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Abstract

Research on emergent communication has recently gained
significant traction as a promising avenue for the linguistic
community to unravel human language’s origins and explore
artificial intelligence’s generalization capabilities. Current re-
search has predominantly concentrated on recognizing qual-
itative patterns of object attributes(e.g., shape and color) and
paid little attention to the quantitative relationship among
object quantities which is known as the part of numerical
concepts. The ability to generalize numerical concepts, i.e.,
counting and calculations with unseen quantities, is essential,
as it mirrors humans’ foundational abstract reasoning abil-
ities. In this work, we introduce the NumGame, leveraging
the referential game framework, forcing agents to commu-
nicate and generalize the numerical concepts effectively. In-
spired by the human learning process of numbers, we present
a two-stage training approach that sequentially fosters a rudi-
mentary numerical sense followed by the ability of arithmetic
calculation, ultimately aiding agents in generating semanti-
cally stable and unambiguous language for numerical con-
cepts. The experimental results indicate the impressive gen-
eralization capabilities to unseen quantities and regularity of
the language emergence from communication.

1 Introduction
Research on emergent communication has gained
widespread attention in recent years (Lazaridou,
Peysakhovich, and Baroni 2016; Choi, Lazaridou, and
de Freitas 2018; Conklin and Smith 2023). It primarily
involves using deep neural networks to simulate commu-
nication among multiple agents to complete collaborative
tasks. From linguistics and cognitive psychology perspec-
tives, studying emergent communication can provide a new
experimental method and may validate specific linguistic
and cognitive hypotheses quickly (Chaabouni et al. 2019;
Rita, Chaabouni, and Dupoux 2020). From the standpoint
of artificial intelligence, the language emergence from
communication can help agents generalize on cooperative
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tasks better (Mu and Goodman 2021; Xu, Niethammer, and
Raffel 2022).

The ability to generalize numerical concepts, i.e., count-
ing and calculating on unseen quantities, is essential. Ac-
cording to linguistics and cognitive psychology, this abil-
ity is considered foundational for human abstract reason-
ing (Gelman and Gallistel 1986; Wiese 2003). Natural lan-
guage possesses a comprehensive numerical system that al-
lows humans to describe the number of objects accurately,
concisely, and efficiently (Hiraiwa 2017). Furthermore, hu-
mans can perform more complex mathematical operations
based on numerical concepts and digits, constructing a com-
plete arithmetic system (Dehaene 2011). However, previous
research has focused chiefly on recognizing qualitative pat-
terns of object attributes(e.g., shape and color) (Kottur et al.
2017; Kuciński et al. 2021) and paid little attention to the
agents’ numerical concepts. It remains challenging to help
agents understand the quantitative relations between num-
bers (i.e., quantities) through emergent communication.

In this work, we introduce the NumGame, leveraging the
referential game framework (Lazaridou, Peysakhovich, and
Baroni 2016), where agents are mandated to communicate
and generalize their comprehension of numerical concepts
proficiently. Specifically, agents are tasked with generaliz-
ing (in a few-shot learning manner) over unseen quantities
via emergent communication in NumGame, encompassing
two core tasks: Counting and Calculating. In the Count-
ing task, agents must precisely evaluate unseen quantities
of objects. In the Calculating task, agents face the chal-
lenge of deducing arithmetic relations (including addition,
subtraction, and maximization) among unseen quantities.
Both tasks in NumGame require the agents to understand
rather than mechanically memorize quantities and their rela-
tions, making the agents’ training difficult to converge effec-
tively. Drawing inspiration from the human learning process
of numbers(Wiese 2003; Hiraiwa 2017), we present a two-
stage training approach comprising NumSen and NumRel.
In this approach, we first employ the NumSen method to
foster a rudimentary numerical sense of the agents. Then, we
guide the agents to gain a foundational understanding of ba-
sic arithmetic relations between numbers within a specified
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range by the NumRel method. This progression ultimately
enables the agents to generate language that expresses nu-
merical concepts semantically stable and unambiguously
and facilitates the generalization over unseen quantities and
the arithmetic relations among them.

To quantitatively evaluate the effectiveness of our meth-
ods, we focus on natural language as the target and use gen-
eralization ability and regularity of the emergent language as
two metrics to assess the agents’ understanding of numeri-
cal concepts. We also visualize the language distribution af-
ter convergence to help readers better understand its struc-
ture. Ultimately, the experimental results demonstrate that
by using the two-stage (i.e., NumSen and NumRel) training
approach:

• (Section 7.2) The agents can accurately generalize over
unseen quantities in the Counting task.

• (Section 7.3) The agents can perform basic calculations
on unseen quantities in the Calculating task.

• (Section 7.4) Furthermore, the emerged messages be-
tween agents exhibit a solid order relation.

2 Related Work
Human numerical Concepts. Compared to other ani-
mals, humans have a remarkable grasp of numerical con-
cepts(Hauser, Carey, and Hauser 2000; Drucker and Bran-
non 2014). Only humans possess the ability to use a fi-
nite set of numerical symbols to precisely describe quanti-
ties of objects and perform calculations using numbers(Pica
et al. 2004; Butterworth 2005; Dehaene 2011). The concept
of number is highly significant for humans (Conant 1896;
Dehaene 2011) and is considered the foundation of human
abstract reasoning and symbolic thinking ability (Gelman
and Gallistel 1986; Wiese 2003; Feigenson, Dehaene, and
Spelke 2004; Coolidge and Overmann 2012).

Many research works suggest that humans’ precise grasp
of the number concept arises from two main factors: num-
ber sense (Wiese 2003; Pica et al. 2004; Dehaene 2011) and
human language (Hauser, Chomsky, and Fitch 2002; Wiese
2007; Hiraiwa 2017). Number sense can be divided into two
parts: (1) the ability to recognize small quantities exactly,
and (2) the ability to approximately recognize the mag-
nitudes of larger quantities (Dehaene 2011). Even in pre-
linguistic eras, humans possessed number sense, and many
animals also exhibited similar numerical abilities (Wiese
2003; Dehaene 2011). However, no animal possesses nu-
merical abilities as powerful as humans do. Therefore, hav-
ing number sense alone is insufficient; human language also
plays a crucial role in the development of numerical con-
cepts(Hiraiwa 2017). Human language is a unique commu-
nication system based on the recursive combination of a
finite set of symbols (Berwick and Chomsky 2016). This
unique property of the language may be another fundamen-
tal basis for the infinite expressive capacity of the human
numerical system (Dehaene 2011).

Inspired by these insights, we incorporate number sense
and language into the process of intelligent agents learning
numerical concepts.

Emergent Communication. Using the Lewis signaling
Game to research communication emergence in multi-agent
systems has recently drawn more interest (Lewis 1969).
Classified by motivation, some previous studies focus on
how cognitive or social science views shape emergent com-
munication, such as population heterogeneity(Chaabouni
et al. 2019), linguistic complexity (Tucker et al. 2022), and
efficiency of language(Chaabouni et al. 2019). Other pre-
vious studies focus on how to improve the quality of the
emerged languages, such as compositionality (Conklin and
Smith 2023), generalization (Xu, Niethammer, and Raffel
2022; Mu and Goodman 2021), and transferability on down-
stream tasks(Chaabouni et al. 2022).

In these works, the agents are required to extract and con-
vey qualitative concepts, such as the object’s shape, color,
or location in the image. However, these works missed the
language emergence of quantitative numerical concepts. For
example, (Feng, An, and Lu 2023) constructs a multi-object
environment that primarily centers on the positional rela-
tions among objects yet maintains a qualitative perspective.
(Guo et al. 2019) differentiates the target and distractors
based on the number of objects. Yet, in that approach, num-
bers are merely treated as classification labels and do not
capture the intrinsic relations among them.

In this work, we delve into the quantitative con-
cepts—the numerical concepts—and explore arithmetic re-
lations among numbers. We propose a scenario in which
agents are required to count and calculate quantities, which
will compel them to comprehend the internal relations be-
tween quantities. We also propose the two-stage training
method to facilitate their understanding of the numerical
concepts.

3 Environment
Based on the referential game, we propose a new game
called NumGame, where the agents are required to commu-
nicate the number concept to complement the game. Ad-
ditionally, we have developed a new dataset called Num-
World Dataset to evaluate the agents’ performance. In this
section, we will introduce the NumGame and the NumWorld
Dataset.

3.1 NumGame
Figure 1 illustrates the basic setup of NumGame. In the
NumGame, there are two agents involved: a speaker S and a
listener L. The objective of the game is Counting or Calcu-
lating the number of objects in the images through commu-
nication and cooperation between agents.

Figure 1a shows the Counting task, where the speaker
is presented with an image denoted as I , containing n ob-
jects of the same category, where n ∈ N . Subsequently, the
speaker generates a message M = {m1, ...,ml} based on
the quantity of the objects in the image. Specifically, M is
a sequence of l discrete symbols, where each symbol mi

is a one-hot vector of size v, and v is the size of vocab-
ulary V . We regard the message M as an emergent number
like natural numbers in human language. The listener, on the
other hand, receives the message M and uses it to make an
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(b) The Calculating task.

Figure 1: The NumGame tasks, requiring the agents Count-
ing or Calculating the quantities of objects.

informed guess denoted as n′ about the number of objects
in the image I . If the listener’s guess aligns with the actual
quantity, i.e., n = n′, the game is considered successful;
otherwise, it is deemed as failed.

The Calculating task is similar to the Counting task, with
the main difference being that it requires the agents to per-
form arithmetic calculations on the quantities represented by
two images. Figure 1b illustrates the process of the agents
collaborating to complete an add task. The speaker is pre-
sented with two images and an arithmetic calculations sym-
bol, then generates a message M ′ describing this arithmetic
expression and passes it to the listener. The structure of the
listener is the same as that of the Counting task – it needs to
deduce the final result of the calculation from the message.

We focus on the generalization ability of the agents in
the NumGame. Specifically, we are interested in the agents’
ability to generalize to unseen quantities. To this end, we
will train the agents on a subset of N and evaluate their per-
formance on the remaining unseen quantities.

3.2 NumWorld Dataset
The NumWorld Dataset is developed based on the Shape-
World dataset (Kuhnle and Copestake 2017), which serves
as a synthetic dataset for visual reasoning. Within the Num-
World dataset, each sample is represented as a tuple (I, n),
where I is an image containing n objects of the same cate-
gory, all set against a black background. The image’s reso-
lution is 128 × 128, and the quantity n varies from 1 to 32.
Each object in the dataset possesses 2 controllable attributes:
Shape and Color. Both attributes have 5 possible values,
and these attribute values jointly determine the category of
the object. Additionally, the objects’ locations and orienta-
tions are randomly generated within each image and are non-
overlapping to ensure unambiguous counting. Moreover, as
the number of objects increases the size of the objects di-
minishes, ensuring that the total pixel area remains approxi-
mately constant across all images.

The collection of all possible values for n is denoted as
N = {1, 2, ..., 32}. Importantly, the quantity n encompasses
distinct ranges across diverse training and testing stages.
We have defined three distinct sub-datasets: Sen, Lang, and
OOD, each encompassing distinct quantity ranges for spe-
cific purposes (refer to Section 6.1 for comprehensive infor-
mation).

4 Method
Drawing inspiration from the human learning process of
numbers, we propose a two-stage training approach com-
prising NumSen and NumRel in this section.

4.1 NumSen: Pretrain the Number Sense
Number sense is a crucial ability for humans to approximate
the number of objects even before language acquisition. As
a result, we believe it is essential to pretrain the speaker’s
number sense before initiating language training.

We formulate the number sense pretraining as a vision-
only process for the speaker. The vision encoder of the
speaker takes an image I as input and generates a feature
vector f . Subsequently, a projection head is employed to
predict the quantity n of objects present in the image. Fol-
lowing pretraining, the vision encoder of the speaker will be
utilized in the language training phase, while the projection
head will be discarded.

Based on previous linguistics research (Wiese 2003), hu-
man number sense exhibits distinct responses to smaller
quantities (subitizing, typically less than or equal to 4) and
larger quantities (magnitude estimation, usually greater than
4). As a result, we divide the quantity n used for pretraining
into two segments: n ≤ 4 and n > 4. For the n ≤ 4 segment,
we employ all possible quantities N ′

0 = 1, 2, 3, 4 to train the
speaker’s subitizing ability. For the n > 4 segment, we use a
subset N ′′

0 = 8, 16, 32 to train the ability to recognize larger
quantities. The choice of using only powers of 2 for training
the magnitude estimation ability is motivated by our desire
for the agent’s number sense to closely resemble that of hu-
mans, which typically cannot precisely recognize all larger
numbers. Consequently, the quantity n used for pretraining
is N0 = N ′

0 ∪N ′′
0 = 1, 2, 3, 4, 8, 16, 32.

4.2 NumRel: Learn Relations between Numbers
Language is a powerful tool for humans to communicate
about numbers. Based on this, we also train the agents to use
language (emerging from communication) to communicate
numerical concepts. If we only train the agents to commu-
nicate a single quantity, then each quantity would be essen-
tially treated as a classification label, and the speaker does
not need to understand the actual meaning of the numbers
or the relations between them. Consequently, training the
agents in this manner would not lead to a genuine under-
standing of the numerical concepts.

Considering how humans learn numbers, simple calcula-
tions (e.g., addition and subtraction) play a crucial role in
fostering a better understanding of numerical concepts. To
address this, we propose a novel approach called NumRel

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17611



M1

Listener

n'

I1

n1 = 2

Speaker

n2 = 5

I2

M2

M

Figure 2: The NumRel training process. The speaker re-
ceives two images I1 and I2 and generates corresponding
M1 and M2. These messages and an operator o are then con-
catenated to form the final message M . The listener receives
this message and outputs a guess, n′, representing the result
of the operation n1 o n2.

to train the agents. The NumRel method involves perform-
ing simple arithmetic calculations within a specified quan-
tity range during training, which aids the agents in under-
standing the relations between numbers and then grasping
the numerical concepts.

Figure 2 illustrates the NumRel setup. In NumRel, two
samples, (I1, n1) and (I2, n2), are randomly selected from
the original dataset and combined to form a single sample
denoted as (I1, I2, n1, n2). A random operator o is then cho-
sen from a predefined set of operators, and the target number
n is calculated as the result of the operation n1 o n2. Conse-
quently, the sample is further represented as (I1,2, n1 o n2).
The speaker generates two distinct messages, M1 and M2,
corresponding to I1 and I2, respectively. These messages
and the operator o are concatenated to form the final mes-
sage M . Subsequently, the listener receives the message M
and outputs a guess denoted as n′ concerning the result of
the operation n1 o n2.

It is essential to note that the result n of the operation
n1 o n2 shares the same range as the original quantities
n1 and n2. This design ensures that the Out-of-Distribution
(OOD) test remains equitable and fair.

5 Model
As shown in Figure 3, the entire model consists of two com-
ponents: speaker and listener. In NumGame G, the speaker
takes an image I as input and generates a conditional dis-
tribution over messages pS(M |I), and the listener takes
the message M and outputs a distribution over quantities
pL(n′|M). In the following, we will introduce the architec-
ture of each component and the optimization method.

Speaker. The speaker takes an image I as input and en-
codes it into an embedding ES using a ResNet-50 (He et al.
2016) vision encoder fS

vis , i.e., ES = fS
vis(I). Then, a GRU

(Chung et al. 2014) message decoder fS
lang takes embedding

ES as initial hidden state hS
0 to generate a sequence of dis-

tribution over tokens pS(M |hS
0 ) =

∏
i p

S(mi|m<i). The
discrete message M is sampled from the distribution.

Listener. The listener takes the message M as input and
encodes it into a message embedding EL using a GRU mes-
sage encoder fL

lang , where EL is the last hidden state hL
|M |.

Gumbel 
Softmax 

Vision 
Encoder

Language 
Decoder 

(a) Speaker’s model architecture.
Language 
Encoder 

Projection

(b) Listener’s model architecture.

Figure 3: The model architecture of the speaker and listener.
M is a message corresponding to the image input I . M ′ can
be a single message or a message-operator-message concate-
nation generated by the speaker.

The embedding EL is then fed into a projection module
fL
proj to generate a distribution over quantities pL(n′|EL) =

Softmax(fL
proj(E

L)).

Optimization. Because the number of objects n is dis-
crete, we model the task of predicting the quantity n as a
classification problem. The listener’s output pL(n′|M) is a
distribution over all possible quantities n′ ∈ {0, 1, 2, ..., N},
where N is the maximum number of objects. The model’s
parameters are optimized by maximizing the likelihood of
the correct quantity n given the image I .

However, if we treat n merely as a one-hot categorical
label, just as it’s done in standard classification tasks, the
agents would not understand the numerical concepts effec-
tively. The reason is that the one-hot label cannot reflect
the semantic similarity between different numbers which is
a core aspect of numerical concepts. For example, the la-
bel n = 1 is semantically more similar to n = 2 than to
n = 10. To address this problem, we use the soft label tech-
nique (Diaz and Marathe 2019) to train the listener. It con-
verts the original label n into a soft probability distribution
ñ = SoftLabel(n) = (s0, s1, .., sN ), where N is the max-
imum number and

si =
e−ϕ(i,n)∑N
j=0 e

−ϕ(j,n)
(1)

ϕ(i, n) is a distance function between the number i and n,
which could be absolute or squared distance. In conclusion,
the final form of the loss is:

L(G) = −E[log pL(ñ|M)],m ∼ pS(M |I) (2)

Now, this formulation could be regarded as an ordered dis-
crete regression problem, which is consistent with our quan-
tity prediction task.

To make the training process end-to-end differentiable,
we use the Gumbel-Softmax relaxation (Jang, Gu, and Poole
2017) with a temperature τ , which is a continuous relaxation
of the discrete distribution during training. When testing,
we use the argmax function to get the discrete distribution
from the continuous distribution.
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6 Experimental Setup
Our model implementation and training process are based
on the PyTorch (Paszke et al. 2019) framework and partially
adapted from the EGG (Kharitonov et al. 2019) toolkit.

6.1 Dataset Preparation
Based on the ShapeWorld dataset (Kuhnle and Copestake
2017), we generate the NumWorld dataset, which consists
of three sub-datasets with different ranges of quantities for
different training stages:

• Sen. N0 = {1, 2, 3, 4, 8, 16, 32}. The Sen dataset is used
to train the number sense of the speaker. The range of n
is N0. The reason for setting N0 in this way is explained
in Section 4.1. Because the Sen is used to pretrain the
vision module to recognize each distinct quantity, there
are only images and the corresponding labels in it.

• Lang.. N1 = N \ {10, 13, 15, 18, 20, 23, 25, 28, 30}.
During the stage of using language, we only use the sub-
set N1 of N to train agents to communicate numerical
concepts through discrete language. There are images,
labels, and additional calculation expressions in it.

• OOD. N2 = {10, 13, 15, 18, 20, 23, 25, 28, 30}. We use
the remaining subset N2 of N to evaluate the agents’
generalization ability on OOD tasks. Notably, the quan-
tities in N2 are not seen in the two training stages, i.e.,
N2 ∩ N0 = ∅ and N2 ∩ N1 = ∅. Considering zero-shot
learning may be more challenging, we give the agents
fewer samples with n ∈ N2 to train on before evaluation,
i.e., few-shot learning. There are also images, labels, and
calculation expressions in it.

Each sub-dataset contains both a training set and a valida-
tion set, which is used to select the best model for the next
training stage or evaluate the model’s generalization perfor-
mance. The calculation expressions are symbolic, with a for-
mat of (n1, n2, o, n1 o n2), where o is randomly selected
from the set {add, sub,max}. Each expression n = n1 o n2

represents an arithmetic relation o between two quantities n1

and n2 just like the formulation in (Bahdanau et al. 2018).
The agent will randomly select images within the dataset
based on the expression. Therefore, the total number of im-
ages the agents see remains constant regardless of whether
calculations are performed. In addition, the calculations are
closed, meaning the range of results matches the range of
corresponding operands to ensure genuine testing of the
agents’ out-of-distribution generalization ability.

In each dataset, the frequency of (1) each attribute value of
the objects, (2) each quantity within the given range, and (3)
each possible calculation expression are uniform, ensuring
that the agents are trained and tested on a balanced dataset.
Table 1 shows the detailed statistics of the three sub-datasets.

6.2 Evaluation Metrics
We focus on agents’ ability to complete different tasks
through their language and the regularity exhibited in the
emergent language. These two aspects correspond to the
functionality and semantics of the emergent language.

Sub-dataset #Images #Exprs

Train Test Train Test

Sen 20k 5k - -
Lang 20k 5k 80k 20k
OOD 1k 5k 0.3k 20k

Table 1: Sizes of each dataset. #Exprs is the number of cal-
culation expressions.

Generalization ability. We use the classification ac-
curacy on the test set of each sub-dataset to evaluate
the agents’ generalization ability, which is divided into
two aspects: in-distribution(ID) generalization and out-of-
distribution(OOD) generalization. The ID generalization
refers to the agents’ ability to generalize over unseen im-
ages containing seen quantities, where the accuracy is re-
ported on Lang’s validation dataset during the training pro-
cess. The OOD generalization, which is the focus of our at-
tention, refers to the ability to generalize over unseen images
containing unseen quantities, where the accuracy is evalu-
ated on the OOD test dataset after a few-shot learning.

Regularity. Regularities play a pivotal role in language.
According to (Smith and Wonnacott 2010), regularity per-
tains to the level of certainty of the statement given a mean-
ing. In this context, stronger language regularity signifies a
more direct association between meanings and statements.
For our study, each image yields a (n,M) pair, where n
serves as the meaning, denoting the object quantity, and M
represents the generated message by the speaker, treated as
the statement. This yields paired sets, (N,L), where N en-
compasses all conceivable meanings, and L encompasses
the entire emergent language. We ignore the internal mes-
sage structure and consider it a distinct symbol when eval-
uating regularity between N and L. Similar to the approach
employed in (Mu and Goodman 2021), we utilize the Ad-
justed Mutual Information (AMI) (Vinh, Epps, and Bailey
2010) between N and L

AMI(N,L) =
I(N,L)− E[I(N,L)]

max(H(N), H(L))− E[I(N,L)]
, (3)

to measure the regularity of the emergent language, where
I(N,L) is the mutual information between N and L, H(N)
and H(L) are the entropy of N and L, respectively, and
E[I(N,L)] is the expected mutual information between N
and L. In contrast to mutual information, AMI offers greater
resilience against the influence of the number of unique
messages and corrects the agreement’s effect solely due to
chance between N and L. The AMI ranges from 0 to 1, with
1 indicating a perfect match between N and L.

6.3 Training Details
We perform hyperparameter tuning on a small validation set
to select the best model for each training stage. Regarding
the discrete communication channel connecting the speaker
and listener, we set the maximum message length |M | = 3
and the vocabulary size |V | = 16, sufficient for the speaker
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Method Acc AMI

NoRel
w/o NumSen 0.82(0.05) 0.90(0.01)
w/ NumSen 0.84(0.04) 0.92(0.01)

NumRel
w/o NumSen 0.78(0.04) 0.89(0.02)
w/ NumSen 0.81(0.05) 0.91(0.02)

Table 2: Accuracy and AMI on the validation set in the sec-
ond stage with different training methods.

to express all the possible quantities. The speaker and lis-
tener are trained with the AdamW optimizer (Loshchilov
and Hutter 2018). The learning rates vary across different
training stages, and simultaneously, different sub-modules
within the model also have distinct learning rates. To prevent
overfitting, we employ various techniques such as learning
rate warmup, learning rate decay, and weight decay (details
in Appendix B). The temperature τ in the Gumbel-Softmax
also decays from 2.0 to 0.1 with a rate of 0.9.

7 Results
In this section, we demonstrate by experimental results that
the proposed two-stage training method can help agents: 1)
accurately represent seen (ID) quantities (Sec 7.1); 2) count
unseen (OOD) quantities (Sec 7.2); 3) calculate on unseen
(OOD) quantities (Sec 7.3); 4) emerge languages to capture
the order relation between quantities (Sec 7.4). All the re-
sults, mean(std), are derived with 6 random seeds.

7.1 Two-Stage Training
NumSen. The first stage involves number sense pretrain-
ing, which trains the speaker’s visual module using the
NumSen method. As mentioned earlier, this stage employs
the numerical range N0, but in fact, we also experimented
with other numerical ranges N ′

0, e.g., Fibonacci sequence
and some smaller ranges. We ultimately choose N0 because
it offers the best performance in the final OOD test (see Ap-
pendix A.1). In addition, pretraining can also be skipped
in this stage, in which case the subsequent training stages
would start from scratch and be unrelated to NumSen.

NumRel. In the second stage, we train the two agents
to communicate quantities within a limited range on the
Lang dataset. There are two training paradigms: (1) ‘NoRel’,
where agents communicate only a single quantity without
any calculation; (2) ‘NumRel’, where agents, in addition to
recognizing quantities, also perform arithmetic calculations.
Both training paradigms can use the previously pretrained
parameters of NumSen or start training from scratch. Table 2
presents the performance of these two training paradigms on
their respective validation sets. It’s evident that using Num-
Sen pretraining yields better results in ID generalization. It’s
important to note that a direct comparison between these
two paradigms through the validation accuracy in Table 2
is infeasible because they are different pretext tasks. In sub-
sequent experiments, we will compare the performance of
these two methods through the OOD test.

Method Acc AMI

w/o training 0.14 (0.02) 0.06 (0.01)
Base 0.71 (0.05) 0.70 (0.01)
+NumSen 0.72 (0.07) 0.76 (0.01)
+NumRel 0.94 (0.03) 0.82 (0.03)
+NumSenRel 0.97 (0.01) 0.86 (0.03)

Table 3: Agents’ generalization ability (accuracy, higher is
better) and the emergent language’s regularity (adjusted mu-
tual information score, higher is better) on unseen (OOD)
quantities on the counting task.

In this training stage, we also experimented with varia-
tions of the two paradigms above as baselines for subsequent
OOD tasks, such as removing compositional inductive bias
in NumRel (Appendix A.2) and using different label forms
(Appendix A.3).

7.2 Counting
Table 3 illustrates the influence of our approach on the
agents’ capacity to identify and communicate unseen quanti-
ties. Here, ‘w/o training’ signifies the absence of agent train-
ing (representing the performance lower bound), ‘Base’ sig-
nifies the speaker conveying one quantity at a time without
calculation when training, ‘+NumSen’ or ‘+NumRel’ signi-
fies the utilization of the respective stage from the two-stage
method for agent training, and ‘+NumSenRel’ signifies the
complete two-stage training method. From top to bottom of
the table, both Acc and AMI exhibit a monotonically in-
creasing trend, which aligns with our expectations and vali-
dates the effectiveness of our approach.

From a holistic perspective, our complete two-stage
method achieves the best results in terms of Acc and AMI.
It can generalize to unseen quantities with both stable
(AMI = 0.86) semantics and high (Acc = 0.97) accuracy,
significantly surpassing the original ‘Base’ training method.
It is noteworthy that even though we allow the agents to learn
from a few samples before OOD testing (few-shot), without
any prior training on the Lang dataset, the agents cannot es-
tablish successful communication (Acc = 0.14).

From a disaggregated perspective, the use of NumRel (last
two rows of Table 3) yields significantly better results com-
pared to not using it (rows 2 and 3 of Table 3), with ac-
curacy ∼ 0.9 vs. ∼ 0.7. This strongly indicates that com-
pelling agents to learn calculations of numbers contributes to
a better understanding and generalization of numerical con-
cepts. Furthermore, regardless of whether calculations are
involved, using NumSen pretraining improves performance
(Acc 0.97 vs. 0.94, 0.72 vs. 0.71). Although the improve-
ment from NumSen in accuracy is not substantial, it’s un-
derstandable since the number sense in the early stage itself
is quite vague and limited. Similar to humans, who primarily
rely on language and calculation after birth to continuously
enhance their cognitive capacity in numerical concepts, the
early-stage number sense is useful but insufficient.

In addition, to compare different methods in a statistical
sense, we also conduct Kolmogorov-Smirnov tests (Massey
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Method Acc AMI

w/o training 0.27 (0.02) 0.02 (0.01)
Base 0.18 (0.07) 0.64 (0.06)
+NumSen 0.20 (0.07) 0.70 (0.03)
+NumRel 0.79 (0.05) 0.81 (0.04)
+NumSenRel 0.83 (0.04) 0.83 (0.04)

Table 4: Agents’ generalization ability and the language’s
regularity on unseen quantities on the calculating task.

1951) on the Acc and AMI results in Table 3, representing
the p-value as KS(F ≤ G) = (pAcc, pAMI). We get
• KS(Base ≤ +NumRel) = (0.001, 0.07)

• KS(Base ≤ +NumSen) = (0.54, 0.01)

• KS(+NumRel ≤ +NumSenRel) = (0.07, 0.07)

It also shows that (1) NumRel has a significant impact on
Acc and AMI, (2) NumSen is more helpful in generating
clear semantics than improving accuracy.

7.3 Calculating
Table 4 presents the performance of our approach on the
calculating task. As mentioned earlier, each table row cor-
responds to different training methods. Similar to Table 3,
the increasing trend from top to bottom in Table 4 also
demonstrates that our approach significantly aids agents in
performing calculations on unseen quantities. It’s reason-
able that the task performance on calculating is lower than
on counting, as performing calculations is inherently more
challenging than simple counting.

In line with the counting task, our two-stage method also
demonstrates superior performance in the calculating task,
achieving the highest accuracy and AMI. While the train-
ing methods with NumRel don’t help the agents perform the
calculating task perfectly, the Acc ∼ 0.8 and AMI ∼ 0.8
(further error analysis can be found in Appendix C) are
sufficient to indicate that effective communication concern-
ing arithmetic calculations has been established. After all,
calculating is more challenging. In contrast, when Num-
Rel is omitted, agents struggle with effective communica-
tion (Acc ∼ 0.2) as they hadn’t learned how to perform cal-
culations during previous training, even with the few-shot
learning of a small number of calculation samples before
OOD testing. Although the AMI without NumRel training
might exceed 0.6, it merely indicates the agents can artic-
ulate individual numbers without comprehending their in-
terrelations. Notably, the accuracy of ‘Base’ is lower than
‘w/o training’(0.18 vs. 0.27), which also shows that ‘Base’
might lead the agents to overfit individual numbers while ne-
glecting the relations between numbers. NumSen still plays
a role, but without NumRel, it cannot facilitate effective gen-
eralization on its own. This reiterates the limitations of num-
ber sense and the necessity of calculations.

7.4 Semantic Analysis
We randomly selected a seed and fine-tuned the ‘+Num-
SenRel’ pre-trained model on the entire numerical range

Messages(AAA → NNN)

Qu
an
ti
ti
es
(3
2 
← 
1)

(a) Original order.

Messages(aaa → jjj)

Qu
an
ti
ti
es
(3
2 
← 
1)

(b) Remapped order.

Figure 4: Visualization of the distributions P (M |n) of a ran-
domly selected seed. The y-axis represents the quantity n,
and the x-axis represents the message M . The darker the
blue color means the higher the probability.

Original G I H A N D P L C M

Remapped a b c d e f g h i j

Table 5: The mapping between two orders of the tokens.

(1 ∼ 32) for the counting task. Then, we visualize the
distributions P (M |n) of agents’ messages given quantities
with a heatmap to analyze the structure and semantics of the
emerged language.

As shown in Figure 4, there is almost a one-to-one map-
ping between quantities and messages, which indicates that
each quantity can be accurately identified and represented.
Furthermore, we find that messages near numbers often have
similar messages under the original arbitrary lexicographic
order (Figure 4a, in capital letters). To better understand
the intrinsic structure of the agent’s language, we infer the
agents’ lexicographic order (with Table 5) and remap the
messages (details about the inference process in Appendix
D). As shown in Figure 4b, under the agents’ order, the mes-
sages closely mirror the quantity order. The results indicate
that the language captures the order relation between quanti-
ties well. Such orderly encoding is likely one of the sources
for the agents’ ability to generalize the numerical concepts.

8 Conclusion

In this work, we focus on the emergence of numerical con-
cepts and propose a novel two-stage training approach to fa-
cilitate the agents’ ability to generalize numerical concepts
in the multi-agent communication setting. We demonstrate
that the proposed method enables agents to achieve high
accuracy and AMI in communicating about unseen quan-
tities and performing arithmetic calculations. Furthermore,
the language emergence from the communication exhibits a
solid order relation. Our work provides a new perspective
on the study of numerical concepts. In future work, we will
further enhance the agents’ ability to perform more com-
plex calculations and delve deeper into studying the encod-
ing patterns of numbers within the emergent language.
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