
When Do Program-of-Thought Works for Reasoning?
Zhen Bi1,2, Ningyu Zhang1,2*, Yinuo Jiang1,2, Shumin Deng4,

Guozhou Zheng1,2,3, Huajun Chen1,2,3*

1Zhejiang University
2Zhejiang University - Ant Group Joint Laboratory of Knowledge Graph

3Donghai Laboratory
4NUS-NCS Joint Lab, National University of Singapore

{bizhen zju, zhangningyu, 3200100732, guozhou, huajunsir}@zju.edu.cn, shumin@nus.edu.sg

Abstract

In the realm of embodied artificial intelligence, the reasoning
capabilities of Large Language Models (LLMs) play a pivotal
role. Although there are effective methods like program-of-
thought prompting for LLMs which uses programming lan-
guage to tackle complex reasoning tasks, the specific im-
pact of code data on the improvement of reasoning capabili-
ties remains under-explored. To address this gap, we propose
complexity-impacted reasoning score (CIRS), which com-
bines structural and logical attributes, to measure the cor-
relation between code and reasoning abilities. Specifically,
we use the abstract syntax tree to encode the structural in-
formation and calculate logical complexity by considering
the difficulty and the cyclomatic complexity. Through an
empirical analysis, we find not all code data of complex-
ity can be learned or understood by LLMs. Optimal level of
complexity is critical to the improvement of reasoning abil-
ities by program-aided prompting. Then we design an auto-
synthesizing and stratifying algorithm, and apply it to instruc-
tion generation for mathematical reasoning and code data fil-
tering for code generation tasks. Extensive results demon-
strates the effectiveness of our proposed approach.

Introduction
Large language models (LLMs) (OpenAI 2023; Anil et al.
2023), have emerged as a general-purpose problem-solving
methodology for embodied artificial intelligence. In the
realm of embodied AI, the reasoning capabilities of LLMs
play a pivotal role, especially when agents need to com-
prehend the semantic intricacies of their environment for
effective control (Chen et al. 2022b; Huang et al. 2022,
2023; Wang et al. 2023a). Recent approaches (Chen et al.
2022a; Gao et al. 2022; Cheng et al. 2023), which we term
program-of-thought, leverages programming language as a
superior prompting mechanism for complex reasoning tasks.
In contrast to chain-of-thought prompting (Wei et al. 2022),
program-of-thought prompting disentangles the problems
into executable code segments and address them step-by-
step. However, the correlation between the programming
language utilization and the improvement in reasoning abil-
ity for LLMs is under-studied. The essential question still

*Corresponding Author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Question: A restaurant has 3 chefs.
Chef A worked for 8 hours, Chef B
worked for 6.5 hours, and Chef C
worked for 9.25 hours. How many
minutes did the chefs work in total?

```python
chef_A_hours = 8
chef_B_hours = 6.5
chef_C_hours = 9.25
total_hours = chef_A_hours + 
chef_B_hours + chef_C_hours
total_minutes = total_hours * 60
print(total_minutes)
```

𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 − 𝑰𝒎𝒑𝒂𝒄𝒕𝒆𝒅
𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑺𝒄𝒐𝒓𝒆

𝑰𝑭	𝒐𝒓	𝑬𝑳𝑺𝑬

+ ∗ +

Solution

Complexity Analysis

What’s the crucial factor for reasoning?

logic and structure

Figure 1: We leverage code structure to analyze what kind
of data is crucial for reasoning abilities of LLMs models.

remains: When do program-of-thought prompting works
for reasoning1?

In this work, we propose the Complexity-Impacted
Reasoning Score (CIRS), a comprehensive metric for the
relationship between code reasoning steps and their impacts
on LLMs’ reasoning capacities. We postulate that program-
ming languages hold distinct advantages due to: (1) their su-
perior modeling of intricate structures compared to serial-
ized natural language. (2) their inherent procedure-oriented
logic, which assists in addressing multi-step reasoning prob-
lems. We posit that our metric should evaluate the code com-
plexity from both structural and logical perspectives.

Specifically, we use abstract syntax tree (AST) to calcu-
late the structural complexity of code reasoning steps (ra-
tionales). To retain all structural information in AST that
is represented as a tree, our approach leverages three AST
indicators (node count, node type, depth), which provides
a comprehensive understanding of code structures. Mean-
while, inspired by Halsted (Halstead 1977) and McCabe
(McCabe 1976)’s theory, we design a method to calculate

1In this work, we use mathematical reasoning tasks for verifi-
cation, which is a typical problem for complex reasoning tasks.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17691

logical complexity by integrating code difficulty and cyclo-
matic complexity. Thus, the operators, operands and control
flow of the code can be taken into account. We can explicitly
compute the complexity of logical inherent in the code.

Through an empirical analysis by our proposed CIRS,
we find that not all code data of complexity can be learned
and understood by LLMs and current LLMs have limited un-
derstanding of symbolic knowledge like code. Code blocks
with low complexity contain insufficient knowledge, while
those with high complexity could be too difficult for LLMs
to learn. Consequently, only code data with an optimal level
of complexity (structure&logic), neither too simple nor too
intricate, contribute to the effective enhancement of LLMs’
reasoning abilities.

Then, we propose the auto-synthesizing and stratifying
algorithm that can automatically generate and filter out the
data with the most effective reasoning ability. We apply our
algorithm to two scenarios: (1) guiding instruction genera-
tion for mathematical reasoning tasks. (2) filtering code data
for code generation tasks. Compared to baseline models, our
proposed method achieves favorable results in mathematical
reasoning and shows effectiveness for code generation tasks.
In this paper, our contributions are as follows:

• We propose a novel method to measure reasoning com-
plexity for the code data, termed CIRS. Our approach,
which evaluates the code data from both structural and
logical perspectives, can accurately gauges the correla-
tion between code complexity and its reasoning ability.

• We empirically analyze the impact of varying complex-
ities, identifying that optimal level of code languages,
which is leanable for LLMs, as the pivotal factor in the
reasoning abilities of program-of-thought prompting.

• We design an auto-synthesizing and stratifying algorithm
and apply our approach to both instruction generation for
mathematical reasoning and code data filtering for code
generation tasks. Extensive results demonstrates the va-
lidity of our proposed perspective.

Background
Code large language models have demonstrated remarkable
capabilities in various tasks such as commonsense reason-
ing (Madaan et al. 2022), information extraction (Wang, Li,
and Ji 2022), mathematical reasoning (Imani, Du, and Shri-
vastava 2023), robotics manipulation (Huang et al. 2023)
and embodied learning agent (Wang et al. 2023a). Generally,
code LLMs with larger model parameters are more effective
than vanillar LLMs for reasoning. We find that even if Codex
(Chen et al. 2021) and GPT-3.5 (Brown et al. 2020) are with
same parameters, Codex that is pre-trained on code corpus
performs better than GPT-3 on problems such as arithmetic
reasoning and structural prediction tasks. Intriguingly, train-
ing on code data not only enables the ability of code under-
standing but may also foster the reasoning ability.

Inspired by Chen et al. (2022a); Gao et al. (2022), we
formalize the multiple-step reasoning tasks by using code-
format chain-of-thoughts. For program-of-thought prompt-
ing, given the input for the reasoning problem Q, we aim to

maximize the likelihood of the answer A as p(A|Q).

p(A|Q) = p(A|Q,Rc)p(Rc|Q) (1)

where Rc is the solution of the code which will be generated.
We enhance the effectiveness of solving multi-step reason-
ing problems by using code prompts as intermediate steps.

Complexity-Impacted Reasoning Score
To measure the the reasoning ability of the code rationale
Rc, we define the complexity-impacted reasoning score as
the product of structural complexity ScoreSC and logical
complexity ScoreLC .

Score(Rc) = ScoreSC(Rc)× ScoreLC(Rc) (2)

Structural Complexity To calculate the structural com-
plexity, we measure the structural complexity of the Abstract
Syntax Tree (AST). We design a simple yet effective method
by selecting three indicators that can provide a comprehen-
sive understanding of structural information. Therefore, we
define the ScoreSC as follows:

ScoreSC(Rc) = Sigmoid(f(xNode, xType, xDepth)) (3)

where xNode, xType and xDepth are the features of node
count, node types and tree depth in the AST of the code
rationale Rc. We first use the function f to apply Z-score
normalization to the accumulated data x for each feature,
and then we aggregate the overall information by mean pool-
ing. Next, we apply the Sigmoid function to transform the
data into the range of 0 to 1. The benefit of doing this is
to preserve the distribution characteristics of the feature and
avoid being influenced by extreme statistical data, whether
it is exceptionally large or small. The detailed explanations
for three indicators are as follows:

• Node Count. The number of nodes reflects the size of the
code. Generally, more nodes indicate higher complex-
ity. But node count alone cannot comprehensively mea-
sure code complexity because a large code with a sim-
ple structure might be easier to understand than a smaller
code with a complex structure.

• Node Types. Node types help identify the structural ele-
ments present in the code, such as conditional statements,
loops, and function calls. Different node types play dif-
ferent roles in the code and contribute differently to its
complexity. Therefore, tracking the quantity of various
node types can enhance our understanding of the struc-
tural complexity of the code.

• Tree Depth. The depth of the AST reflects the level of
nesting in the code. A greater tree depth may imply more
complex control flow and logic, making the code harder
to understand. It is important that depth alone is also not
the sole measurement criterion. A shallow tree with mul-
tiple simple branches might be easier to comprehend than
a deep tree with a few complex branches.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17692

ng

Below are some mathematical problems.
Can you rewrite new problems that are
similar to them? Then you should write
python code to solve the new problem.

Question: QUESTION ×𝑁

New Question: ______
New Solution: ______

𝐀𝐮𝐭𝐨𝐦𝐚𝐭𝐢𝐜
	𝐅𝐢𝐥𝐭𝐞𝐫𝐢𝐧𝐠×𝑁

Templates

Seed datasets

AQuA

GSM8K
MultiArith

ASDiv

SVAMP
… Data Synthesizing

Question:
A restaurant has 3 chefs. Chef A worked
for 8 hours, Chef B worked for 6.5 hours,
and Chef C worked for 9.25 hours. How
many minutes did the chefs work in total?

```python 
chef_A_hours = 8
chef_B_hours = 6.5
chef_C_hours = 9.25 
total_hours = chef_A_hours + chef_B_hours 
+ chef_C_hours 
total_minutes = total_hours * 60
print(total_minutes) 
```

Solution

solutions by code

structure

logic

Auto-stratification

𝑪𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 − 𝑰𝒎𝒑𝒂𝒄𝒕𝒆𝒅 𝑹𝒆𝒂𝒔𝒐𝒏𝒊𝒏𝒈 𝑺𝒄𝒐𝒓𝒆	(𝑪𝑰𝑹𝑺)

𝑆𝑐𝑜𝑟𝑒!"~𝑓(𝑥#$%&, 𝑥'()&, 𝑥*&)+,)

𝑆𝑐𝑜𝑟𝑒 = 𝑆𝑐𝑜𝑟𝑒!" 3	𝑆𝑐𝑜𝑟𝑒#"
𝑆𝑐𝑜𝑟𝑒5"~DifEicult	𝐷×	Cyclomatic	𝑉

Reasoning Problems Complexity Distribution

Measure by CIRS

Subsets

Filter

mid-range
complexity

LLaMA
AlpacaTraining Synthesizing

(filtered)
Data

Evaluation

In-Distribution

GSM8K

ASDiv

SVAMP

AQuA

Out-of-Distribution

MATH
Big Bench Hard

Train Test

Code Alpaca

• CIRS-guided Instruction Generation

• CIRS-based Code Filtering

code intructions

filter

Figure 2: We utilize complexity-impacted reasoning score (CIRS) to measure the complexity of code reasoning steps. We first
synthesize data and employ CIRS to analyze the complexity distribution of the code reasoning data. Then, we analyze and split
the data into three different subsets. Next, we validate the performance on different model parameters. Finally, we leverage the
auto-synthesizing and stratifying algorithm and evaluate its performance on the filtered data with the most effective complexity.

Logical Complexity We define code logical complexity
ScoreLC integrating the difficulty D and cyclomatic com-
plexity V , which is inspired by Halstead Complexity Met-
rics (Halstead 1977) and McCabe’s Cyclomatic Complexity
(McCabe 1976).

ScoreLC(Rc) = Sigmoid(D(Rc)× V (Rc)) (4)

where Difficulty D(Rc) denotes the difficulty for solving
the problem and V (Rc) means cyclomatic complexity of the
rationale Rc. To represent the effort required to comprehend
the program, the Difficulty D(Rc) is defined as:

D(Rc) =
(n1

2

)
·
(
N2

n2

)
(5)

where n1 denotes the number of distinct operators and
N2 denotes the total number of operands in the code. n2

denotes the number of distinct operands in the code rationale
Rc. In this formula, the term (n1/2) represents the average
complexity of operators, while the term (N2/n2) represents
the average complexity of operands.

To consider the complexity of the logical loops (code con-
trol flow), we define the cyclomatic complexity V (Rc) as:

V (Rc) = E −N + 2 (6)

where E denotes the number of edges in the control flow
graph in the code and N denotes the number of nodes in
the control flow graph. We employ the Sigmoid function
to constrain the values of code logical complexity. There is
a significant correlation between potential program errors

and high cyclomatic complexity. We note that high cyclo-
matic complexity indicates that the program code has com-
plex judgement logic, potentially leading to lower quality.
It might be difficult to test and maintain those code with
high cyclomatic complexity. Generally, by integrating the
difficulty and cyclomatic complexity, both the complexity of
the operators, operands, and control flow of the code can be
taken into account. Next, we conduct experimental analysis
to empirically study the rationality of our method.

Experimental Settings
In order to conduct an unbiased evaluation of all model per-
formances, we use zero-shot and few-shot settings for eval-
uation. For zero-shot setting, we directly presenting mathe-
matical problems to the model for solution generation, with-
out any demonstrations in the input. For few-shot setting,
we choose 3-shot for evaluation where we select three in-
context examples with rationales. Our criterion for evalua-
tion is that the answer is considered ultimately correct only
if the code executor’s answer is correct.

In the empirical analysis, we conduct an empirical analy-
sis of the variations in different model sizes and complexities
in zero-shot setting. We build our own test dataset because
there are no publicly available benchmarks. The evaluation
is performed on AsDiv (Miao, Liang, and Su 2020), GSM8K
(Cobbe et al. 2021), MultiArith (Roy and Roth 2015) and
SVAMP (Patel, Bhattamishra, and Goyal 2021), with a se-
lection of 500 instances randomly chosen from each original
testset to form the new testsets. We choose gpt-3.5-turbo as
the main benchmark model and accuracy (Acc) as our main
evaluation metric.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17693

To use CIRS for improving the reasoning ability, we train
the model based on the LLaMA-7B (Version 1.0) (Touvron
et al. 2023). Vicuna (Chiang et al. 2023) and Falcon (Al-
mazrouei et al. 2023) are selected as the main comparison
models and accuracy (Acc) is chosen as the evaluation met-
ric again. Apart from the datasets used in the in-distribution
setting, the model is also evaluated on MATH (Hendrycks
et al. 2021) and BigBench-Hard (Suzgun et al. 2022) in the
out-of-distribution setting. It should be noted that we only
choose level-1 problems in MATH. We use algorithmic and
multi-step arithmetic reasoning tasks in BIG-Bench Hard.
The experimental setup is shown in the supplementary.

Empirical Analysis
In this section, we empirically analyze the impact of differ-
ent forms of code data. Specifically, we synthesize a totally
new dataset and manually partition it using our CIRS. Next,
we discuss the impact of code data with different complex-
ities on the reasoning abilities for LLMs. Then we analyze
the characteristics of code data with varying complexities
and conduct more ablation analysis.

Data Synthesizing

Seed source Seed size Data size
AQuA 97,467 10,160
GSM8K 7,644 12,812
MultiArith 600 12,163
ASDiv 2,306 13,554
SVAMP 3,954 12,441

ALL 61,130

Table 1: Statistics of seeds and the generated data size.

To fairly explore the impact of the variations in different
complexity scores, it is necessary to avoid errors caused by
the dataset itself and generate entirely new forms of code
data. The sources of seed data include the training set of
GSM8K (Cobbe et al. 2021), MultiArith (Roy and Roth
2015), Asdiv (Miao, Liang, and Su 2020), SVAMP (Pa-
tel, Bhattamishra, and Goyal 2021) and AQuA (Ling et al.
2017). In Table 1, we have synthesized over 60,000 samples
from five seed datasets. For each dataset, we generate ap-
proximately 10,000 samples. We choose as many datasets as
possible to ensure the diversity of mathematical problems.

Then, we design a pipeline that can automatically gen-
erate high-quality code corpus by leveraging ChatGPT. As
shown in Figure 2, we apply a template to define the for-
mat and then allow the API to continuously rewrite new
questions and their corresponding code-format solutions.
In the construction of templates, we randomly select three
problems from the seed datasets each time. Next, we au-
tomatically filter out the generations that do not conform
to Python syntax standards, which results in a collection of
high-quality mathematical problems. For all generated data,
we randomly sampled 10% and verified its correctness by
manual checks and automated validation with GPT-4, ensur-
ing the accuracy within a reasonable margin of error.

After obtaining well-generated code data, we utilize our
proposed CIRS and manually split the data into different
subsets based on the analysis of code complexity distribu-
tion. We put the visualized results in the supplement. Based
on different complexity scores, we name the partitioned sub-
sets as low (lower score samples), medium (medium score
samples) and high (high score samples).

Impacts of Different Complexity Score
To compare the impact of different code complexities on the
reasoning capability of LLMs, we train three models based
on LLaMA (Version 1.0) from 7 billion to 65 billion param-
eters. We randomly select 1,700 instances from each sub-
set (low, medium, high) to build the training and validation
dataset for fair comparisons. Results are shown in Figure 3.

Optimal level of code is crucial to the reasoning abil-
ities of program-of-thought prompting. From the results
across the four datasets, we note that the model performs
optimally when the complexity of the code data is in mid-
range. This suggests that the learnable symbolic language is
crucial to the reasoning abilities of program-aided prompt-
ing. The reasoning behind this is that data with overly sim-
plistic complexity, is too simple for LLMs, leading to less
noticeable effects. Conversely, when the complexity esca-
lates significantly, the logical semantics and nested struc-
tures become difficult to comprehend or learn, which could
adversely impact the reasoning capabilities of LLMs.

The larger the number of parameters, the more sig-
nificant the gain in LLM’s reasoning capabilities. As the
model size increases from 7 to 65 billion parameters, the
effectiveness of its reasoning capability improves. In fact,
most 65 billion fine-tuned models can achieve results com-
parable to those of gpt-3.5-turbo. It suggests that having a
sufficient number of parameters is crucial for emergent rea-
soning capabilities in LLMs. Furthermore, when the LLM is
large enough, the difference in results across various com-
plexities is minimal. This indicates that LLMs with vast pa-
rameters are more prone to symbolic data and inherently
have the potential to yield strong reasoning capabilities.

Current LLMs have limitations in their understand-
ing capabilities for reasoning. We observe that when data
complexity is extremely high, the performance of LLMs
tends to decrease. It reflects that there is an inherent limit
to the reasoning capabilities of large language models. We
argue that: (1) The current architecture of LLMs (such as
decoder-only LLM) has limited ability to understand com-
plex knowledge, which also restricts the emergence of their
reasoning capabilities. The prerequisite for large models to
demonstrate powerful reasoning abilities is their ability to
comprehend the structures and logical knowledge embed-
ded in complex data. Therefore, it is necessary to explore
model structures with stronger reasoning abilities in future
research. (2) Further enhancement in reasoning power re-
quires the reliance on external tools. We know that the scope
of reasoning problems is quite broad, not only mathematical
reasoning, but also including commonsense or more com-
plex logical reasoning tasks. Therefore, relying solely on the
LLM itself is not enough to resolve all issues at once; the as-
sistance of more powerful external tools is required.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17694

A
cc

ur
ac

y(
%

)

7 billion

45

60

75
gpt-3.5-turbo

13 billion 30 billion
Parameters

low
medium
high

A
cc

ur
ac

y(
%

)

7 billion

25

50

75
gpt-3.5-turbo

13 billion 30 billion
ParametersAsDiv GSM8K

65 billion 65 billion

A
cc

ur
ac

y
(%

)

50

75

gpt-3.5-turbo

Parameters

A
cc

ur
ac

y
(%

)

25

50

gpt-3.5-turbo

ParametersMultiArith SVAMP
7 billion 13 billion 30 billion 65 billion 7 billion 13 billion 30 billion 65 billion

25

75

low
medium
high

low
medium
high

low
medium
high

Figure 3: Evaluation performance on dataset GSM8K, MultiArith, ASDiv and SVAMP. We train three models (low, medium,
high) whose datasets contain the same number of samples for fair comparison. We use Accuracy (%) as the evaluation metrics.

CIRS-low

CIRS-medium

CIRS-high

low medium

high invalid

53.4

23.734.6 25.5

46.1 47.3

31.4 49.2 30.7

5.4% 48.7% 2.6%

17.8% 61.1% 9.3%

16.9% 42.9% 9.2%

Figure 4: Ablation analysis for different code complexities.︷︸︸︷ means the percentage of output predictions and←→ is
the prediction result of each category (accuracy %).

The Characteristics of Different CIRS Scores
In Figure 5, we investigate the characteristics of different
CIRS scores. The different subsets of CIRS scores exhibit
distinct structural and logical differences.

• Textual, minimal programming. Samples with lower
CIRS scores contain little structural information. Al-
though they do contain some intermediary reasoning pro-
cesses, these are primarily represented in flat textual de-
scriptions. These samples typically correspond to simpler
and structurally, logical insufficient problems.

• Simple but direct programming. As CIRS score in-
creases in the code reasoning steps, the presence of pro-
gramming languages with simple logical semantics and
structures also escalates. These samples typically involve
simple and straightforward logical operations.

• Complex programming. Samples with exceedingly
high scores contain substantial amounts of structural

function definitions or reasoning processes, which sug-
gests the presence of numerous complex conditional
statements and function structures. These samples are
typically highly challenging mathematical problems.

Excluding the Effect of the Distribution Itself
To negate the potential skew from data distribution itself,
such as enhanced performance in the mid-range data due
to its higher frequency of occurrence, we conduct a more
in-depth analysis of the evaluation results at different com-
plexity scores. We use the trained 7B model and conduct
tests on 2,000 samples with three models (CIRS-low, CIRS-
medium, CIRS-high). We use CIRS to measure the output
reasoning steps for each model and divide them into four cat-
egories (low, medium, high and invalid). In Figure 4, we find
CIRS-medium generates the highest number of valid pre-
dicted outputs in three distributions (17.8%, 61.1%, 9.3%).
We also observe that CIRS-medium demonstrates high accu-
racy (53.4, 46.1, 47.3) in all three distributions. The accuracy
of predictions for each distribution by the model is indepen-
dent of the quantity of training data. We can conclude that
the effectiveness of complexity data is not because of the
frequency of data occurrence.

Ablation Analysis for Textual Rationales
To verify the effect of code and textual rationales, we substi-
tute the code-format solving process with textual rationales
using the same datasets. We sample 1,700 instances of code
data within the mid-range complexity and simultaneously
construct a dataset that uses textual rationales. We train both
two models based on LLaMA-7B. As shown in Figure 6,
the code dataset demonstrates a clear advantage in all four

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17695

Question: A and B start a
business … After 2 years, they … of
Rs. 48,000. What is B's share in the
profit if they divided the profit in the
ratio of their investments?

```python
# Total investment = 60000+80000 
= 140000 
# A's share = (60000/140000) * 48000 
= 20571.43 
…
B_share_in_profit = 27428.57 
print(B_share_in_profit)
```

Question: There are 3 prime
numbers in ascending order. The
multiplication of the first 2 is 77 and
that of the last 2 is 91. What is the
last number?

```python
chef_A_hours = 8
chef_B_hours = 6.5
chef_C_hours = 9.25
total_hours = chef_A_hours + 
chef_B_hours + chef_C_hours
total_minutes = total_hours * 60
print(total_minutes)
```

Question: A restaurant has 3 chefs.
Chef A worked for 8 hours, Chef B
worked for 6.5 hours, and Chef C
worked for 9.25 hours. How many
minutes did the chefs work in total?

```python
from sympy import primerange
primes = list(primerange(1, 92))
for i in range(len(primes)):

for j in range(i+1, len(primes)):
if primes[i] * primes[j] == 77:

…
print(last_prime)
```

Textual, fewer
programming

Simple, direct
programming Complex programming

Figure 5: As the CIRS score increases, there is a greater presence of logical and structural information in the code.

A
cc

ur
ac

y
(%

)

AsDiv GSM8K MultiArith SVAMP

60.4

34.8

Rationale-Code
Rationale-Textual

27.8

19.4

79.0

41.8
54.8

35.8

25

50

75

Figure 6: Comparison for textual and code rationales.
datasets. It is because code inherently encapsulates logical
semantics and structural information. Another reason is that
code can be executed by external interpreters. Solutions with
code are superior to flattened textual information.

CIRS for Improving the Reasoning Ability
In this section, we first describe our auto-synthesizing and
stratifying algorithm and then we apply our proposed CIRS
to two reasoning tasks to valid its effectiveness.

Auto-Synthesizing and Stratifying Algorithm
Based on the processing step in the previous section, we for-
malize the whole procedure into a pipeline (Algorithm 1) for
automatic data generation and stratification. We first do the
template T filling by calling APIs and get the synthesized
dataset D. Then we calculate the distribution of complex-
ity for all synthesized data by CIRS and get the threshold
set J . Next we design a threshold-based k-means clustering
method that automatically partitions the dataset according to
complexity characteristics. Finally, we apply our proposed
algorithm for two scenarios to enhance the reasoning abili-
ties of large language models.

Usage1: CIRS-guided Instruction Generation
As stated in the previous section, we know that the trained
model with complexity optimal level of code data, exhibits
the best reasoning capabilities. Therefore, we employ our al-
gorithm to filter out data from the source dataset to train an

Algorithm 1: Auto-Synthesizing and Stratifying

Require: T : Template, K: Number of clusters, J : Thresh-
old set

Ensure: C: Cluster assignments
Dataset D ← template T filling by leveraging API
Threshold J ← threshold set generated by CIRS
Initialize C with random initial cluster assignments
repeat

Clear all clusters
for each data point x in D do

Find the nearest centroid ci in C to x
Assign x to cluster ci

end for
for each cluster ci in C do

Recalculate centroid ci as the mean of all points
end for
Remove clusters from C if the average distance to
their centroid is not in J

until no more updates or maximum iterations reached
return C

enhanced reasoning model. Totally, we collect 40,000 mid-
range data samples to train a more powerful language model
for reasoning. As shown in Table 2, for in-distribution set-
ting, we find that trained model outperforms Vicuna and Fal-
con. To eliminate the influence of data distribution, we di-
rectly test the model’s performance in the out-of-distribution
setting. Our model perform best (the same parameters) in
both zero-shot and few-shot prompting. It is worth noting
that our approach demonstrates comparable effectiveness
to ChatGPT on BigBench-Hard in zero-shot setting. For
MATH dataset, we notice that our model still outperforms
the baseline models. But our model are much worse than
ChatGPT which is due to limitation of code data itself.

Usage2: CIRS-based Code Filtering
To validate the effectiveness of our approach in code-related
tasks, we use the Algorithm 1 to filter a batch of code in-
struction data. We first split the Code Alpaca (Chaudhary

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17696

Models
Mathematical Reasoning

Parameters In-Distribution Out-of-Distribution
AsDiv GSM8K MultiArith SVAMP MATH BigBench-Hard†

Zero-shot, Answer-only Prompting
Falcon* 7B 14.7 3.6 6.0 5.6 4.8 19.0
Vicuna 7B 35.8 8.6 16.4 33.0 14.5 25.3
gpt-3.5-turbo / 74.4 65.8 84.8 71.0 70.1 37.3

CIRS (LLaMA) 7B 69.2 40.4 97.2 70.2 38.6 37.7

Few-shot, Chain-of-thought Prompting
Falcon 7B 7.9 3.0 5.4 4.6 2.9 23.2
Vicuna 7B 34.9 9.1 17.2 32.0 17.2 35.3
gpt-3.5-turbo / 80.6 61.4 44.8 71.6 68.5 50.1

CIRS (LLaMA) 7B 65.4 37.6 96.0 69.4 39.2 36.3

Table 2: Results of mathematical reasoning tasks. †We choose algorithmic and multi-step arithmetic reasoning tasks in BIG-
Bench Hard. *Here we use Falcon-Instruct which is fine-tuned on instruction datasets.

Models Parameters Acc.
Alpaca 7B 24.0

Code-LLaMA 7B 50.0
Code (CIRS)-LLaMA 7B 55.0

Table 3: Results of CIRS-based code filtering tasks.
2023) into train and test dataset. We leverage the whole train
dataset to train LLaMA-7B and the trained model is Code-
LLaMA. For fair comparison, we filter the train dataset and
get the subset with much more high-quality code instruc-
tions. We train Code (CIRS)-LLaMA based on the filtered
data. The results illustrate that Code (CIRS)-LLaMA demon-
strates effective performance in pure code generation tasks.
We can conclude that the optimized structures and logical
semantics is most beneficial for LLM’s reasoning abilities.

Related Work
Program-aided Prompting Chen et al. (2022a) prompt-
ing delegates computation steps to an external language in-
terpreter and Gao et al. (2022) generates programs as the in-
termediate reasoning steps. Cheng et al. (2023) is a neural-
symbolic framework and Hu et al. (2023) is a neural sym-
bolic prompting method for complex reasoning tasks. Some
methods such as (Wang, Li, and Ji 2022; Li et al. 2023; Bi
et al. 2023) leverages code prompting methods for informa-
tion extraction tasks. Madaan et al. (2022) frames the task of
structured commonsense reasoning as code generation. Zhu
et al. (2023) distills LLMs into specialized, compact models
for reasoning tasks by program-aided prompting.

Reasoning with LLMs The research on reasoning abili-
ties is a core issue in NLP (Qiao et al. 2023; Huang and
Chang 2022; Zhao et al. 2023). The success of LLMs have
achieved breakthroughs in various tasks or domains (Imani,
Du, and Shrivastava 2023; Yang et al. 2022; Zhang et al.
2022; Chen et al. 2023). Some studies (Gendron et al. 2023;
Liu et al. 2023; Varshney et al. 2023; Yuan et al. 2023;
Schwartz et al. 2020) are focusing on analyzing the capa-
bilities of LLMs. (Wang et al. 2023b) improves LLMs rea-
soning abilities by fine-tuning alignment paradigm. More
and more research efforts (Fu et al. 2023b; Mukherjee et al.

2023) are being devoted to unveiling the origin of a model’s
reasoning abilities or focus on enhancing the capability of
smaller models. Some works (Wiegreffe, Marasovic, and
Smith 2021; Xie et al. 2023) generate rationales to enhance
model interpretability. To measure reasoning capabilities,
(Fu et al. 2023c) propose a scheme based on complexity
prompting. (Fu et al. 2023a) is an evaluation suite that mea-
sures LLMs’ multi-step reasoning performance.

Discussion and Conclusion
What kind of data format is crucial for LLM’s reasoning
abilities? We explore the reasoning abilities for program-
of-thought prompting and it indicates that code data with
optimal level of code, characterized by certain logical and
structural qualities, is the key factor. Code data is efficient
because it is inherently semi-structured and abundant in
the natural world. We can prove that: (1) The local struc-
tural properties of the data are crucial for improving rea-
soning abilities, which aligns with Prystawski and Goodman
(2023). The logical coherence or a certain amount of knowl-
edge circuitry inherent in the data is necessary. (2) Overly
complex structural information and logic are ‘too difficult to
learn’ for LLMs. The results in this work demonstrate that
knowledge of optimal level complexity is most effective be-
cause it is learnable for most LLMs. Meanwhile, we find that
as the number of parameters in language models increases,
their understanding of complex knowledge also improves.

In this work, we introduce CIRS to measure the rela-
tion between code reasoning steps and reasoning abilities.
By considering both structural and logical attributes of code
data, we use AST to encode the structural information and
encode structural feature by difficulty and cyclomatic com-
plexity. Through an empirical analysis, we find that optimal
level of code languages plays a crucial role in the reason-
ing abilities of program-of-thought prompting. We develop
the auto-synthesizing and stratifying algorithm that applies
mathematical reasoning and code generation tasks. Exten-
sive results prove the effectiveness of the proposed method.
In the future, we will expand this work to more scenarios
such as commonsense or logical reasoning tasks and train
powerful reasoning models with low computational cost.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17697

Acknowledgements
We would like to express gratitude to the anonymous re-
viewers for their kind comments. This work was supported
by the National Natural Science Foundation of China (No.
62206246), the Fundamental Research Funds for the Central
Universities (226-2023-00138), Zhejiang Provincial Natu-
ral Science Foundation of China (No. LGG22F030011),
Ningbo Natural Science Foundation (2021J190), Yongjiang
Talent Introduction Programme (2021A-156-G), CCF-
Baidu Open Fund, and Information Technology Center and
State Key Lab of CAD&CG, Zhejiang University, and NUS-
NCS Joint Laboratory (A-0008542-00-00).

References
Almazrouei, E.; Alobeidli, H.; Alshamsi, A.; Cappelli, A.;
Cojocaru, R.; Debbah, M.; Goffinet, E.; Heslow, D.; Lau-
nay, J.; Malartic, Q.; Noune, B.; Pannier, B.; and Penedo,
G. 2023. Falcon-40B: an open large language model with
state-of-the-art performance.
Anil, R.; Dai, A. M.; Firat, O.; Johnson, M.; Lepikhin, D.;
Passos, A.; Shakeri, S.; Taropa, E.; Bailey, P.; Chen, Z.; Chu,
E.; Clark, J. H.; Shafey, L. E.; and et al. 2023. PaLM 2
Technical Report. arXiv:2305.10403.
Bi, Z.; Chen, J.; Jiang, Y.; Xiong, F.; Guo, W.; Chen, H.;
and Zhang, N. 2023. CodeKGC: Code Language Model
for Generative Knowledge Graph Construction. CoRR,
abs/2304.09048.
Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; Agarwal, S.; Herbert-Voss, A.; Krueger, G.; Henighan,
T.; Child, R.; Ramesh, A.; Ziegler, D. M.; Wu, J.; Winter,
C.; Hesse, C.; Chen, M.; Sigler, E.; Litwin, M.; Gray, S.;
Chess, B.; Clark, J.; Berner, C.; McCandlish, S.; Radford,
A.; Sutskever, I.; and Amodei, D. 2020. Language Models
are Few-Shot Learners. In NeurIPS.
Chaudhary, S. 2023. Code Alpaca: An Instruction-following
LLaMA model for code generation. https://github.com/
sahil280114/codealpaca.
Chen, M.; Tworek, J.; Jun, H.; Yuan, Q.; de Oliveira Pinto,
H. P.; Kaplan, J.; Edwards, H.; Burda, Y.; Joseph, N.; Brock-
man, G.; Ray, A.; Puri, R.; Krueger, G.; Petrov, M.; Khlaaf,
H.; Sastry, G.; Mishkin, P.; Chan, B.; Gray, S.; Ryder, N.;
Pavlov, M.; Power, A.; Kaiser, L.; Bavarian, M.; Winter, C.;
Tillet, P.; Such, F. P.; Cummings, D.; Plappert, M.; Chantzis,
F.; Barnes, E.; Herbert-Voss, A.; Guss, W. H.; Nichol, A.;
Paino, A.; Tezak, N.; Tang, J.; Babuschkin, I.; Balaji, S.;
Jain, S.; Saunders, W.; Hesse, C.; Carr, A. N.; Leike, J.;
Achiam, J.; Misra, V.; Morikawa, E.; Radford, A.; Knight,
M.; Brundage, M.; Murati, M.; Mayer, K.; Welinder, P.; Mc-
Grew, B.; Amodei, D.; McCandlish, S.; Sutskever, I.; and
Zaremba, W. 2021. Evaluating Large Language Models
Trained on Code. CoRR, abs/2107.03374.
Chen, W.; Ma, X.; Wang, X.; and Cohen, W. W. 2022a. Pro-
gram of Thoughts Prompting: Disentangling Computation
from Reasoning for Numerical Reasoning Tasks. CoRR,
abs/2211.12588.

Chen, X.; Zhang, N.; Xie, X.; Deng, S.; Yao, Y.; Tan,
C.; Huang, F.; Si, L.; and Chen, H. 2022b. Know-
Prompt: Knowledge-aware Prompt-tuning with Synergis-
tic Optimization for Relation Extraction. In Laforest, F.;
Troncy, R.; Simperl, E.; Agarwal, D.; Gionis, A.; Herman,
I.; and Médini, L., eds., WWW ’22: The ACM Web Confer-
ence 2022, Virtual Event, Lyon, France, April 25 - 29, 2022,
2778–2788. ACM.
Chen, Z.; Zhang, W.; Huang, Y.; Chen, M.; Geng, Y.; Yu,
H.; Bi, Z.; Zhang, Y.; Yao, Z.; Song, W.; Wu, X.; Yang,
Y.; Chen, M.; Lian, Z.; Li, Y.; Cheng, L.; and Chen, H.
2023. Tele-Knowledge Pre-training for Fault Analysis.
arXiv:2210.11298.
Cheng, Z.; Xie, T.; Shi, P.; Li, C.; Nadkarni, R.; Hu,
Y.; Xiong, C.; Radev, D.; Ostendorf, M.; Zettlemoyer, L.;
Smith, N. A.; and Yu, T. 2023. Binding Language Mod-
els in Symbolic Languages. In The Eleventh International
Conference on Learning Representations, ICLR 2023, Ki-
gali, Rwanda, May 1-5, 2023. OpenReview.net.
Chiang, W.-L.; Li, Z.; Lin, Z.; Sheng, Y.; Wu, Z.; Zhang, H.;
Zheng, L.; Zhuang, S.; Zhuang, Y.; Gonzalez, J. E.; Stoica,
I.; and Xing, E. P. 2023. Vicuna: An Open-Source Chatbot
Impressing GPT-4 with 90%* ChatGPT Quality.
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Hilton, J.; Nakano,
R.; Hesse, C.; and Schulman, J. 2021. Training Verifiers to
Solve Math Word Problems. CoRR, abs/2110.14168.
Fu, Y.; Ou, L.; Chen, M.; Wan, Y.; Peng, H.; and Khot,
T. 2023a. Chain-of-Thought Hub: A Continuous Effort to
Measure Large Language Models’ Reasoning Performance.
CoRR, abs/2305.17306.
Fu, Y.; Peng, H.; Ou, L.; Sabharwal, A.; and Khot, T. 2023b.
Specializing Smaller Language Models towards Multi-Step
Reasoning. CoRR, abs/2301.12726.
Fu, Y.; Peng, H.; Sabharwal, A.; Clark, P.; and Khot, T.
2023c. Complexity-Based Prompting for Multi-step Rea-
soning. In ICLR. OpenReview.net.
Gao, L.; Madaan, A.; Zhou, S.; Alon, U.; Liu, P.; Yang, Y.;
Callan, J.; and Neubig, G. 2022. PAL: Program-aided Lan-
guage Models. CoRR, abs/2211.10435.
Gendron, G.; Bao, Q.; Witbrock, M.; and Dobbie, G.
2023. Large Language Models Are Not Abstract Reason-
ers. CoRR, abs/2305.19555.
Halstead, M. H. 1977. Elements of Software Science (Op-
erating and programming systems series). Elsevier Science
Inc.
Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart,
S.; Tang, E.; Song, D.; and Steinhardt, J. 2021. Measuring
Mathematical Problem Solving With the MATH Dataset. In
NeurIPS Datasets and Benchmarks.
Hu, Y.; Yang, H.; Lin, Z.; and Zhang, M. 2023. Code
Prompting: a Neural Symbolic Method for Complex Rea-
soning in Large Language Models. CoRR, abs/2305.18507.
Huang, J.; and Chang, K. C. 2022. Towards Reasoning in
Large Language Models: A Survey. CoRR, abs/2212.10403.
Huang, W.; Wang, C.; Zhang, R.; Li, Y.; Wu, J.; and Fei-
Fei, L. 2023. VoxPoser: Composable 3D Value Maps

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17698

for Robotic Manipulation with Language Models. CoRR,
abs/2307.05973.
Huang, W.; Xia, F.; Xiao, T.; Chan, H.; Liang, J.; Florence,
P.; Zeng, A.; Tompson, J.; Mordatch, I.; Chebotar, Y.; Ser-
manet, P.; Jackson, T.; Brown, N.; Luu, L.; Levine, S.; Haus-
man, K.; and Ichter, B. 2022. Inner Monologue: Embod-
ied Reasoning through Planning with Language Models. In
CoRL, volume 205 of Proceedings of Machine Learning Re-
search, 1769–1782. PMLR.
Imani, S.; Du, L.; and Shrivastava, H. 2023. MathPrompter:
Mathematical Reasoning using Large Language Models.
CoRR, abs/2303.05398.
Li, P.; Sun, T.; Tang, Q.; Yan, H.; Wu, Y.; Huang, X.;
and Qiu, X. 2023. CodeIE: Large Code Generation Mod-
els are Better Few-Shot Information Extractors. CoRR,
abs/2305.05711.
Ling, W.; Yogatama, D.; Dyer, C.; and Blunsom, P. 2017.
Program Induction by Rationale Generation: Learning to
Solve and Explain Algebraic Word Problems. In ACL (1),
158–167. Association for Computational Linguistics.
Liu, X.; Yin, D.; Zhang, C.; Feng, Y.; and Zhao, D. 2023.
The Magic of IF: Investigating Causal Reasoning Abilities
in Large Language Models of Code. CoRR, abs/2305.19213.
Madaan, A.; Zhou, S.; Alon, U.; Yang, Y.; and Neubig, G.
2022. Language Models of Code are Few-Shot Common-
sense Learners. CoRR, abs/2210.07128.
McCabe, T. J. 1976. A Complexity Measure. IEEE Trans.
Software Eng., 2(4): 308–320.
Miao, S.; Liang, C.; and Su, K. 2020. A Diverse Corpus
for Evaluating and Developing English Math Word Problem
Solvers. In ACL, 975–984. Association for Computational
Linguistics.
Mukherjee, S.; Mitra, A.; Jawahar, G.; Agarwal, S.; Palangi,
H.; and Awadallah, A. H. 2023. Orca: Progressive Learn-
ing from Complex Explanation Traces of GPT-4. CoRR,
abs/2306.02707.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Patel, A.; Bhattamishra, S.; and Goyal, N. 2021. Are NLP
Models really able to Solve Simple Math Word Problems?
In NAACL-HLT, 2080–2094. Association for Computational
Linguistics.
Prystawski, B.; and Goodman, N. D. 2023. Why think step-
by-step? Reasoning emerges from the locality of experience.
CoRR, abs/2304.03843.
Qiao, S.; Ou, Y.; Zhang, N.; Chen, X.; Yao, Y.; Deng, S.;
Tan, C.; Huang, F.; and Chen, H. 2023. Reasoning with
Language Model Prompting: A Survey. In ACL. The As-
sociation for Computational Linguistics.
Roy, S.; and Roth, D. 2015. Solving General Arithmetic
Word Problems. In EMNLP, 1743–1752. The Association
for Computational Linguistics.
Schwartz, R.; Stanovsky, G.; Swayamdipta, S.; Dodge, J.;
and Smith, N. A. 2020. The Right Tool for the Job: Matching
Model and Instance Complexities. arXiv:2004.07453.

Suzgun, M.; Scales, N.; Schärli, N.; Gehrmann, S.; Tay,
Y.; Chung, H. W.; Chowdhery, A.; Le, Q. V.; Chi, E. H.;
Zhou, D.; and Wei, J. 2022. Challenging BIG-Bench Tasks
and Whether Chain-of-Thought Can Solve Them. CoRR,
abs/2210.09261.
Touvron, H.; Lavril, T.; Izacard, G.; Martinet, X.; Lachaux,
M.; Lacroix, T.; Rozière, B.; Goyal, N.; Hambro, E.; Azhar,
F.; Rodriguez, A.; Joulin, A.; Grave, E.; and Lample, G.
2023. LLaMA: Open and Efficient Foundation Language
Models. CoRR, abs/2302.13971.
Varshney, N.; Parmar, M.; Patel, N.; Handa, D.; Sarkar, S.;
Luo, M.; and Baral, C. 2023. Can NLP Models Correctly
Reason Over Contexts that Break the Common Assump-
tions? CoRR, abs/2305.12096.
Wang, G.; Xie, Y.; Jiang, Y.; Mandlekar, A.; Xiao, C.; Zhu,
Y.; Fan, L.; and Anandkumar, A. 2023a. Voyager: An
Open-Ended Embodied Agent with Large Language Mod-
els. CoRR, abs/2305.16291.
Wang, P.; Li, L.; Chen, L.; Song, F.; Lin, B.; Cao, Y.; Liu, T.;
and Sui, Z. 2023b. Making Large Language Models Better
Reasoners with Alignment. arXiv:2309.02144.
Wang, X.; Li, S.; and Ji, H. 2022. Code4Struct: Code Gener-
ation for Few-Shot Structured Prediction from Natural Lan-
guage. CoRR, abs/2210.12810.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Ichter, B.;
Xia, F.; Chi, E. H.; Le, Q. V.; and Zhou, D. 2022. Chain-
of-Thought Prompting Elicits Reasoning in Large Language
Models. In NeurIPS.
Wiegreffe, S.; Marasovic, A.; and Smith, N. A. 2021. Mea-
suring Association Between Labels and Free-Text Ratio-
nales. In EMNLP (1), 10266–10284. Association for Com-
putational Linguistics.
Xie, Y.; Kawaguchi, K.; Zhao, Y.; Zhao, X.; Kan, M.; He, J.;
and Xie, Q. 2023. Decomposition Enhances Reasoning via
Self-Evaluation Guided Decoding. CoRR, abs/2305.00633.
Yang, Z.; Qin, J.; Chen, J.; Lin, L.; and Liang, X. 2022. Log-
icSolver: Towards Interpretable Math Word Problem Solv-
ing with Logical Prompt-enhanced Learning. In EMNLP
(Findings), 1–13. Association for Computational Linguis-
tics.
Yuan, Z.; Yuan, H.; Li, C.; Dong, G.; Tan, C.; and Zhou, C.
2023. Scaling Relationship on Learning Mathematical Rea-
soning with Large Language Models. arXiv:2308.01825.
Zhang, H.; Zhang, Y.; Li, L. E.; and Xing, E. P. 2022. The
Impact of Symbolic Representations on In-context Learning
for Few-shot Reasoning. CoRR, abs/2212.08686.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.; Hou, Y.;
Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; Du, Y.; Yang, C.;
Chen, Y.; Chen, Z.; Jiang, J.; Ren, R.; Li, Y.; Tang, X.; Liu,
Z.; Liu, P.; Nie, J.; and Wen, J. 2023. A Survey of Large
Language Models. CoRR, abs/2303.18223.
Zhu, X.; Qi, B.; Zhang, K.; Long, X.; and Zhou, B. 2023.
PaD: Program-aided Distillation Specializes Large Models
in Reasoning. CoRR, abs/2305.13888.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17699

