-
able to utilize the intrinsic rewards directly and consequently
embed our intrinsic rewards into it. 3) By incorporating our
method into QMIX and VDN, we demonstrate IAM’s com-
petitive performance on challenging MARL tasks.

Background
Dec-POMDP
A fully cooperative multi-agent task can be formulated
as a Decentralized Partially Observable Markov Deci-
sion Process (Dec-POMDP) (Oliehoek and Amato 2015),
which is an augmented POMDP formulated by a tuple
M =< N ,S, (Oi)i∈N , (Ai)i∈N ,O,P,R, ρ0, γ >, where
every agent can only access the partial state of the envi-
ronment and takes actions individually. Specifically, we de-
note N = {1, ..., N} as the set of agents, where N is the
number of agents, S as the global finite state space, Oi as
the partial observation of the state, obtained by the func-
tion O(s, i)|s∈S , and Ai as the action space respectively.
γ ∈ [0, 1) is a discount factor and ρ0 : S → R is the distri-
bution of the inital state s0. The state transition probability
function of the environment dynamics is P : S ×A× S →
[0, 1] where A := ×N

i=1Ai is the joint action space selected
by all agents. Due to the partial observable setting, every
agent takes its observation-action history τi ∈ {Ti}Ni=1 ≡
(Oi × Ai)

∗ × Oi as the policy input to acquire more infor-
mation. After agents taking their joint actions a : {ait}Ni=1,
the environment returns a team shared extrinsic reward rext

by function R(S,A): S ×A → R . We define the stochas-
tic policy of agent i by πi(ai|τi) : Ti × Ai → [0, 1],
the multi-agent system algorithms are designed to find op-
timal policies π∗ = {π∗

i }Ni=1 to maximize the joint extrinsic
value function V π(s) = Es0,a0,... [

∑∞
t=0 γ

trextt |π], where
s0 ∼ ρ0(s0),π = {πi}Ni=1.

Centralized Training with Decentralized Execution
The primary challenge for MAS tasks is that agents can
only access partial observation and are incapable to ac-
quire the global state, to which an effective solution is
the CTDE training paradigm (Bernstein et al. 2002). It al-
lows all agents to access the global state in the central-
ized training stage and take actions individually in a de-
centralized manner. Formally, it formulates N individual Q-
functions {Qi(τi, ai; θi)}i∈N where θi is the network pa-
rameter for agent i. Meanwhile, it simultaneously preserves
a joint action-value function Qtot(τ ,a) constructed by in-
dividual Q functions to help training. In detail, the objec-
tive of CTDE is to get an optimal joint action-value function
Q∗

tot(s,a) = rext(s,a) + γEs′ [maxa′ Q∗
tot(s

′,a′)]. In the
centralized training stage, Q-functions {Qi}i∈N are trained
by minimizing the following target function:

LG(θ, ϕ)=E
[
r+γmax

a′
QT(τ

′, a′)−Qtot(τ, a;θ,ϕ)
]2

(1)

Qtot(τ, a;θ, ϕ) = F (Q1(τ1, a1),...,QN (τN, aN ), s;ϕ) (2)

where τ = {τi}Ni=1,a= {a}Ni=1,θ = {θi}Ni=1, ϕ is the pa-
rameters of the mixing network F , and D is the replay
buffer. {τ, a, r, τ ′} ∼ D. QT denotes the expected re-
turn target function for the estimation of the global state-
action pair. The gradients of θ are calculated through func-
tion F , which factorizes global Qtot function into decen-
tralized ones {Qi}Ni=1, motivating enormous efforts to find
factorization structures among them (Sunehag et al. 2017;
Rashid et al. 2020; Wang et al. 2020b).
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Figure 2: IAM-based reward. The blue and green zones represent the receptive field of the central agent and surrounding agents.
The action model intrinsic reward is high when agent i takes actions that match their surrounding agents’ predictions.

Related Works
Many of the intrinsic reward functions used in MARL have
been adapted from single agent curiosity-based incentives
(Hernandez-Leal, Kartal, and Taylor 2019; Iqbal and Sha
2019; Jaques et al. 2019), which aimed to encourage agents
to explore their environment and seek out novel states. To
better be applied in MARL, Some MARL-specific intrin-
sic reward functions have been proposed, including con-
sidering the mutual influence among agents (Chitnis et al.
2020; Jaques et al. 2019; Wang et al. 2019), encouraging
agents to reveal or hide their intentions (Strouse et al. 2018)
and predicting observation with alignment to their neighbors
(Ma et al. 2022). Besides, Intrinsic rewards without task-
oriented bias can increase the diversity of intrinsic reward
space, which can be implemented by breaking the extrinsic
rewards via credit assignment (Du et al. 2019) or using adap-
tive learners to obtain intrinsic rewards online (Mguni et al.
2021). Apart from independent manners to dealing with re-
wards, EMC (Zheng et al. 2021) proposed a curiosity-driven
intrinsic reward and introduce an integration way to accom-
plish the CTDE training paradigm.

Method
In this section, we present our Intrinsic Action Tendency
Consistency for cooperative MARL denoted by IAM (In-
trinsic Action Model). Our purpose is to design an effective
intrinsic reward to encourage consistent action tendencies
and leverage it into CTDE in an appropriate manner. Specif-
ically, we first introduce our action model based intrinsic
reward, which encourages the central agent to take actions
consistent with its neighbors’ prospects. Then we propose a
reward-additive equivalent variant of the CTDE framework
denoted by RA-CTDE to incorporate our rewards reason-
ably. At last, we analyze the essential difference between
VDN (Sunehag et al. 2017) and IQL (Tan 1993) and then
demonstrate the reasonability of our reward integration way.

Action Model Based Intrinsic Reward
For a better interpretation, we first give the following defi-
nitions: As shown in Figure 2, when considering a specific
Agent i, we define it as the central agent. Due to the partial
observability of the environment, agents that are observable
in the surrounding area of Agent i are defined as the sur-
rounding agents and we denote the set as S(i). During the
training process, we hope that every central agent i will take
into account its surrounding agents’ expectations toward i’s
policy distribution. We denote its policy distribution by the
action tendency, which represents the relative magnitude of
an agent’s inclination to take different actions.

Reward Calculation In a discrete action space, agent i’s
action tendency can be reflected from two different per-
spectives. From the viewpoint of the central agent i, its ac-
tion tendency can be represented by its Qi function. From
the viewpoint of i’s surrounding agents, we define the ac-
tion models {FAM

i }Ni=1 to allow them to predict the central
agent’s action tendency. FAM

i is designed to utilize the same
network structure as Qi function. Their representation dis-
tance of action tendency reflects the central agent’s consis-
tency degree towards the surrounding agents’ expectation.
Therefore we formulate this distance as an action model
based intrinsic reward, i.e. {rAM

i }Ni=1.

oij = Fim(oi, j) (3)

rAM
i =

−1

|S(i)|
∑

j∈S(i)

Dis
(
FAM

i (oij ,· ;ωi)−Qi(oi, ·)
)

(4)

The reward calculation process is illustrated in Figure 2
and Eq 3, 4. During the training phase, every agent first
calculates its imagined surrounding agents’ observations,
then utilizes its Q function and action model to measure
the action tendency distance, and finally obtains its action
model based intrinsic reward rAM

i . The imagine function
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Figure 3: IAM training paradigm. The training paradigm consists of two stages: (a) Forward stage and (b) Backward stage.
In the forward stage, we use mixing network F , Qtot, r

ext and QT in Eq. 1 to calculate global TD-error target LG, which is
the same as CTDE. In the backward stage, we first factorize LG into N targets {LE

i }Ni=1 by Eq 6 and 7, then add intrinsic
rewards into them individually to obtain IAM targets: {LIAM

i }Ni=1. The gradients of {θi}Ni=1 and ϕ are separately computed by
backpropagating N targets {LIAM

i }Ni=1.

Fim(oi, j) in Eq 3l is defined to represent the surround-
ing agents’ simulated observation imagined by the central
agent i. The imagining process is realized by switching
the viewpoints from the central agent into the surrounding
agents, i.e., separately setting the positional coordinates of
every surrounding agent as the origin to calculate the co-
ordinates of the other agents attached with additional in-
formation, which does not require any learning parameters
(more details in the Appendix). In experiments, we use the
L2 distance as the Dis function. Under this reward setting,
agents are encouraged to take actions consistent with their
surrounding agents’ prospects.

Q
(t+1)
i (τi,ai)= E

(τ ′
−i,a

′
−i)∼pD(·|τi)

[
y(t)

(
τi ⊕ τ ′−i, ai⊕a′−i

)]
︸ ︷︷ ︸

evaluation of the individual action ai

− n− 1

n
E

τ ′,a′∼pD(·|Λ−1(τi))

[
y(t) (τ ′,a′)

]
︸ ︷︷ ︸

counterfactual baseline

+ wi (τi)︸ ︷︷ ︸
residue term

(5)

Action Model Training To obtain FAM , we use Qi func-
tion values as supervised targets. This choice is reasonable
based on the following insight: The individual Qi value in-
corporates interaction information of other agents to agent
i, not just only the agent i’s own action tendencies with lin-
ear value factorization. In VDN training paradigm, the indi-
vidual Qi function can be factorized into Eq 5’s form (Wang
et al. 2020a), where pD(·|τi) denotes the conditional empir-

ical probability of τi in the given dataset D , the notation
τi
⊕

τ ′−i denotes < τ ′1, ..., τ
′
i−1, τi, τ

′
i+1, ..., τ

′
n >, and τ ′−i

denotes the elements of all agents except for agent i.
In Eq 5, it is easy to see that the Qi function essentially

consists of three items, and the first two include the expecta-
tion of one-step TD target value over others. It indicates that
the Qi function value obtained in VDN includes the interac-
tive historical expectation toward other agents. Although this
analysis only applies to VDNs, we broaden the supervised
target Q functions to QMIX and also achieve effective per-
formance improvement. The pseudo-code of our algorithm
is interpreted in the Appendix.

Reward-Additive CTDE (RA-CTDE)
The contradiction for CTDE to utilize N intrinsic rewards is
that it has only one global target LG during training. How-
ever, IQL (Tan 1993) can directly use N different intrin-
sic rewards naturally because it obtains N TD-losses in-
dividually. Based on that, we first factorize the global tar-
get LG in Eq 1 into N individual ones and define it as
Reward-Additive CTDE (RA-CTDE). Then we demonstrate
its equivalence with the original target LG. At last, we dis-
cuss how to add intrinsic rewards to the RA-CTDE.

Definition 1. (Reward-Additive CTDE). Let θ = {θi}Ni=1
be the parameters of Q functions, F be the mixing net-
work in CTDE, N = {1, ..., N} be the agents set, QN =
{Q1(τ1, a1; θ1), Q2(τ2, a2; θ2), ..., QN (τN , aN ; θN )}, {τ ,a,
rext, τ ′} ∼ D, assume ∀i, j ∈ N , θi ̸= θj , then Reward-
Additive CTDE means computing {LE

i (θi, ϕ)}Ni=1 in Eq 6
and Eq 7 and then updating their parameters respectively.
The term P is not involved in the gradient calculation as a
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scalar. Formally:

LE
i (θi, ϕ) = Eτ ,a,rext,τ ′∈D

[
P · F(QN , s;ϕ)

]
(6)

P = −2
(
rext + γmax

a′
QT (τ

′, a′)−F(QN , s;ϕ)
)

(7)

We propose our reward-additive variant of the CTDE
framework RA-CTDE, where the QT (τ

′,a′) in Eq 7 is up-
dated by the target function of the mixing network F .1 We
consider that RA-CTDE is equivalent to the original CTDE
paradigm based on the following theorem.
Theorem 1. Let {θi}Ni=1 be the parameters of Q functions, ϕ
be the parameters of the mixing network F in CTDE, LG be
the global target in Eq 1, N = {1, ..., N} be the agents set,
QN={Q1(τ1, a1; θ1), Q2(τ2, a2; θ2), ..., QN (τN , aN ; θN )},
{τ ,a, rext, τ ′} ∼ D, assume ∀i, j ∈ N , θi ̸= θj , then
∀i ∈ N , the following equations hold:

∂LG(θ, ϕ)

∂θi
=

∂LE
i (θi, ϕ)

∂θi
(8)

∂LG(θ, ϕ)

∂ϕ
=

1

N

N∑
i=1

∂LE
i (θi, ϕ)

∂ϕ
(9)

The Theorem 1 is proved in the Appendix. According to
it, we draw the conclusion that the CTDE’s essence in up-
dating gradients of {θi}Ni=1 and ϕ is to calculate the global
target LG and then respectively perform N gradient back-
propagation steps for each agent. Therefore we can equiva-
lently factorize the global target LG into N individual ones
denoted by LE

i in RA-CTDE. The factorized target LE
i pro-

vides an interface for adding rewards and we exhibit the
reward-adding way based on the following corollary.
Corollary 1. Let {θi}Ni=1 be the parameters of Q functions,
N ={1, ..., N} be the agents set, LV DN

i be the LE
i ’s special

case of VDN, {τ ,a, rext, τ ′}∼D, assume ∀i, j ∈ N , θi ̸=
θj , then ∀i ∈ N :

LV DN
i (θ) = Eτ ,a,rext,τ ′∈D [Pi ·Qi(τi, ai; θi)] (10)

Pi=−2
(
rext+RV DN

i +γmax
a′

Q−
i (τ

′
i , a

′
i)−Qi(τi, ai)

)
(11)

RV DN
i =γmax

a′

N∑
j=1,j ̸=i

Q−
j (τ

′
j , a

′
j)−

N∑
j=1,j ̸=i

Qj(τj , aj) (12)

We consider the special case VDN (Sunehag et al. 2017)
and transform it into the RA-CTDE form, where the mixing
network F is the calculation of summing over all Qi func-
tions. On the basis of the Eq 10, 11, and 12 in Corollary 1,
we realize that VDN can be factorized into N targets like
IQL(Tan 1993). But the essential difference between VDN
and IQL (Tan 1993) is that the former adds certain intrinsic
rewards {RV DN

i }Ni=1 into {Pi}Ni=1. In other words, when
the RV DN

i are not incorporated in Eq 11, VDN fundamen-
tally boils down to IQL. The reward RV DN

i is incorporated

1Please note that although LE
i in 6 is the same across differ-

ent agents, their corresponding computed gradients are different,
which is detailed in the Appendix.

into the TD-error term Pi. We adopt the same reward-adding
form as VDN and extend it to the RA-CTDE framework.
Specifically, we choose to add the calculated intrinsic re-
wards with parameter β into N losses {LE

i }Ni=1 and get our
IAM targets in Eq 13, 14. The gradient of θi and ϕ can be ob-
tained by computing ∂LIAM

i (θi,ϕ)
∂θi

and 1
N ·

∑N
i=1

∂LIAM
i (θi,ϕ)

∂ϕ

respectively. Figure 3 shows our whole training paradigm.

LIAM
i (θi, ϕ) = Eτ ,a,rext,τ ′∈D

[
Pi · F(QN , s;ϕ)

]
(13)

Pi=−2
(
rext+βrinti +γmax

a′
QT (τ

′,a′)−F(QN, s;ϕ)
)

(14)

Though the training paradigm of IAM also uses N tar-
gets motivated by the reward-adding way like IQL, the tar-
get LIAM

i still contains other agents’ information and the
essence of IAM is an improved CTDE instead of an inde-
pendent training method.

Experiments
To demonstrate the high efficiency of our algorithm, we
exploit different environments to conduct a large number
of experiments, including StarCraft II Micromanagement
(SMAC) (Samvelyan et al. 2019), Google Research Football
(GRF) (Kurach et al. 2020) and Multi-Agent Particle Envi-
ronment (MPE) (Mordatch and Abbeel 2018). We conduct 5
random seeds for each algorithm and report the 1st, median,
and 3rd quartile results. Due to space limitations on pages,
we leave the MPE experiments in the Appendix.

Experiments Setup
StarCraft II Micromanagement The StarCraft Multi-
Agent Challenge (Samvelyan et al. 2019) is a popular bench-
mark in cooperative multi-agent environments, where agents
must form groups and work together to attack built-in AI en-
emies. The controlled units only access local observations
within a limited field of view and take discrete actions. At
each time step, every agent takes an action, and then the en-
vironment feedbacks a global team reward, which is com-
puted by the accumulative damage point to the enemies. To
evaluate the efficacy of different algorithms, we employ the
training paradigm as previous notable works (Du et al. 2019;
Zhou et al. 2020a) which utilizes 32 parallel runners to gen-
erate trajectories and store them into batches.

Google Research Football The Academy scenarios of the
Google Research Football environment (Kurach et al. 2020)
are inherently cooperative tasks that simulate partial football
match scenes. We use the Floats (115-dimensional vector)
observation setting including players’ coordinates, ball pos-
session, ball direction, active player, and game mode. The
GRF is a highly sparse reward benchmark because it only
feedbacks a global team reward r in the end, i.e., +1 bonus
when scoring a goal and -1 bonus when conceding one.

Performance Comparisons
To demonstrate the effectiveness of IAM, we combine it
with two representative CTDE algorithms: QMIX and VDN,
which represent two ways of value factorization, i.e., linear
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Figure 4: Performance comparisons for various maps in SMAC.

and non-linear. We denote them as QMIX-IAM and VDN-
IAM respectively. To compare the performance of differ-
ent rewards, we choose different types of reward-shaping
methods as baselines: (1) Curiosity-based intrinsic rewards
in EMC (Zheng et al. 2021). It’s a representative CTDE’s
reward-shaping method based on curiosity. To fairly com-
pare the impact of rewards, we remove its episodic memory
and incorporate it with VDN and QMIX denoted by VDN-
EmC and QMIX-EmC respectively. (2) Add world model
based reward (Ma et al. 2022) into RA-CTDE, denoted by
VDN-WM and QMIX-WM. (3) LIIR (Du et al. 2019) that
utilizes learned intrinsic rewards. The remaining baselines
are CTDE algorithms: (4) QPLEX. (5) Qatten. (6) QMIX.
(7) VDN. For ease of comparison, we separate the perfor-
mance comparison of QMIX-IAM and VDN-IAM, details
on the latter are demonstrated in the Appendix.

QMIX-IAM outperforms baselines. As shown in Fig-
ure 4, the performance of QMIX has been significantly
improved after using the action model based reward, and
QMIX-IAM outperforms other baselines in most scenar-
ios, especially on several very hard maps requiring strong
team cooperation. It indicates that the action model based
reward can encourage consistent policy behaviors among
agents and improve the performance of the CTDE algo-
rithm. When using the exploration-based reward alone,
QMIX-EmC only achieves performance improvements over
QMIX on 6h vs 8z and 3s vs 5z, which indicates that the
exploration-based reward lacks generalization for cooper-
ative tasks. Based on the world model intrinsic reward,
the performance of QMIX only has performance improve-
ments on 3s5z. This indicates that the world model based re-
ward cannot generalize well in complex scenarios for high-
dimensional observations and lacks in reflecting agents’ ac-
tion tendencies. Besides, QMIX-IAM also performs better

than prominent CTDE methods, i.e. QPLEX and Qatten.

Strengths of IAM
An explicable example of IAM’s impact. We visualize
an illuminating map 8m vs 9m in Figure 5, demonstrating
how the IAM improves QMIX’s performance by action ten-
dency consistency. Among 3 training policy stages, QMIX
takes the most samples to achieve Stage 2. The essential
reason is that agents cannot reach team unanimity when
attacking, causing their dispersion of firepower. Under the
guidance of our action model intrinsic reward, agents will
take the initiative to cultivate a tacit understanding of each
other’s action tendencies. Then agents can quickly achieve
the team’s consistent goal with only a few training samples,
thus greatly improving sample efficiency than QMIX.

IAM can also obtain improved performance in
highly sparse reward environments. To evaluate
IAM’s performance in deeply sparse reward environ-
ments, we choose two challenging tasks from GRF
including Academy run pass and shoot with keeper and
Academy pass and shoot with keeper. We choose QMIX
and VDN as baselines. As shown in Figure 6 (a) and (b),
our method can significantly enhance the performance of
QMIX and VDN, which indicates that IAM generalizes
well in sparse-reward environmental scenarios.

Ablation: Our proposed intrinsic reward outperforms
others when using RA-CTDE. In order to compare the
performance of different rewards added in RA-CTDE, we
compare IAM with additional baselines: (1) Add curiosity
based reward in EMC, denoted by VDN-C and QMIX-C.
(2) Add random network distillation(RND) reward into RA-
CTDE, denotedy VDN-RND and QMIX-RND. We conduct
these algorithms in 8m vs 9m and demonstrate results in
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Figure 5: A visualization example of IAM on 8m vs 9m. In this task, agents need to obtain a three-stage team policy to win.
In stage 1, agents need to be spread out to maximize the distraction of enemy attacks. In stage 2, agents need to maximize the
concentration of firepower on the same enemy and reduce the enemy’s numbers. In stage 3, agents need to escape quickly when
they are low on blood to avoid being attacked and increase survival time. Among them, stage 2 is the hardest to learn because
the agents need to cooperate to achieve the same policy target, i.e. action tendency consistency. (a), (b), and (d) represent three
team policy stages of QMIX-IAM. (d) exhibits the distributed fire against the enemy of QMIX.

Figure 6: Ablation experiments. (a) and (b) show the performance comparison in two scenes of GRF. (c) and (d) exhibit the
performance comparison in RA-CTDE combined with different rewards.

Figure 6. Both VDN-IAM and QMIX-IAM outperform oth-
ers which implies that predictive information about action is
beneficial for cooperation. Besides, after using RA-CTDE,
all these intrinsic rewards have achieved performance im-
provements, indicating that the way RA-CTDE uses intrin-
sic rewards is reasonable and provides a new direction for
CTDE to utilize intrinsic rewards. Besides, Exploration-
based rewards don’t perform as well as the action model
based rewards, which indicates that the RA-CTDE frame-
work can use different intrinsic rewards but the cooperative
intrinsic rewards perform better than the exploration one in
cooperative multi-agent systems.

Besides the aforementioned experiments, we also conduct
ablation experiments to demonstrate the outperformance of
RA-CTDE’s reward-adding manner and RA-CTDE’s equiv-
alence to CTDE, which are detailed in the Appendix.

Conclusions and Limitations

We find that the CTDE algorithm suffers from low sam-
ple efficiency and attribute it to the team consensus incon-
sistency among agents. To tackle this problem, we design
a novel intrinsic action model based reward and transform
the CTDE into an equivalent variant, RA-CTDE. Then we
use a novel integration of intrinsic rewards with RA-CTDE.
Since our action model intrinsic rewards can boost consis-
tent team policy and our proposed RA-CTDE can flexibly
use calculated intrinsic rewards, our method shows signifi-
cant outperformance on challenging tasks in the SMAC and
GRF benchmarks. The limitations of our work are that we
did not consider environments with continuous state-action
space and did not make specific designs for heterogeneous
agents. For future work, we will conduct additional research
in the aforementioned directions.
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Böhmer, W.; Rashid, T.; and Whiteson, S. 2019. Exploration
with unreliable intrinsic reward in multi-agent reinforcement
learning. arXiv preprint arXiv:1906.02138.
Cao, Y.; Yu, W.; Ren, W.; and Chen, G. 2012. An overview
of recent progress in the study of distributed multi-agent co-
ordination. IEEE Transactions on Industrial informatics,
9(1): 427–438.
Chitnis, R.; Tulsiani, S.; Gupta, S.; and Gupta, A. 2020.
Intrinsic motivation for encouraging synergistic behavior.
arXiv preprint arXiv:2002.05189.
Dahiya, A.; Aroyo, A. M.; Dautenhahn, K.; and Smith, S. L.
2023. A survey of multi-agent Human–Robot Interaction
systems. Robotics and Autonomous Systems, 161: 104335.
Du, Y.; Han, L.; Fang, M.; Liu, J.; Dai, T.; and Tao, D. 2019.
Liir: Learning individual intrinsic reward in multi-agent re-
inforcement learning. Advances in Neural Information Pro-
cessing Systems, 32.
Hernandez-Leal, P.; Kartal, B.; and Taylor, M. E. 2019.
Agent modeling as auxiliary task for deep reinforcement
learning. In Proceedings of the AAAI conference on arti-
ficial intelligence and interactive digital entertainment, vol-
ume 15, 31–37.
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