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Abstract

Events describe happenings in our world that are of impor-
tance. Naturally, understanding events mentioned in multi-
media content and how they are related forms an important
way of comprehending our world. Existing literature can infer
if events across textual and visual (video) domains are iden-
tical (via grounding) and thus, on the same semantic level.
However, grounding fails to capture the intricate cross-event
relations that exist due to the same events being referred to
on many semantic levels. For example, the abstract event of
“war” manifests at a lower semantic level through subevents
“tanks firing” (in video) and airplane “shot” (in text), leading
to a hierarchical, multimodal relationship between the events.
In this paper, we propose the task of extracting event hierar-
chies from multimodal (video and text) data to capture how the
same event manifests itself in different modalities at different
semantic levels. This reveals the structure of events and is crit-
ical to understanding them. To support research on this task,
we introduce the Multimodal Hierarchical Events (Multi-
HiEve) dataset. Unlike prior video-language datasets, Mul-
tiHiEve is composed of news video-article pairs, which
makes it rich in event hierarchies. We densely annotate a part
of the dataset to construct the test benchmark. We show the lim-
itations of state-of-the-art unimodal and multimodal baselines
on this task. Further, we address these limitations via a new
weakly supervised model, leveraging only unannotated video-
article pairs from MultiHiEve. We perform a thorough eval-
uation of our proposed method which demonstrates improved
performance on this task and highlight opportunities for future
research. Data: https://github.com/hayyubi/multihieve

1 Introduction
Human life is eventful. We use events to describe what is hap-
pening (e.g. war, protest, etc.), to tell stories (e.g. during the
war an airplane was shot down), and to depict our understand-
ing of the world (e.g. coffin procession happens in a funeral).
Thus, understanding and analyzing events is a crucial part of
comprehending our world. A critical component towards this
goal is to figure out the manner in which the same real-world
event is manifested in multiple modalities of data.

To this end, previous studies have utilized grounding (Gao
et al. 2017) to determine whether events in textual and visual
domains are related identically at the same semantic level.
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Figure 1: Illustration of our task’s differences with other
related tasks. Unlike prior tasks, our task is multimodal and
relates events on multiple semantic scales. H: Hierarchical
Relation; I: Identical Relation.

However, events in different domains can be referred to at
various semantic levels, resulting in intricate hierarchical and
sibling relationships. For instance, as illustrated in Figure 2,
the event of “tanks firing” is a component of event “war”
and denotes it at a finer semantic level. Consequently, “tanks
firing” is a subevent of the parent event “war”. Moreover,
textual event of “airplane shot” is also a subevent of “war”,
and together with “tanks firing” reveal the constituents of
“war” event. This creates siblings relations between “airplane
shot” and “tank firing”. Additionally, subevents can be fur-
ther decomposed into sub-subevents, creating a hierarchy of
events (see Figure 2). These event hierarchies organize events
based on the semantic scale at which they occur and expose
a hierarchical compositional structure, which is crucial for
understanding events and their fine-grained relationships.

Much of the prior work on extracting such event hierar-
chies has been done in Natural Language Processing (NLP)
for the text-only domain. However, as our world is multi-
modal, the information conveyed by a unimodal text event
hierarchy is inherently limited. For example, in Figure 1,
extracting “evacuation” subevent from video as a child of
parent event “fire” provides us with the additional fact that
relief efforts reached on time.
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Figure 2: An example from our MultiHiEve dataset illustrating the proposed task of extracting event hierarchies given
multimodal (text + video) content. The same legend is followed throughout the paper in all illustrations of event hierarchies.

We address these limitations through the proposed task of
extracting event hierarchies from multimodal (text & video)
data. Specifically, given events from paired text article and
video, the task requires predicting all the multimodal hier-
archical and identical event-event relationships. This output
can be combined with text-only event hierarchy (from any
off-the-shelf tool) to get a more holistic hierarchy.

Multimodal event hierarchies can aid many applications,
such as summarization (Daumé III and Marcu 2006), story
completion from multiple sources, event analysis/comparison
(e.g. a “protest” event with “property destruction” subevent
is unruly, otherwise it’s peaceful), event prediction likeli-
hood (Chaturvedi, Peng, and Roth 2017), knowledge-based
information extraction (Wen et al. 2021), and multimodal
knowledge graph construction (Li et al. 2020a).

To study this task, we introduce the Multimodal
Hierarchical Events (MultiHiEve) dataset. Multi-
HiEve consists of approximately 100.5K pairs of news ar-
ticle and accompanying video. The news story in the text
article mentions events on multiple semantic levels, making
it ideal for the task of extracting event hierarchies. We strive
to limit the socio-economic bias inherent in news media by
only collecting our data from news sources rated unbiased
by credible sources. We keep unannotated 100K pairs for
training and densely annotate 526 pairs with multimodal hier-
archical and identical relations for benchmarking and evalua-
tion. Our annotation process is detailed and labor-intensive,
requiring approximately 114 hours of expert annotator effort.
Crucially, in contrast to prior text-only datasets dealing with
hierarchical events, we do not limit the event types to any
fixed ontology and instead consider an open world of events.

To benchmark performance on this task, we construct

several baselines using state-of-the-art (SOTA) architectural
components. A unimodal text-only baseline leverages ASR
(automated speech recognition) and employs a SOTA NLP
model (Wang et al. 2021) to find hierarchical events between
a text article and its video’s ASR. We also build a multimodal
baseline by detecting hierarchical events in text using Wang
et al. (2021) and grounding the textual subevents to video
using CLIP (Radford et al. 2021). A key limitation of these
baselines is that they require visual subevents to be mentioned
in textual form in either the ASR or the article. To address this,
we propose Multimodal Analysis of Structured Hierarchical
Events Relations (MASHER), a weakly supervised model
which learns to directly predict hierarchical events between
text and video. By doing so, MASHER can also discover
visual-only subevents (subevents not mentioned in text).

The major contributions of this work are fourfold: 1) We
propose the challenging task of extracting event hierarchies
from multimodal data. 2) We release MultiHiEve dataset
to facilitate research on this task. 3) We construct several
baselines and propose MASHER, a weakly supervised model,
to benchmark performance. 4) We provide a detailed analysis
of our dataset and methods with insights for future work.

2 Related Work
Hierarchical Event Relations in Text. Detecting hierarchi-
cal event relations (or sub-event relations) is a long-standing
problem in the text domain (O’Gorman, Wright-Bettner, and
Palmer 2016; Glavaš et al. 2014). Early works mainly rely on
heuristic phrasal patterns. For example, Badgett and Huang
(2016) found some characteristic phrases (e.g. “media reports”
in new articles) always contain sub-events with hierarchical
relations. To further enrich hierarchical event relation in-
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stances, recent works (Yao et al. 2020) rely on generative
language model to generate subevent knowledge among dif-
ferent commonsense knowledge (Bosselut et al. 2019; Sap
et al. 2019), then incorporate knowledge into event ontology.

Relation Understanding in the Vision Domain. Prior
work (Krishna et al. 2017b; Xu et al. 2017; Ji et al. 2020)
propose scene graph methods that parse images/videos into
a graph. However, the relationships studied in scene graphs
are not between two events. To the best of our knowledge,
the only pioneering work that has discussed the event-event
relationship in video domain is VidSitu (Sadhu et al. 2021).
Unfortunately, to simplify the research problem on this topic,
they have made several assumptions: 1) All events are manu-
ally cutted into fixed interval (2-second). 2) All event types
are “visual” only and from a fixed event ontology. On the
other hand, we consider variable-length video events and
focus on open-vocabulary event types (which include non-
visual event types and other visual events like funeral, detain,
rally etc). Besides, while they have annotated each video
event with a text label, their event relations still are between
events in a video. In contrast, our multimodal relations are
between events in an article and a video (see Figure 1).

Multimodal Event Understanding. Since single-
modality event tasks are well studied (Nguyen, Cho, and
Grishman 2016; Sha et al. 2018; Liu et al. 2019, 2020; Li
et al. 2017; Mallya and Lazebnik 2017; Pratt et al. 2020;
Yatskar, Zettlemoyer, and Farhadi 2016; Lu et al. 2023),
jointly understanding events from multiple modalities (Li
et al. 2020b; Chen et al. 2021; Li et al. 2022; Zhang et al.
2017; Tong et al. 2020; Wen et al. 2021; Park et al. 2020;
Reddy et al. 2022; Du et al. 2022) has attracted extensive
research interests because different modalities usually
provide the complementary information for comprehensively
understanding the real-world complex events. Two important
benchmarks (Li et al. 2020b; Chen et al. 2021) have been
established for image + text and video + text settings. Li
et al. (2020b) first introduced the task of jointly extracting
events and labeling argument roles from both text articles
and images. Chen et al. (2021) further defined the task of
joint multimedia event extraction from video and text to
exploit the rich dynamics from videos. However, both the
works focus on event detection in comparison to the event
relations task explored in this work.

3 Task
To understand (parent) events and fully comprehend what
they entail, one needs to discover what (sub) events happened
during the parent event. The task of extracting event hier-
archy from multimodal content is aimed at revealing this
compositional structure of events.

Formal Task Definition. Given a text article, T ,
containing events, {ei}mi=1, and a video, V containing
events {vj}nj=1, the proposed task requires prediction of
all possible hierarchical and identical event-event rela-
tions, {rk}Kk=1, from a text event, ei, to a video event,
vj , among all possible m × n pairs, where rk ∈
{’Hierarchical’, ’Identical’} and K ≤ m × n. We will now
discuss definitions for different components of the task and
justifications for task design choices.

Text Event Definition. The definition of an “event” has
been defined quite thoroughly in different NLP works on in-
formation extraction (Huang et al. 2004; Reimers, Dehghani,
and Gurevych 2016; GLAVAŠ and ŠNAJDER 2015). As
such, we closely follow ACE Corpus’s (Huang et al. 2004)
definition of an event: ‘a change of state or the changed state
of a person, thing or entity.’ We came up with a slightly
modified event definition and annotation criteria (detailed
in Appendix A.11 ) as ACE 1) addresses several linguistic
nuances not required in our setting; 2) is restricted to a fixed
ontology of events, whereas we annotate open-domain events.

Video Event Definition. Precisely defining what consti-
tutes an “event” in the video domain is challenging due to the
multiple granularities at which events occur in videos. For
example, during a “clash” event, one might see a “pulling
out baton” event and a “throwing a punch” event. This makes
it difficult to pick salient event boundaries in video clips.
Sadhu et al. (2021) circumvent this ambiguity by defining
temporal event boundaries of fixed duration (two seconds).
However, pre-defining the boundary duration is difficult and
application specific. Additionally, a fixed duration boundary
often divides salient events into multiple segments. We ad-
dress these issues by defining video event boundaries to be
where shot changes occur, partly following (Shou et al. 2021).
From our qualitative analysis and annotator feedback, this
gives us a good trade-off between ease, clarity, consistency
and non-segmentation of events.

Relation Types. We define two types of event relations in
this work: hierarchical and identical. These relation types are
well defined in NLP (Glavaš et al. 2014) and we follow them
to define the relations for our task as below:

Hierarchical: “A parent event A is said to be hierarchi-
cally related to a subevent B, if event B is spatio-temporally
contained within the event A.” For example, an “evacuation”
event is a subevent of a “fire” event as it takes place during
and at the same location as the fire event (see Fig. 1). There-
fore, a subevent (evacuation) is a component of the parent
event (fire) among multiple other subevents (burning, trapped,
evacuation etc.).

Identical: “An event A is said to be identical to another
event B if both events denote exactly the same real-world
events in all aspects.” For example, “trapped” event in text is
identical to the video event showing people begin trapped as
they both denote exactly the same event – there are no more
components of trapped.

Relation direction. The multimodal relations in our event
hierarchies are directed from text event to video events. The
logic behind this design choice is that text events are often
more abstract while video events are often atomic. For exam-
ple, we are likely to observe abstract events such as war and
election in text while their atomic subevents – fighting and
voting – are more likely to be visible in the video.

Difference from Video Grounding. Although grounding
relates similar events in text and video, it does not distinguish
the type of relationship. That is, whether the video event
shows all aspects of text event (i.e. identical) or whether
it only shows “part-of” of the parent event and is thus a

1For all Appendix references, please see Ayyubi et al. (2023).
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Dataset Domain W/m2

MSVD (Chen and Dolan 2011) Open 54
MSR-VTT (Xu et al. 2016) Open 38
Charades (Sigurdsson et al. 2016) Activities -
ActyNet Cap (Krishna et al. 2017a) Open 27
HowTo100M (Miech et al. 2019) Instructional 67
YT-Temporal-180M (Zellers et al. 2021) Open -
VidSitu (Sadhu et al. 2021) Movie Null

MultiHiEve News 113

Table 1: Comparing MultiHiEve to prior video-language
datasets. It is the first dataset sourced from news domain.
Grayed row denotes video-only dataset. W/m: Words/minute

subevent. This has major implications. For example, in Fig-
ure 1, inferring that “burning” video subevent is identical to
“fire” would imply that there was nothing else that happened
during fire event and hence, relief efforts did not reach on
time. On the other hand, inferring “burning” to be a subevent
of “fire” indicates that there may have occured other re-
lief/“evacuation” subevents. Further, some video subevents
are visually dissimilar to its textual parent event (for example,
“evacuation” is dissimilar to “fire” in Figure 1), making it
difficult for grounding to relate such subevents.

4 Dataset
To support research on the proposed task, we introduce Mul-
tiHiEve – a dataset containing news articles and the asso-
ciated video clips. Existing video-language datasets contain
either manually annotated descriptions of video events or
utterances from the video itself (see Table 1). In both cases,
the text is essentially on the same semantic level as the video
event. However, they lack a context or an overall story de-
scribing events on higher semantic levels that comprise the
video events. In contrast, news stories provide a rich hierar-
chy of events, making them ideal for our task. Having ∼ 2x
more words per minute as compared to other datasets (see
Table 1), indicates this to some extent.

4.1 Data Collection and Curation
A potential drawback with news data is that they could be
socio-economically biased and sensationalized. We mitigate
these issues by choosing media sources rated “Center” (out of
“Left”, “Left Leaning”, “Center”, “Right Leaning” and “Right”
ratings) by the media rating website allsides.com, re-
sulting in a total of 9 news media sources (c.f . Appendix
B.1). We scraped Youtube for news videos, associated text
story and closed captions (ASR) from the official channels of
these sources, collecting a total of 100.5K videos. We filtered
videos whose duration was greater than 14 minutes or whose
descriptions had less than 10 words. This was done to prune
videos that may be too computationally expensive to process
or whose descriptions may be too short to have meaningful
events. We split the data two ways – 1) 100K unannotated

2For datasets with duplicate descriptions per video clip (MSVD,
MSR-VTT), words/min. is averaged by #descriptions .

Dataset Modality #Hier. Rels. #Id. Rels.

HiEve (Glavaš et al. 2014) Text 3648 758
IC (Hovy et al. 2013) Text 4586 2353

MultiHiEve Text + Vision 3077 1524

Table 2: Comparison of MultiHiEve against other
hierarchical-event datasets. “Hier.” denotes “Hierarchical”.
“Id.” denotes “Identical”.

train split for self-supervised/weakly supervised training and
2) 526 annotated test split - 249 validation set and 277 test set
- for benchmarking and evaluation. We annotate a relatively
small set because of the challenging and resource-consuming
nature of the annotation process; two popular NLP Hierarchi-
cal event-event relations datasets (Hovy et al. 2013; Wang
et al. 2021) contain 100 articles each (including train split).

4.2 Train Split
The train split contains 100K videos with a total duration
of more than 4K hours. The paired text descriptions total
1.9M sentences and 28M words. The large-scale nature of
the data allows for self/weakly-supervised learning on the
task. We provide additional data statistics, topic distribution
exploration and quantitative comparison against 12 popular
video-language datasets in Appendix B.2.

4.3 Test Split
Annotation Procedure. As a first step, following the defini-
tion of a video event from Section 3, we extract video events
using an off-the-shelf video segmentation model: PySceneDe-
tect 3. To make text event annotation easier, we provide auto-
matically extracted text events (using (Shen et al. 2021)) to
the annotators along with instructions to add or omit events
according to the definition in Section 3. Next, we task the
annotators to mark all possible relations, ∈ “Hierarchical”,
“Identical”, from the annotated text events to the provided
video events in a video-article pair. We provide screenshots
of our annotation tool and additional details in Appendix B.3.

We train 5 expert annotators for this task through a se-
ries of short seminars and multiple rounds of feedback and
consultation with all the annotators to improve consensus.
Excluding training, annotation required 114 hours in total,
reflecting the labor-intensive and complex nature of the task.

Inter Annotator Agreement (IAA). We measure the qual-
ity of the annotations using IAA. Inspired by (Glavaš et al.
2014) and (GLAVAŠ and ŠNAJDER 2015), we formulate
IAAj =

∑
r 1(xrj≥2)

|∪5
i=1S

i
j |

, where j ∈{“Hierarchical”, “Identi-

cal”}, Si
j denotes the set of all relations annotated by an-

notator i as j, r ∈ ∪5
i=1S

i
j and xrj represents # annotators

who marked relation r as j. The intuition behind this for-
mulation is to calculate the percentage of relations which
have been annotated by at least 2 annotators. We obtain
IAAHierarchical = 47.5 and IAAIdentical = 48.9. This is
not far from IAAHierarchical for text datasets HiEve and IC
– 69 and 62 respectively. Thus, while the text-only event rela-
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tion task is itself quite challenging, our new cross-modal task
is even more demanding.

Following prior work for related text-only tasks (Vulić,
Ponzetto, and Glavaš 2019; Glavaš et al. 2014), we consider
IAA to be an upper bound on model performance because
our metrics judge the model’s predictions with respect to
human agreement on the task. It is not clear whether a model
exceeding IAA indicates a meaningful performance gain or
an overfitting to annotators’ subjective tendencies.

Dataset Analysis. As we are the first to propose multi-
modal hierarchical event relations analysis, we compare our
dataset against two popular text-only hierarchical event re-
lations datasets in Table 2. Overall, MultiHiEve has a
comparable number of hierarchical and identical relations,
but has the added novelty of being the first multimodal (text
and vision) event-event relations dataset. Further, both NLP
datasets limit the event types to a fixed ontology. We do not
put any such constraints on either text or video event types.

5 Multimodal Hierarchical Events Detection
Acquiring a large scale labelled dataset sufficient for train-
ing a model on the proposed task is prohibitively time and
resource consuming (c.f . Section 4.3). Thus, we instead pro-
pose a weakly supervised method which learns from pseudo
labeled data. We generate pseudo labels using existing NLP
and vision techniques and then use these pseudo labels for
training our model. We discuss this in detail below.

5.1 Pseudo Label Generation
Event Detection in Text and Video. The first step is de-
tect events in text and video separately. We use the same
automatic methods to detect them as used on the test data:
Open Domain IE (Shen et al. 2021) and open source library
PySceneDetect 3 for text event and video event detection
respectively.

Textual Hierarchical Relation Detection. Assume we
detected m text events, {ei}mi=1, in an article T and n video
events, {vj}nj=1, in the accompanying video V . The next
step is to detect hierarchical relations among the text events,
using (Wang et al. 2021), from all possible m × m pairs.
Let {eueus

}u=p,s=q
u=1,s=1 denote the hierarchically related event

pairs, where the parent event is eu and the subevent is eus

and p, q ≤ m.
Video Event Retrieval The final step is to retrieve video

events, {vus

l }rl=1 and r ≤ n, from video V , which depict
the same real world event as the text subevent, eus . This
step essentially simplifies to a video retrieval task. As CLIP
(Radford et al. 2021) model has demonstrated state-of-the-art
performance in multimodal retrieval tasks (Luo et al. 2021;
Fang et al. 2021), we use it for this step. We provide more
details in Appendix C.1.

We use CLIP to get all possible video events which are
identical to the text subevent, denoted {eus

vus

l }. Critically,
since eu was the parent event of eus

and eus
depicts the same

event as vus

l , we can conclude that eu is the parent event
of vus

l by transitivity. As a result, we get a total of {euvus

l }
hierarchical event pairs and {eusv

us

l } identical event pairs.

3http://scenedetect.com/en/latest/
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Figure 3: Overview of Proposed MASHER Model

We collect additional identical pairs by directly comparing
all text events {ei}mi=1 in the article T to all video events
in {vj}nj=1 in the paired video V using CLIP. This gives an
aggregate of {eusv

us

l } ∪ {eivj} identical pairs.
In total, we collect 57,910 multimodal hierarchical event

pairs and 39,0149 multimodal identical event pairs from the
100K video-article pairs training set. We evaluate the quality
of these pseudo labels in Appendix C.2.

5.2 Training
Once we obtain the pseudo labels, we proceed to train-
ing using our model, Multimodal Analysis of Structured
Hierarchical Events Relations (MASHER). The method is
illustrated in Figure 3. Given a text event ei and video event
vj having a label from the pseudo label set, r′ij , we follow
the procedure described below to train our model.

Input Representation and Feature Extraction. We rep-
resent text events as a word, ei, in a sentence sei =
[w1, w2, ...ei, ..wj , ...wn]. The video event, vj , is a video
clip in a video consisting of n video events, {vj}nj=1. vj
is comprised of a stack of frames sampled uniformly at fs
frames per second, vj = {F j

y }Zy=1. We use CLIP to extract
text event features, fti = f ′t(sei) as well as video event
features, fvj = 1

Z

∑Z
y=1 fi(F

j
y ), where fi is CLIP’s image

encoder and f ′t is a modification of CLIP’s text encoder to
capture additional context, ft (c.f . Appendix C.1).

Contextualizing Video Event Features So far, we have
extracted video event features independent of other events
in the video. This is a limitation since a video event such as
building destruction needs to be contextualized with respect
to other events in the video to ascertain whether it happened
because of, say, a “storm” event or a “earthquake” event. As
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Figure 4: The left most column shows the inputs and the rest are outputs. (a): Ground Truth, (b) Text Base. (c) MM Base. (d)
MASHER. The text-text event relations are derived using the method described in Section 5.1.

Hierarchical Identical Avg F1

P R F1 P R F1

Prior Base. 4.7/2.0 4.7/2.0 4.7/2.0 2.0/1.2 2.0/1.2 2.0/1.2 3.4/1.6
Text Base. 5.9/2.1 0.1/0.1 0.1/0.1 2.5/2.6 7.1/13.6 3.6/4.3 1.9/2.2
MM Base. 35.7/28.0 5.0/6.3 8.8/10.3 8.8/7.6 33.1/32.3 13.9/12.4 11.4/11.4
Video-LLaMA 4.82/2.21 13.15/13.28 7.06/3.79 1.76/1.03 4.08/4.25 2.46/1.65 4.76/2.72

MASHER 21.9/11.9 22.1/18.8 22.0/14.6 8.2/6.3 44.5/39.0 13.9/10.9 18.0/12.8

Table 3: Comparison with baseline models on the validation/test set.

such, we use Contextual Transformer (CT) to contextualize
the event features with respect to other events in the video.
CT is essentially a stack of multi-headed attention layers
(Vaswani et al. 2017). All the video events’ features from
video V , {fvj}nj=1, forms the input tokens to CT. The output
is cfvj = CT ({fvj}nj=1).

Commonsense Features To aid learning the relationship
between open domain text and video events, we incorporate
commonsense knowledge from an external knowledge base,
ConceptNet (Speer, Chin, and Havasi 2017). Inspired by
(Wang et al. 2020), we extract events related by relations
“HasSubevent”, “HasFirstSubevent” and “HasLastSubevent”
from ConceptNet as positive pairs and random events as
negative pairs. We embed the event pairs using CLIP and
then leverage the embeddings to train a feature extractor
CS(., .), a MLP (Multi Layer Perceptron), using contrastive
loss (c.f . Appendix C.3). Once trained, we freeze it and use it
as a commonsense feature extractor while training MASHER,
csij = CS(fti, cfvj). Although while training MASHER,
one of the events is from the visual modality, we are still
able to use CS because CLIP’s image embeddings and text
embeddings lie in the same embedding space. We provide
more analysis on this hypothesis in Appendix C.3.

Embeddings Interactions (EI) Following (Wang et al.
2020), we also add additional text event and video event
feature interactions for a better representation. Specifically,

(1) Subtraction of events’ features (SF), sfij = fti − cfvj
and (2) Hadamard product of events’ features (MF), mfij =
fti ∗ cfvj .

Multi Layer Perceptron (MLP) & Loss We concate-
nate the text event feature, fti, contextualized video event
features, cfvj , commonsense features, csij , and embedding
interactions, sfij and mfij , to form the input to a 2 layer
MLP. The MLP is a 3-way classifier, outputting pij ∈ R1×3:
the probabilities for ei and vj being classified as “Hierar-
chical”, “Identical” or “NoRel” (Not Related). We train the
model using cross entropy loss between pij and the label, r′ij .

5.3 Implementation Details
Notably, most text event and video event pairs are unrelated
(94.52% in the train set). To mitigate label bias, we adjust the
labels in the cross-entropy loss using the inverse ratio of their
count in the train set, following Wang et al. (2021). Our best
model uses a single layer of multi-headed attention in CT.
We train our model for 15 epochs using a batch size of 1024
and a learning rate of 1e-5 on 4 NVIDIA Tesla v100 GPUs
for a total training time of around 34 hours. In inference, we
employ CLIP with MASHER as an ensemble to eliminate
false positives for identical relations. This leverages CLIP’s
robust multimodal feature matching to confidently discard
event pairs falsely predicted as identical. We provide ablation
study of our model architecture in Section 6.2.
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Hierarchical Identical Avg F1

P R F1 P R F1

MASHER Basic 12.1 30.7 17.4 7.2 42.8 12.4 14.9
+ CT 17.4 23.9 20.1 7.5 43.3 12.8 16.5
+ CS 13.4 29.1 18.4 7.6 44.9 13.0 15.7
+ EI 15.2 29.3 20.0 7.3 45.1 12.5 16.3
+ CT + CS + EI 21.9 22.1 22.0 8.2 44.5 13.9 18.0

Table 4: Ablation studies on components and features.

6 Experiments
Evaluation Metric We evaluate hierarchical and identical
relations using Precision, Recall, and F1-score, following
prior work in NLP (Hovy et al. 2013; Glavaš et al. 2014) and
scene graph work in vision (Xu et al. 2017) (details in Ap-
pendix D.1). The F1-score effectively balances rewarding the
model for correct relations and penalizing excessive incorrect
predictions. We also report the macro average of F1-scores
hierarchical and identical relations.

6.1 Baselines
Prior Baseline. (Prior Base.) We use a random weighted
classifier that predicts a relation type ∈ {“Hierarchical”,
“Identical”, “NoRel”} for an event pair based on the prior
distribution of the relation type in the annotated labels.

Text-only Baseline. (Text Base.) We construct a text-only
baseline to study the limitations of text-only data in this task.
To this end, we use ASR provided with video as a proxy for
video events (c.f . Appendix D.2). Specifically, the proxy for
video event vj is the ASR found within the timestamps of vj ,
denoted Xj . We extract events from Xj , {e′jz}

w
z=1 following

Section 5.1. Next, we use the NLP model (Wang et al. 2021)
to predict the relationship type, rijz between a text event
from the article, ei, and proxy video events from ASR, e′jz .
If any rijz∈ {“Hierarchical”, “Identical”}, we propagate rijz
from ei and e′jz to ei and vj as e′jz is a proxy for vj .

Multimodal Baseline. (MM Base.) We discussed a
method to predict multimodal relations in Section 5.1, which
used NLP and vision methods to produce pseudo labels. This
is currently the best performance that NLP and vision can
separately combine to give without a trained model. As such,
we consider this pipeline as our multimodal baseline.

Video-LLaMA (Zhang, Li, and Bing 2023). It is a video
based large language model which has demonstrated strong
zero-shot results on multiple video language tasks. Conse-
quently, we consider it as one of our baseline.

6.2 Results
Comparison against baselines The comparison between
MASHER and above-mentioned baselines on the valida-
tion and test set are reported in Table 3. We also compare
MASHER’s and the baselines’ performance on a dataset sam-
ple visually in Figure 4. From the table and the figure, we
make following observations:
• For the most comprehensive metric, Avg F1 score,

MASHER outperforms all baselines with significant per-
formance gains (e.g. 18.0 vs. 11.4 on the validation set).

• Text Base. performs quite poorly (Avg F1 2.2). This is
because a lot of visual events in the video are not mentioned
in its ASR. This fact is also demonstrated by Figure 4.

• MM Base. performs better than Text Base. (Avg F1 11.4
vs 2.2), stressing the importance of visual data to this task.

• MASHER achieves 4x recall over MM Base for hierarchi-
cal relations. It is because MM Base. relies on finding the
subevent in text first before retrieving the matching video
subevent (Section 5.1). This causes it to miss visual-only
subevents while MASHER can discover those as it directly
predicts multimodal relations. This fact is evident in Fig-
ure 4 – MM Base can only discover “took” (to streets) video
subevent as it is mentioned in text as well. While MASHER
can also detect “water cannon” visual-only subevent. We
further validate this hypothesis by measuring recall on
visual-only subevents. MASHER scores 15.92% while MM
Base. scores 2.14%. This also explains MM Base’s better
precision, since it only predicts a few relations.

• Both MM Base and MASHER have low precision for iden-
tical relations due to their use of a video retrieval compo-
nent that noisily predicts hierarchical relations as identical.
For instance, a ”meeting” text event is predicted identical
to a video sub-event showing a handshake, because of the
nature of the training dataset used for the video retrieval
model. In contrast, our dataset annotates handshake to be a
subevent of “meeting”, as it’s only a part-of meeting event.

• Video-LLaMA, a strong multimodal baseline, outperforms
Prior and Text Base. Still, it’s worse than MM Base, in-
dicating specialized models (MM Base.) surpass generic
vision-language model (Video-LLaMA) on this task.

Ablation Study and Analysis In Table 4, our ablation
study examines the importance of various features in our
model. Key findings include: 1) contextualizing video event
features with CT enhances performance; 2) an external knowl-
edge base (CS features) improves understanding of open-
domain event-event relations; 3) employing different embed-
ding interaction techniques (EI) enhances feature represen-
tation; and 4) the synergy of all three components (CT, CS,
and EI) yields the best performance. Further ablations on
inference time ensemble with CLIP and the number of layers
in CT are explored in Appendix E. Additionally, Appendix
F demonstrates MASHER’s attention to relevant objects via
Grad-CAM (Selvaraju et al. 2017) visualizations.

7 Conclusion
We proposed the novel task of extracting multimodal event
hierarchies from multimedia content, a powerful way to un-
derstand, represent and reason about our world. Along with
the task, we introduced MultiHiEve – a video-language
dataset sourced from news domain and containing rich hier-
archy of events. We proposed a weakly supervised model,
MASHER, to predict these multimodal event relationships,
achieving an improvement of around 3x on recall and 50% on
F1 score (hierarchical relations) over the strongest baseline.

We discuss the limitations and future directions of our
work in Appendix H. We also discuss privacy and social bias
concerns with respect to MultiHiEve in Appendix B.4.
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and cross-lingual graded lexical entailment. In ACL, 4963–
4974.

Wang, H.; Chen, M.; Zhang, H.; and Roth, D. 2020. Joint
Constrained Learning for Event-Event Relation Extraction.
In EMNLP, 696–706. Online: ACL.
Wang, H.; Zhang, H.; Chen, M.; and Roth, D. 2021. Learn-
ing Constraints and Descriptive Segmentation for Subevent
Detection. In EMNLP, 5216–5226. Online and Punta Cana,
Dominican Republic: ACL.
Wen, H.; Lin, Y.; Lai, T.; Pan, X.; Li, S.; Lin, X.; Zhou, B.;
Li, M.; Wang, H.; Zhang, H.; Yu, X.; Dong, A.; Wang, Z.;
Fung, Y.; Mishra, P.; Lyu, Q.; Surı́s, D.; Chen, B.; Brown,
S. W.; Palmer, M.; Callison-Burch, C.; Vondrick, C.; Han, J.;
Roth, D.; Chang, S.-F.; and Ji, H. 2021. RESIN: A Docker-
ized Schema-Guided Cross-document Cross-lingual Cross-
media Information Extraction and Event Tracking System.
In NAACL: Human Language Technologies: Demonstrations,
133–143. Online: ACL.
Xu, D.; Zhu, Y.; Choy, C. B.; and Fei-Fei, L. 2017. Scene
graph generation by iterative message passing. In CVPR,
5410–5419.
Xu, J.; Mei, T.; Yao, T.; and Rui, Y. 2016. Msr-vtt: A large
video description dataset for bridging video and language. In
CVPR, 5288–5296.
Yao, W.; Dai, Z.; Ramaswamy, M.; Min, B.; and Huang, R.
2020. Weakly supervised subevent knowledge acquisition.
In EMNLP.
Yatskar, M.; Zettlemoyer, L.; and Farhadi, A. 2016. Situa-
tion Recognition: Visual Semantic Role Labeling for Image
Understanding. CVPR, 5534–5542.
Zellers, R.; Lu, X.; Hessel, J.; Yu, Y.; Park, J. S.; Cao, J.;
Farhadi, A.; and Choi, Y. 2021. MERLOT: Multimodal Neu-
ral Script Knowledge Models. In Ranzato, M.; Beygelzimer,
A.; Dauphin, Y.; Liang, P.; and Vaughan, J. W., eds., NeurIPS,
volume 34, 23634–23651. Curran Associates, Inc.
Zhang, H.; Li, X.; and Bing, L. 2023. Video-LLaMA: An
Instruction-tuned Audio-Visual Language Model for Video
Understanding. arXiv:2306.02858.
Zhang, T.; Whitehead, S.; Zhang, H.; Li, H.; Ellis, J. G.;
Huang, L.; Liu, W.; Ji, H.; and Chang, S. 2017. Improving
Event Extraction via Multimodal Integration. In ACM MM.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17672


