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Abstract
Convolutional neural networks (CNNs) and Transformer-
based networks have recently enjoyed significant attention
for various audio classification and tagging tasks following
their wide adoption in the computer vision domain. Despite
the difference in information distribution between audio spec-
trograms and natural images, there has been limited explo-
ration of effective information retrieval from spectrograms
using domain-specific layers tailored for the audio domain.
In this paper, we leverage the power of the Multi-Axis Vision
Transformer (MaxViT) to create DTF-AT (Decoupled Time-
Frequency Audio Transformer) that facilitates interactions
across time, frequency, spatial, and channel dimensions. The
proposed DTF-AT architecture is rigorously evaluated across
diverse audio and speech classification tasks, consistently es-
tablishing new benchmarks for state-of-the-art (SOTA) per-
formance. Notably, on the challenging AudioSet 2M classifi-
cation task, our approach demonstrates a substantial improve-
ment of 4.4% when the model is trained from scratch and
3.2% when the model is initialised from ImageNet-1K pre-
trained weights. In addition, we present comprehensive ab-
lation studies to investigate the impact and efficacy of our
proposed approach. The codebase and pretrained weights are
available on https://github.com/ta012/DTFAT.git

Introduction
The field of Audio pattern recognition has seen massive
progress due to the advent of deep learning. From sequen-
tial models to convolutional neural networks (CNNs) (Her-
shey et al. 2017; Kong et al. 2020) and now to transformers
(Gong, Chung, and Glass 2021a; Koutini et al. 2022; Chen
et al. 2022a), the incremental progress in neural network
architectures has been reflected in the performance of au-
dio classification tasks. Convolutional neural networks have
been the go to network for audio classification up until the
introduction of Transformers. Recently Transformers were
shown to outperform CNN-based networks.

Both convolutional and transformer (self-attention) layer
exhibit intrinsic learning capabilities that differentiate them
significantly, making the replacement of one with the other
difficult. The use of data-independent fixed kernels makes
convolution less prone to overfitting and better in general-
isation even with small datasets due to their strong prior
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Figure 1: Overview of the audio classification task (left) and
Time-Frequency Decoupling (right), α: branch multiplier.

of inductive bias (Dai et al. 2021). Conversely, the data-
dependent attention weights, help transformer layer in learn-
ing more complex interactions compared to convolutional
layers with the added risk of overfitting. Furthermore, large
receptive fields in transformers give them higher modelling
capacity than convolutional layers (Dai et al. 2021). Thus
convolutional neural networks (CNNs) tend to work well
even with small datasets, where transformers tend to fail,
where as transformers can outperform convolutional net-
works on large datasets. Additionally, the success of various
hybrid vision architectures (Dai et al. 2021; Tu et al. 2022;
Fan et al. 2021) serves as a testament to synergistic learn-
ing capabilities brought by convolutions and self-attention.
The datasets in audio vary significantly in sizes, e.g., ESC50
dataset has 2000 audio files while Audioset2M has around 2
million audio files. Therefore, it is important to have a net-
work that works well across varying dataset sizes and audio
file durations.

A common trend in audio deep learning research is to
adopt successful vision networks, because of the 2D na-
ture of the most commonly used audio input format (mel-
spectrogram). Although its 2-D nature similar to that of an
image facilitates it to be processed as one by the vision net-
works, it is important to note that the information distri-
bution across an audio spectrogram is distinct from that in
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an image. For example, in an image, an object can appear
anywhere within the frame without constraints, whereas in
an audio spectrogram, the representation of an object is
bounded by its frequency characteristics. Hence information
extraction techniques for images may not be optimal for au-
dio spectrograms. In this paper, we investigate effective fea-
ture learning given the asymmetry of information which is
inherent in audio spectrogram across the time and frequency
axes. Specifically, we propose an audio architecture that ex-
tracts information along the time and frequency axes inde-
pendently.

Our main contributions in this work are

• Time-Frequency decoupling technique for effective au-
dio feature extraction.

• A transformer block for audio, that combines spatially
decoupled information along time and frequency axis
along with local and global context learning by self-
attention layers.

• SOTA performance across various audio datasets with an
improvement of 4.4% when the model is trained from
scratch and 3.2% when the model is initialised from
ImageNet-1K pretrained weights for AudioSet full set.

Previous Work
Notable CNN-based approaches are the investigations car-
ried out by Hershey et al. (2017) and Kong et al. (2020).
Hershey et al. (2017) delve into the utilization of well-
established CNN architectures, while Kong et al. (2020) ex-
plore a range of factors influencing CNN-based audio pat-
tern recognition, such as optimal input format, transferabil-
ity etc. Gong, Chung, and Glass (2021b), proposed a hy-
brid audio architecture that combines convolutional layers at
the initial stage with subsequent attention layers and various
training techniques.

AST(Gong, Chung, and Glass 2021a) explores attention-
based network inspired by the vision transformer
ViT(Dosovitskiy et al. 2020). PaSST(Koutini et al. 2022)
introduced the idea of dropping certain patches(Patchout)
for the AST during training and disentangling the positional
encoding into time and frequency components. Patchout
also acts as a regularizer during the training improving
the performance further. Inspired by the Swin(Liu et al.
2021) Chen et al. (2022a) proposed HTS-AT. Input patches
are ordered in a time-frequencey-window order to create
a tensor of resolution (256,256), which is suitable for
operations such as window partitioning with window size
(8,8). A convolutional module(Token Semantic Module) is
used to generate the classification outputs, which further
improved the performance. Li et al. (2022) adapted vision
transformer Muliscale V2 to the audio domain in their work
titled MAST(Zhu and Omar 2023). Zhang et al. (2022) in-
troduced audio architecture tailored for audio by generating
time and frequency embedding from spectrograms, followed
by temporal and frequency attention blocks, subsequently
connecting to a classification head. Their approach, when
trained from scratch, demonstrates the ability to outperform
AST on the ESC50 dataset.

Transformer architectures are known to improve perfor-
mance when trained with self-supervision objectives such
as contrastive learning (Chen et al. 2020), masked image
modelling (Atito, Awais, and Kittler 2021), image recon-
struction etc. As per our current knowledge, BEATs(Chen
et al. 2022b), which utilize acoustic tokenizers for SSL,
currently holds the state-of-the-art performance on the Au-
dioset fullset (non-ensembling). Other approaches utilizing
masking, reconstruction include SSAST (Gong et al. 2022),
MAE-AST (Baade, Peng, and Harwath 2022), CAT (Liu
et al. 2023), ASiT (Atito et al. 2022) and Masked Autoen-
coders that Listen (Huang et al. 2022). Moreover, contrastive
learning methods consist of CLAR (Al-Tahan and Mohsen-
zadeh 2021) and COLA (Saeed, Grangier, and Zeghidour
2021), while distillation-based approaches involve BOYL-
Audio (Niizumi et al. 2021) and ATST (Li and Li 2022).
In this work, we will not be considering approaches using
self-supervision objectives. Instead we plan to do that in our
future work exploring the potential enhancements that self-
supervision can introduce to our network.

Methodology
In this paper, we propose a novel audio transformer block
that compartmentalizes the audio feature learning into time
and frequency, and seamlessly incorporates both local and
global contextual elements. Specifically, we adapted and
modified the MaxViT framework to suit audio processing,
demonstrating its robustness as an audio transformer, all of
which are briefly detailed in the following sections.

Building upon this foundation, we take it a step fur-
ther and propose the concept of time-frequency decoupling,
which involves learning time and frequency based concepts
via independent branches for effective feature learning.

Over the next sections, we explore various constituents of
our architecture and consolidate them in the fourth section.

Preliminaries
We based our architecture on the vision transformer MaxViT
(Tu et al. 2022). The fundamental building block of MaxViT
comprises of a MBConv block (Howard et al. 2017), a win-
dow/block attention block, and a grid attention block. Hav-
ing window and grid attention facilitates both local and
global interaction in every transformer block. By combining
MBConv with the attention mechanisms, MaxViT enhances
its generalisation ability and trainability.

Time-Frequency Decoupling
Time-Frequency decoupling aims to bifurcate the aspects of
learning that can be brought by frequency and time-based
information. For instance, if we consider a 10-second audio
clip, details about a musical instrument are more local in the
frequency axis than in the time axis. Similarly, phenomenon
such as silence between sounds is local in time.

To that end, we propose to replace the convolutional layer
in MaxViT with a two separate convolutional branches to
enable the decoupled learning. The first branch focuses on
time with a comparatively larger receptive field spanning the
time axis and the second branch focuses on frequency with a
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Figure 2: DTF-AT Architecture. T: Time axis, F: Frequency axis. (A) Stem Block: Input spectrogram is processed independently
using branches one with kernels that span more on the time axis and vice versa as explained in Equation 2. (B) DTF-AT Block
with Time-Frequency Decoupled MBConv Block (Equation 1 and 3).

comparatively larger receptive field spanning the frequency
axis. The the basic concept of the proposed approach is de-
picted in Figure 1 (right).

Precisely, for an audio input sample I, the processing in
the TF decoupled convolutional block is as follows:

x̄ =

{
DownSample(I), if stride = 2

I, otherwise

x = BN–Act( Conv1x1( BN(I) ) )

x = α× ConvDWT (x) + (1− α)× ConvDWF (x)

x = SE( BN–Act(x) )

x = Conv1x1(x)

x = DropPath(x) + x̄

(1)

where DownSample denotes the down-sampling performed
across time and frequency axes in the first transformer
block of all stages. ConvDWT and ConvDWF stand for
depth-wise convolution with kernel spanning time axis more
than frequency and vice versa. Conv1x1,BN,Act, SE, and
DropPath denote 1×1 convolution, batch norm, activation
layer, squeeze and excitation block (Hu, Shen, and Sun
2018), and drop path (Huang et al. 2016) operation, respec-
tively. For specifics regarding layers, kernel sizes, and fea-
ture map sizes, refer to Figure 2.

In this arrangement, the time branch is more local in fre-
quency, allowing it to concentrate on time-dependent con-
cepts with relatively low variations in frequency over time.
On the other hand, the frequency branch is more local in
time, enabling it to handle variations in frequency over a
very short period in time (though this is minimal in the ini-
tial layers due to the smaller kernel size). It’s crucial to note
that this intuition only holds when a minimum receptive field
is present for frequency in the time branch and vice versa.

That is given a fixed number of parameters 3x for the con-
volutional kernel, kernel of size (x, 2x) and (2x, x) would be
a favourable choice when contrasted with (1,3x) and (3x,1).
Further discussion with empirical evidence is present in the
ablation.

The fundamental concept behind TF decoupling involves
considering more data along either time or frequency axes
while localising the other. Consequently, the TF decoupling
approach can also be implemented in the local self-attention
operations, such as window attention. While we briefly ad-
dress this aspect in our ablations, a comprehensive explo-
ration of parameters such as window size, attention heads
for branches, etc is essential to effectively implement this
in window attention. In this paper, however, our emphasis
remains on TF decoupling within convolutions.

Time-Frequency Decoupled Stem Block
In addition to introducing TF decoupling in the convolu-
tional layers of MaxViT, we extend this concept to the
stem of the architecture as well. Convolutional stems have
demonstrated enhanced optimisation stability and perfor-
mance compared to patchify stems in the vision domain
(Xiao et al. 2021). In contrast to prior audio transformers
(Gong, Chung, and Glass 2021a; Chen et al. 2022a) em-
ploying patchify stem, we use a TF decoupled convolutional
stem in our network as shown in Figure 2(A). We postu-
late that the time and frequency stem branches support the
effective processing of time-frequency-related concepts ex-
tracted from the raw spectrogram. Specifically, the input I is
processed in the stem as follows:

xt = ConvT (BN–Act(ConvT (I))

xf = ConvF (BN–Act(ConvF (I))

x = α× (xt) + (1− α)× (xf )

(2)
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where ConvT , ConvF , stands for convolution with kernel
spanning time axis more than frequency and vice versa.
For specifics regarding layers, kernel sizes, and feature map
sizes, refer to Figure 2.

Local-Global Interaction Block
Inspired from the vision transformer MaxViT (Tu et al.
2022), our audio transformer block consists of a time-
frequency decoupled convolutional block (detailed in the
previous sections), window self-attention block, and a grid
self-attention block (Equation 3). For input I, window/grid
attention computation is as follows,

x = Window/Grid Partition(LN(I))

x = RelativeSelfAtten(x)

x = Reverse Window/Grid Partition(x)

x = DropPath(x) + I

x = DropPath(MLP(LN(x)) + x

(3)

where LN and MLP stand for layer norm and multi-layer
perceptron, respectively, and the relative self attention block
is defined as follows:

RelativeSelfAtten(Q,K, V ) = softmax

(
QKT

√
d

+B

)
V

(4)

The convolutional block helps in learning time and fre-
quency concepts for the following blocks to process, im-
proving the generalisation ability of the network and learn-
ing local interactions. whereas window self-attention, a type
of self-attention within local neighbourhood helps in learn-
ing complex local interactions. Finally, grid attention facili-
tates global interaction efficiently via dilated self-attention.

The combination of all the 3 blocks enables the network to
learn both local and global information in every block of the
network. Although both convolutions and window attention
foster local interaction, convolutions achieve this by the use
of fixed kernel that focuses on the relative position of token-
s/pixels than its values which helps it in having better gen-
eralisation ability and properties such as translation equiv-
alence, whereas in window attention the attention weight
is computed from the data itself. This helps window self-
attention to capture more complex local interactions with the
possibility of overfitting. Also, as the time-frequency com-
ponents are predominantly local in a spectrogram, the audio
feature learning would gain significant advantages from lo-
cal interactions rather than global ones. Further discussion is
present in the ablation analysis. Therefore, our audio trans-
former block is designed to enable a high degree of local
interactions via convolution and window attention.

The sequential placing of window attention and grid at-
tention one after the other helps all tokens to interact with
every other token in an efficient way. For example, consider
a window size of (3 × 3) as in Figure 3(left) token 1 inter-
acts with all other red tokens, then with other tokens in the
spectrogram in a dilated fashion (Figure 3(right)). This ef-
fectively facilities global token interaction even though most
of them are not directly interacting.

Figure 3: Token interaction in window and grid attention
blocks (window/grid size:(3 × 3), Time:12, Frequency:6).
In window attention(left) tokens inside the window of win-
dow size (3 × 3) (same colour) interact, whereas in grid
attention(right) tokens with a gap of (T/grid size × F/-
grid size) (4 × 2) interact (same colour). One set of inter-
acting tokens each in window and grid blocks are coloured
in red for illustration purposes.

Bringing All Together
Our transformer block (Figure 2 (B)) consists of a TF decou-
pled MBConv(Inverted Residual Block) Equation 1 (Figure
2 (C)), a window attention block, and a grid attention block.
A TF decoupling-enabled Stem network Equation 2 (Figure
2 (A)) is used to process the raw log Mel filter bank(fbank)
input for the proceeding transformer blocks. In the variant
where TF decoupling is not implemented a single branch
Stem and MBConv blocks with kernels of size (3× 3) were
used.

The network consists of 4 stages(11 DTF-AT blocks)
stacked sequentially following the stem block. The resolu-
tion and number of channels are modified in a hierarchical
fashion (Figure. 2). Input spectrogram resolution is down-
sampled by half using strided convolution and the number
of channels is brought to 64 in the stem network. After the
stem network, the feature map is processed in a hierarchical
fashion as explained in Figure 2. Class probabilities are cal-
culated using a linear layer, after performing global pooling
on the output of stage 4. A window size (we kept window
size equal to grid size) of (8 × 8) is used until stage 3 and
(8× 4) in stage 4. This makes tokens inside a local window
of (8 × 8) interact in the window attention block and to-
kens with a gap of (feature map size/window size) between
them interact in the grid attention block (Figure 3), facilitat-
ing both local and global attention.

Experiments
In this section, we evaluate the proposed architecture in var-
ious benchmark audio datasets, followed by ablation exper-
iments to assess the various choices made during network
development. Our proposed architecture demonstrated su-
perior performance compared to existing approaches across
various datasets, including Audioset (Gemmeke et al. 2017),
ESC50 (Piczak 2015), and Speech Commands V2 (Warden
2018) datasets. We assigned names to the architecture vari-
ants that readily convey the extent of TF decoupling in them.

AudioSet
Dataset. AudioSet (Gemmeke et al. 2017) consists of au-
dio files downloaded from YouTube. There are 3 subsets
with 527 labels commonly used in experiments namely full
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balanced set full set #Params MACs
mAP mAP (Million) (GMac)

Training from ImageNet-1K Pretrained Weights
AST (Gong, Chung, and Glass 2021a) 0.347±0.001 0.459±0.0 88.1 103.4
AST (Our Eval data) - 0.460 88.1 103.4
PaSSAT (Koutini et al. 2022) - 0.471 - -
HTSAT (Chen et al. 2022a) - 0.471 31.0 -
HTSAT (Our Eval data) - 0.470 31.0 -
MAST† (Zhu and Omar 2023) 0.314 0.390 51.3 25.6
No TF (Ours) 0.349±0.001 0.483±0.000 68.6 29.4
Stem TF (Ours) 0.350±0.001 0.484±0.001 68.7 33.1
Full TF (Ours) 0.355±0.001 0.486±0.001 69.0 33.3

Training from Scratch (Random Initialisation)
PANNs (Kong et al. 2020) 0.278 0.439 - -
AST 0.148 0.366 88.1 103.4
HTSAT - 0.453 31.0 -
No TF (Ours) 0.177±0.002 0.468±0.001 68.6 29.4
Full TF (Ours) 0.187±0.001 0.473±0.000 69.0 33.3
† Comparatively small training set

Table 1: AudioSet performance comparison with the previous approaches. Full TF: TF decoupling across the entire architecture,
Stem TF: TF decoupling in stem block only, No TF: No TF decoupling.

set (∼2M audio files), balanced set (∼20k), and evalua-
tion set (∼20k). Since the AudioSet data is downloaded
from YouTube directly, videos get deleted and the avail-
able dataset decreases in size over time. In this work, we
employed the downloaded copy provided by PANNs (Kong
et al. 2020) which contains 1.93 million samples from the
original dataset. To the best of our knowledge, the number of
audio files in our data set is slightly lower compared to pre-
vious works, such as AST (Gong, Chung, and Glass 2021a).
For a fair comparison with the state-of-the-art approaches, in
Table 1, we report the performance of the best models shared
by AST (Gong, Chung, and Glass 2021a) and HTSAT (Chen
et al. 2022a) on our evaluation set along with their reported
performances, despite that these models are trained on a full
set with more than 2 million audio files.

Training Details. We converted audio files of 10 seconds
duration and 32kHz sample rate to 128-dimensional Mel
filterbank (fbank) features resulting in an input shape of
1024× 128. For training, we used the same pipeline as AST
(Gong, Chung, and Glass 2021a), with minor changes such
as performing learning rate update after every 500k audio
files for full set training. Mixup (Tokozume, Ushiku, and
Harada 2018) with 0.5 ratio and Spectrogram masking (Park
et al. 2019) (max time mask length of 192 and max fre-
quency mask length of 48 bins) were used for data augmen-
tations. We used an initial learning rate of 5e−4 for both full
set and balanced set. The learning rate is updated by multi-
plying with a factor of 0.5 for the full set and 0.1 for the bal-
anced set at certain validation steps using Multi-step learn-
ing rate scheduler. The models are trained with AdamW op-
timiser (Loshchilov and Hutter 2019) and binary cross en-
tropy loss function. We employed Mean average precision
(mAP) as the evaluation metric and ran our experiments for
3 times with different random seeds and the mean and stan-
dard deviation of the best epochs are reported.

We conducted experiments using two different settings. In

the first setting, we trained the models entirely from scratch,
i.e. weights are randomly initialised. In the second setting,
we initialised our models from ImageNet-1K (Deng et al.
2009) pretrained weights. For the balanced set, the models
are trained for 50 epochs using 32 batch size. As for the
full AudioSet dataset, the models are trained with batch size
of 64 for 10 and 8 epochs in the aforementioned settings,
respectively.

Results. As shown in Table 1, all architecture variants based
on the extent of TF decoupling perform better than the state-
of-the-art architectures with the best one (Full TF) giving
a performance of 0.473 mAP which is an improvement of
4.4% over the state-of-the-art (SOTA) approach, i.e. HT-
SAT, when the models are trained from scratch. Further-
more, we show an improvement of 3.2% when the model
is trained from ImageNet-1K pretrained weights over the
SOTA methods. Also, it is interesting to note that our Full
TF network, trained from scratch, surpasses the SOTA ap-
proach initialised with ImageNet-1K weights. In addition,
we performed a straightforward ensemble technique by ag-
gregating the best models trained from scratch across three
random seeds. Remarkably, this simple ensembling strategy
yielded a better mAP of 0.498, highlighting the substantial
room for further improvement.

While the primary focus of this paper remains on super-
vised learning, it is worth noting that our Full TF model per-
formance with mAP of 48.6 achieved similar performance as
the current SOTA self-supervised approach, namely BEATs
(Chen et al. 2022b). As transformer architectures are known
to improve performance when trained with self-supervision
objectives, we are planning to investigate the potential
performance enhancements that self-supervision objectives
could bring to our existing architecture in our future works.
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ESC50 and Speech Commands V2
Datasets. ESC50 is a collection of 2000, 5-second audio
files with 35 classes. The Speech Commands V2 consists
of 84, 843 audio files in the train set, 9, 981 files in the val-
idation set, and 11, 005 files in the evaluation set, each con-
taining a spoken word of duration 1 second and spanning 35
classes.
Training Details. We follow the same experiment proto-
col followed by AST. For ESC50, the data is divided into 5
folds. The model is then trained five times, each time using
a different fold as the evaluation set and the remaining four
folds as the training set. After completing the five training
iterations, the performance metrics(accuracy) are collected
from each evaluation, and the average performance across
all 5 folds is calculated. We repeat this experiment 3 times
with different random seeds and the mean and standard de-
viation of the performance metric accuracy is reported in
Table 2. We converted audio files of 5 seconds duration
and 32kHz sample rate to 128-dimensional Mel filterbank
(fbank) resulting in an input shape of (512,128) and used
the same training pipeline as AST (Gong, Chung, and Glass
2021a) with data augmentation such as Mixup (Tokozume,
Ushiku, and Harada 2018)(mixup ratio=0.5) and Spectro-
gram masking (Park et al. 2019) (max time mask length:96
bins, max frequency mask length: 24 bins). During training,
we experimented with two different initialisation methods:
ImageNet-1K and AudioSet full set initialisation. The net-
work is trained for 50 epochs with batch size 64 and learning
rate 5e−4 (ImageNet-1K initialisation) and 5e−5 (AudioSet
full set initialisation).

For Speech Commands V2, the 1-second audio files with
sample rate 16kHz are converted to 128-dimensional Mel
filterbank (fbank) resulting in an input shape of (128,128)
and trained using the same training pipeline as AST (Gong,
Chung, and Glass 2021a). Similar to ESC50 dataset, the net-
work is trained for 50 epochs using a batch size of 64 and a
learning rate of 5e−4 with ImageNet-1K initialisation, and
5e−5 with AudioSet full set initialisation, employing data
augmentations, such as time masking, random noise and
mixup.
Results. As shown in Table 2, our proposed method
achieved SOTA performance in both ESC-50 and SC-V2
datasets. For ESC-50 datatset, the best performing model
is the one pretrained from AudioSet full set. Unlike ESC-
50, ImageNet-1K pretrained initialisation worked better than
AudioSet full set initialisation for Speech Commands V2
dataset which is in line with the observations made in
AST (Gong, Chung, and Glass 2021a).

It’s worth highlighting that prior study (Zhang et al. 2022)
leveraging the time-frequency components of the spectro-
gram conducted their ESC-50 experiments with random ini-
tialization, achieving an accuracy of 57.24. In comparison,
our network under the same conditions attained a signifi-
cantly improved performance of 76.40 (refer to Table 3).

Compute Resources For AudioSet experiments, we em-
ployed a single Nvidia A100-80GB GPU, while for ESC50
and Speech Commands V2, we utilised one NVIDIA
GeForce RTX 3090-24GB GPU, running on the Ubuntu OS

ESC50 SCV2
AudioSet fullset Pretrained

AST 95.6±0.4 97.88±0.03
HTSAT 97.0±0.2 98.00±0.03
Full TF(Ours) 97.5±0.06 97.68±0.07

ImageNet-1K Pretrained
AST 88.7±0.7 98.1±0.05
Full TF (Ours) 89.2±0.04 98.3±0.03

Table 2: ESC50 and Speech Commands V2 performance
comparison with the previous approaches.

and employing the PyTorch deep learning framework. The
choice of our batch size is not limited by the GPU memory.

The time and frequency branching shouldn’t be consum-
ing extra time as they are expected to run in parallel, given
enough memory, the parallelisation is not effective as ex-
pected in the PyTorch implementation. Hence, model for-
ward time increases with the extent of TF decoupling.

Ablation Studies
We performed comprehensive ablation experiments to val-
idate the design of our network with empirical evidence
obtained from datasets such as Audioset (Gemmeke et al.
2017) (balanced and full set), ESC50 (Piczak 2015), and
Speech Commands V2 (Warden 2018), within our resource
limitations.
Effect of Time-Frequency Decoupling. We conducted
comprehensive ablation experiments to assess the impact of
TF decoupling. We explored three variations of TF decou-
pling, including stem TF decoupling where decoupling is
applied to the stem only, TF decoupling until stage 1 cov-
ering stem and first stage, and Full TF decoupling across the
entire architecture. In Table 3, we present results for Au-
dioSet (balanced and full set), ESC50, and Speech Com-
mands V2 datasets. Since we employ three significant dig-
its, subtle variations are not discernible. Nonetheless, the ta-
ble demonstrates the performance enhancement associated
with the extent of decoupling. Notably, TF decoupling con-
sistently enhances performance across all experiments.
Effect of ImageNet-1K Pretraining. To analyse the ef-
fect of initialising the model with ImageNet-1K pretrained
weights, we experimented different datasets with all our
variants with and without ImageNet-1K initialisation. Our
experiments showed that ImageNet-1K pretraining helps in
improving the performance as shown in Table 3.
Effect of Kernel Size. The number of parameters with and
without decoupling differs, albeit by a marginal amount as
shown in Table 1. To see if the performance improvement is
due to the extra parameters and computation, we created a
network without TF decoupling but with kernel size (6× 6),
which is the same number of parameters (6 × 6 = 36)
as in decoupling (6 × 3 + 3 × 6 = 36). Table 4 shows
the performance improvement of decoupling not due to the
slight improvement in parameters. Also, we experimented
with different kernel sizes to find the optimal kernel size for
decoupling (Table 4). Due to the variation in kernel size and
feature map resolution of our hierarchical transformer, we
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balanced set full set ESC50 SCV2
ImageNet-1K Pretrained

No TF 0.349 0.483 87.99 98.20
Stem TF 0.350 0.484 88.50 98.12
TF Till Stage 1 0.352 0.484 88.55 98.27
Full TF 0.355 0.486 89.19 98.30

Scratch (No Pretraining)
No TF 0.177 0.468 75.30 97.78
TF Till Stage 1 0.184 0.470 75.95 97.85
Full TF 0.187 0.473 76.40 97.87

Table 3: Effect of Time-Frequency Decoupling and Effect of
ImageNet-1K pre-training.

Time Frequency balanced set

ImageNet-1K Pretrained
(6× 3) (3× 6) 0.352
(9× 2) (2× 9) 0.342

(18× 1) (1× 18) 0.314

No TF decoupling - kernel size 6× 6 0.344

Table 4: Effect of kernel size in Time and Frequency
branches. All the models are trained from ImageNet-1K pre-
trained weights and TF decoupling till stage 1.

performed TF decoupling till block 4 (stage 1) for all these
experiments. As we discussed earlier, among the kernel sizes
((18×1),(1×18)), ((9×2),(2×9)) and ((6×3),(3×6)) (num-
ber of parameters:36) ((6,3),(3,6)) seems to perform better.
This proves our hypothesis that a minimum receptive field
should be present for frequency in the time branch and vice
versa for effective local interactions.
TF Decoupling in Convolution vs Window attention
block. As the idea of decoupling is to bifurcate time based
and frequency based concept learning, it can be imple-
mented in either the convolutional or the attention block
such as window attention. To evaluate this idea, we ran two
sets of experiments were we trained our framework on the
full set of Audioset for 5 epochs with TF decoupling in the
convolutional layers and in the window attention layers. The
former showed superior performance, achieving an mAP of
0.450 compared to 0.443. With proper fine-tuning of win-
dow sizes, attention heads, and other parameters through ex-
tensive research, we anticipate that the window decoupling
approach will also yield promising results. In this paper, we
limit the decoupling to convolutional layers.
Impact of the Convolutional, Window Attention, and
Grid Attention in Transformer Block. This ablation ex-
periment is done without ImageNet-1K pretrained weights
as we are changing the architecture significantly, and trained
the model for only 5 epochs in each experiment. The abla-
tion strategy is explained below,

• Remove TF decoupled MBConv blocks.
• Replace all window attention blocks with grid attention

blocks.
• Replace all grid attention blocks with window attention

blocks.

full set

Scratch (No Pretraining)
Full TF 0.450
Remove TF MBConv 0.392
Replace window with grid 0.436
Replace grid with window 0.449

Table 5: Transformer block components.

balanced set

ImageNet-1K Pretrained
Scalar (α, 1 - α) 0.355
Scalar (α, β) 0.349
Vector (α, 1 - α) 0.353
Vector (α, β) 0.353
Squeeze Excitation Weights 0.346

Table 6: Time-Frequency Decoupling Merging Strategies

As is evident from the performances in Table 5, convo-
lution and window attention are two crucial components for
audio feature learning. While grid attention is valuable, win-
dow attention complements it by enhancing its global atten-
tion capabilities. This validates the use of convolution, win-
dow attention, and grid attention in our transformer block.
Effect of Different merging techniques. We experimented
with different merging techniques for time and frequency
branches such as scalar (α, 1 - α), (α, β) and channel wise
(α, 1 - α), (α, β). Among scalar weights, (α, 1 - α) seem to
work better than (α, β). Regarding the use of channel-wise
weight vs scalar weight, both seem to give similar perfor-
mance. We also explored using the Squeeze Excitation layer
in MBConv Block (Figure2 (C)) to obtain weights for merg-
ing by adding Squeeze Excitation to both branches for cre-
ating data dependent branch weights. We chose to go with
scalar (α, 1 - α), as it is straightforward and easy to interpret
the importance of time and frequency branches.

Regarding the values of branch weights in our network,
we observed that the weights of both branches consistently
range between 0.3 and 0.7. The frequency branch tends to
receive slightly higher importance, while the importance of
the time branches increases as the network depth grows.

Conclusion

As most audio transformers are inspired from vision trans-
formers, they tend to deal with 2D audio spectrograms in a
manner akin to natural images. In this paper, we proposed
an audio transformer block that facilitates audio domain-
specific time-frequency decoupling techniques with both lo-
cal and global interaction for effective audio feature extrac-
tion. Extensive experiments demonstrate that the proposed
TF decoupling exhibits promising performance, setting new
benchmarks for state-of-the-art performance across various
audio datasets.
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