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Abstract

The minimal feature removal problem in the post-hoc expla-
nation area aims to identify the minimal feature set (MFS).
Prior studies using the greedy algorithm to calculate the mini-
mal feature set lack the exploration of feature interactions un-
der a monotonic assumption which cannot be satisfied in gen-
eral scenarios. In order to address the above limitations, we
propose a Cooperative Integrated Dynamic Refining method
(CIDR) to efficiently discover minimal feature sets. Specif-
ically, we design Cooperative Integrated Gradients (CIG) to
detect interactions between features. By incorporating CIG
and characteristics of the minimal feature set, we transform
the minimal feature removal problem into a knapsack prob-
lem. Additionally, we devise an auxiliary Minimal Feature
Refinement algorithm to determine the minimal feature set
from numerous candidate sets. To the best of our knowledge,
our work is the first to address the minimal feature removal
problem in the field of natural language processing. Extensive
experiments demonstrate that CIDR is capable of tracing rep-
resentative minimal feature sets with improved interpretabil-
ity across various models and datasets.

Introduction
Deep neural networks have achieved remarkable accom-
plishments in the natural language processing domain
(Vaswani et al. 2017; Devlin et al. 2019; Brown et al.
2020; OpenAI 2023). Meanwhile, the black-box nature of
deep learning techniques has made it challenging to appli-
cations. In addition to model accuracy, there is a demand
for considering interpretability (Olex, Maffey, and McInnes
2019; Mosca et al. 2022). Recently feature importance-
based explanation methods have gained popularity due to fi-
delity and usability (Sikdar, Bhattacharya, and Heese 2021;
Sekhon et al. 2023). For the text classification task, fea-
ture importance-based explanation methods predominantly
investigate the impact of words on model prediction behav-
ior (Li et al. 2016; Godin et al. 2018; Chen and Ji 2020). Ear-
lier researches mainly utilize the LIME algorithm (Ribeiro,
Singh, and Guestrin 2016), attention mechanism (Wiegreffe
and Pinter 2019) or gradient saliency (Kindermans et al.
2018) to ascribe a score to an individual word, measuring
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Input: Despite facing numerous challenges , we remain 

steadfast .

Minimal feature set: steadfast

Input: Despite facing 
numerous challenges ,
we remain steadfast .

Input: Despite facing 
numerous challenges ,
we remain [PAD].

Positive

Negative

Figure 1: An illustration of the minimal feature removal
problem. The bottom part shows that removing the feature
of MFS would cause a drastic shift in model output proba-
bility.

its influence on the output. However, such methods may
lead to feature redundancy and fail to account for the syn-
ergistic interplay among words. Each word plays a different
role within a given sentence, and word combinations mat-
ter. For example, as illustrated in Figure 1, in the sentence
“despite facing numerous challenges, we remain steadfast”,
‘challenges’ poses a negative attitude while ‘remain stead-
fast’ represents the opposite.

Some other studies employ hierarchical clustering algo-
rithms to detect feature interactions (Singh, Murdoch, and
Yu 2019; Chen, Zheng, and Ji 2020), coming up with low
computational efficiency. (Sekhon et al. 2023) focus on us-
ing graph neural networks (GNNs) to model interactions.
However, they neglect redundant words, which may hinder
the model’s interpretability. To eliminate redundant features,
(Harzli, Grau, and Horrocks 2023) provide a formal defi-
nition of the minimum feature removal problem proven to
be an NP-complete problem and devise a greedy algorithm
to solve this problem based on a monotonic assumption.
However, the monotonic assumption requires non-negative
model parameters, and the problem solely examines iso-
lated feature effects, presenting obstacles to generalization.
In this paper, we propose a Cooperative Integrated Dynamic
Refining method, namely CIDR. Particularly, considering
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the property of semantic representation through word com-
binations, we initially implement minor revisions to the def-
inition of the minimal feature removal problem to rectify the
inherent limitation in modeling feature interactions. Further-
more, we devise a Cooperative Integrated Gradients (CIG)
formulation to access the interaction relationship between
two features by collectively computing their cooperative and
individual contributions to the output probability. Based on
an analogy between minimal feature sets and knapsacks, we
utilize CIG to assign scores for word pairs to detect feature
interactions, then we regard the word pairs as items and CIG
scores as corresponding weights in the knapsack problem,
which is a fundamental and well-studied combinatorial op-
timization problem. In addition, due to the intractability to
obtain the cardinality of the minimal feature set, we design a
Minimal Feature Refinement algorithm by introducing aux-
iliary variables as item values to perturb the upper bound for
the maximum capacity of the ‘knapsacks’ with producing
abundant candidate sets. Eventually, we extract the minimal
features from the generated candidate sets. The main contri-
butions are as follows:

• We propose a Cooperative Integrated Dynamic Refining
method (CIDR) to approach the minimal feature removal
problem. We design CIG to unearth the feature associa-
tions. By combining CIG and minimal feature properties,
we transform the original problem into a knapsack prob-
lem. Based on this finding, we devise a Minimal Feature
Refinement algorithm to obtain the minimal feature set.

• We conduct extensive experiments to verify that CIDR
has the capacity to identify more interpretable minimal
feature sets compared to other feature importance-based
baselines.

Related Work
There has been an increasing focus on designing inter-
pretability algorithms to assist in understanding the underly-
ing principles behind a model’s predictive behavior (Moraf-
fah et al. 2020; Wang, Wang, and Inouye 2021; Cucala et al.
2022; Blanc, Lange, and Tan 2021; Jin et al. 2020). Fea-
ture importance-based algorithms belong to post-hoc expla-
nation type where input features are measured by numeric
scores reflecting the significance of the features towards
the prediction label. Algorithms that generate attributions
can be broadly categorized into two groups: model-agnostic
algorithms, such as LIME (Ribeiro, Singh, and Guestrin
2016), integrated gradients (Sundararajan, Taly, and Yan
2017; Miglani et al. 2020; Jha et al. 2020; Sanyal and
Ren 2021; Enguehard 2023), and model-dependent meth-
ods, such as LRP(Voita, Sennrich, and Titov 2021), VMASK
(Chen and Ji 2020) and WIGRAPH (Sekhon et al. 2023).
Model-agnostic methods do not require understanding the
specific details of the model and can be directly applied
to any neural network, while model-dependent techniques
necessitate integration with the intrinsic components of the
model to augment interpretability. IG (Sundararajan, Taly,
and Yan 2017) has stood out due to its computational effi-
ciency and ideal explanation axioms. In recent years, there
have been multiple advancements of IG in NLP domain. For

example, (Sanyal and Ren 2021) propose DIG to compute
integrated gradients by incorporating similar words as inter-
polation points between two given words, SIG(Enguehard
2023) is designed to compute the importance of each word
in a sentence while keeping all other words fixed.

Prior studies point out methods that assign attributions to
features lack the construction of feature interactions (Tsang,
Rambhatla, and Liu 2020). To address this issue, (Hao et al.
2021) propose to integrate self-attention mechanisms to ana-
lyze the information interaction within Transformer, (Chen,
Zheng, and Ji 2020) devise a hierarchical visualization algo-
rithm to detect feature interactions.

Meanwhile, it is noticeable that attribution methods are
highly susceptible to input perturbations, which can yield
less precise attribution scores (Ghorbani, Abid, and Zou
2019; Yeh et al. 2019). To minimize the inclusion of redun-
dant features, (Harzli, Grau, and Horrocks 2023) propose the
minimal feature removal problem, where the minimal fea-
ture set functions as an exceedingly compact portrayal of
the input features, discarding extraneous features to discern
the critical components that drive the output. Additionally, it
can be regarded as an attack on the output, as its definition
guarantees that eliminating any feature will alter the model’s
output.

Problem Definition
In this section, we present the raw definition of the minimal
feature removal problem and the modified version. For the
input text x consisting of n words, we define the collection
representation of x as X = {w1, w2, · · · , wn}, where wi
represents the i-th word. Specifically, x′ denotes the baseline
defined in integrated gradients (IG), and X ′ represents its
collection, which consists of n [PAD] tokens. We use Sp to
denote the set of all word pairs. For example, suppose X =
{w0, w1, w2}, then Sp = {(w0, w1), (w0, w2), (w1, w2)}.
GivenX ,X ′, S ⊂ X and Sp

′ ⊂ Sp we represent the padded
input sentence collection as XS which is obtained from X
by padding each word wi ∈ X where wi = wj , wj ∈ S.
Similarly we represent the padded input XSp which is ob-
tained from X by padding each word wi ∈ X where
wi = wj or wi = wk, (wj , wk) ∈ Sp. For example, suppose
Sp

′
= {(w0, w1)}, then XSp′ = {[PAD], [PAD], w2, w3}.

Suppose we have a function F that represents a deep net-
work and F (X|c) is the output probability of given label c, t
is a positive numeric threshold ranging from 0 to 1. Original
minimal feature removal problem is defined as finding a set
Smin ⊂ X satisfying the following two properties (Harzli,
Grau, and Horrocks 2023):
• Feature Essence. F (XSmin

|c) ≤ t. This property in-
dicates that the features within the MFS are crucial, and
their removal leads to a significant decrease in the pre-
diction probability.

• Feature Minimality. Our goal is to minimize |Smin|,
ensuring that for all S′, which are proper subsets of Smin,
F (XS′ |c) > t. This characteristic implies that |Smin|
should be sufficiently small, as the removal of any feature
from Smin would violate the feature essence. For exam-
ple, without the feature minimality requirement, the set
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X would satisfy the feature essence requirement. This is
due to the clear understanding that eliminating all fea-
tures would inevitably result in a reduction in the predic-
tion probability.

On a holistic level, feature essence imposes a constraint
on the MFS to prevent it from becoming undersized, while
feature minimality adds a constraint to prevent it from be-
coming overly large.

Apparently the original problem only explores the impact
of individual features on the output. To capture feature in-
teractions, we slightly modify the minimal feature removal
problem definition. We treat two features as one element of
the MFS, then compute the MFS from all the pairwise com-
binations of features. The requirements for feature essence
and feature minimality remain unchanged. The modified
definition is as follows:

Finding a set Spmin ⊂ Sp satisfying the feature essence
and feature minimality given input X , Sp and threshold t.1

Methodology
Inspired by (Sundararajan, Taly, and Yan 2017), we ap-
proach this problem from the perspective of integrated gra-
dients. Initially, we present a simple yet vital proposition to
assist subsequent analysis. As shown in Figure 2, we pro-
pose a novel approach called Cooperative Integrated Gra-
dients (CIG) to detect feature interactions. Leveraging CIG,
we approximate the minimum feature problem by transform-
ing it into a knapsack problem. Consequently we devise the
minimal feature refinement algorithm to solve the converted
problem.

For simplicity, we represent the cooperative integrated
gradient of the word pair (wi, wj) as CIGi,j and the MFS
as Spmin. Specially we denote the MFS for raw definition as
Smin and the integrated gradients of word wi as IGi. We de-
fine the set Xpos as the set consisting of all words in X with
IG greater than 0 and denote the set containing all word pairs
in Sp with CIG greater than 0 as Sppos.

Proposition 1. ∀wk ∈ Smin, IGk > 0.

Detecting Feature Interactions with Cooperative
Integrated Gradients
Inspired by cooperative game theory (Harsanyi 1982; Shap-
ley et al. 1953), we present the solution to model the feature
interactions, namely CIG.

In order to match the original formula of IG, we replace
F (X|c) with F (x) here. Given input x, word wi and wj , we
calculate CIGi,j as follows:

CIGi,j = IGi + IGj + β
(
IGi,X\{wj} + IGj,X\{wi}

)
, (1)

where

IGi,X\{wj} = (xi−x′i)
∫ 1

α=0

∂F (x′ + α(x−j − x′))
∂xi

, (2)

1In the subsequent discussions, unless otherwise specified, the
term “minimal feature removal problem” refers to the modified ver-
sion and the term “minimal feature set” refers to Sp

min.

IGj,X\{wi} = (xj−x′j)
∫ 1

α=0

∂F (x′ + α(x−i − x′))
∂xj

, (3)

where x−j denotes the input x with the removal of the j-th
word. Similarly, x−i denotes the input x with the removal
of the i-th word, β ∈ R+ is the coefficient balancing the
individual contributions of two features and their coopera-
tive contributions, with values ranging from 0 to 1. Due to
the inclusion of word wj in the input x during the calcula-
tion of IGi, we assume that IGi represents the cooperative
contribution of word wi. The same goes for IGj . We regard
the individual contribution of two words as IGi,X\{wj} and
IGj,X\{wi}. Given two words, if the sum of their coopera-
tive contributions is greater than their individual contribu-
tions, we consider them engaged in a ‘cooperative’ relation-
ship; otherwise, they are deemed to be in a ‘competitive’
relationship. Calculating the individual contribution is simi-
lar to calculating the Shapley value of a feature in coopera-
tive game theory (Shapley et al. 1953), which considers the
feature’s contribution to each subset of the feature set. How-
ever, due to computational complexity, we do not enumerate
all subsets here but only consider two cases: x−i and x−j .
x−i corresponds to the subset obtained by removing word i.

On the basis of Proposition 1, we introduce two additional
propositions specifically for CIG2.

Proposition 2. ∀(wi, wj) ∈ Spmin,CIGi,j > 0.
Proposition 3.

∑
(wi,wj)∈Sp

pos\Sp
min

CIGi,j ≤ U1 + U2,
where

U1 = 2(|Spos| − 1)
∑

wi∈Spos

IGi, (4)

U2 = β
∑

(wi,wj)∈Sp
pos

(IGi,X\{wj} + IGj,X\{wi}). (5)

Minimal Feature Refinement Algorithm
Although (Harzli, Grau, and Horrocks 2023) propose a
greedy algorithm to solve the original minimal feature re-
moval problem under the monotonicity assumption, achiev-
ing monotonicity in general neural networks is challenging.

In this section we leverage Proposition 2 and 3 to approx-
imate the minimum feature removal problem as a knapsack
problem. Our core idea is to treat Sppos \ S

p
min as a knap-

sack, where each element (i.e. word pair) in the set is con-
sidered as an item and the CIG of the element is regarded
as the weight of the item. By applying Proposition 3, we
can estimate the upper bound of the knapsack’s capacity (i.e.
U1 + U2). Furthermore, based on Proposition 2 and the fea-
ture minimality, we aim to minimize |Spmin|. In turn, this
implies maximizing |Sppos \ S

p
min| due to |Sppos| is constant

given input X , Sp, label c and the function F .
Unfortunately, we are unable to determine the precise

value of the maximum capacity of the knapsack. To mitigate
this, we introduce a perturbation variable vi,j ∈ R+ sampled
from the standard Gaussian distribution for each word pair
(wi, wj) ∈ Sp to perturb the upper bound U1+U2, allowing

2The detailed proof of Proposition 1, 2 and 3 is available in our
arxiv version: https://arxiv.org/abs/2312.08157.
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Figure 2: CIDR method (components inside the blue box): Our method workflow is illustrated at the bottom of the diagram
above. Firstly, we generate word pairs by combining every two words from the input sentence. Next, we calculate the coop-
erative integrated gradients (e.g. CIG1,CIG2) for each pair (e.g.p1,p2). Then, we estimate the upper bound of the minimum
feature set by applying perturbation variables (e.g. v1,v2) and resolve the transformed knapsack problem using a dynamic
programming algorithm, resulting in multiple candidate sets. Finally, we filter out the “false positive” minimal features by
comparing the frequencies (e.g. f1,f2) with the threshold ε.

generating different candidate sets through solving the trans-
formed knapsack problem. We use a dynamic programming
algorithm.3

For simplicity, we introduce the 0-1 variable zi,j to indi-
cate whether the word pair (wi, wj) belongs to Sppos \S

p
min,

vi,j is the corresponding perturbation variable.
Eventually, the minimum feature removal problem can be

transformed into the following knapsack problem:

maxz
∑

(wi,wj)∈Sp

vi,jzi,j

s.t.
∑

(wi,wj)∈Sp

CIGi,jzi,j ≤ U1 + U ′2,
(6)

where vi,j ∈ (0, 1),

U ′2 = β
∑

(wi,wj)∈Sp
pos

vi,j(IGi,X\{wj} + IGj,X\{wi}). (7)

In order to identify the MFS more accurately, we further
propose a minimal feature refinement strategy inspired by
(Dai et al. 2022). We assume that candidate sets comprise
two distinct types of features: “true positive” features and
“false positive” features. Our refinement strategy is designed
to eliminate the minimal features that are identified as “false

3The details are in https://arxiv.org/abs/2312.08157

positive”. The key idea behind this strategy is that different
candidate sets are likely to share the “true positive” minimal
features, while the “false positive” ones will not. By focus-
ing on the widely shared features, we can effectively filter
out the “false positive” minimal features.

Given an input sentence, the process of identifying the
MFS can be outlined as follows: (1) Randomly sample vi,j
to generate niter candidate sets by solving Problem 6. (2)
Calculate the occurrence frequency of each feature within
each candidate set. (3) Aggregate all the candidate sets, se-
lect and retain only those features shared by more than a
specified threshold t of the sets.4

Experiments
In this experiment, we validate the effectiveness of our
method by answering the following two questions:
• Do the MFS derived from our method adequately satisfy

the feature essence and feature minimality?
• Do the CIDR generate more interpretable results?

Experimental Setups
Datasets To evaluate the effectiveness of CIDR, we per-
form comprehensive experiments on three representative bi-

4The details of the minimal feature refinement algorithm are
illustrated in our arxiv version: https://arxiv.org/abs/2312.08157.
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nary classification datasets: “SST2” (Socher et al. 2013),
“IMDB” (Maas et al. 2011), “Rotten Tomatoes” (Pang and
Lee 2005).

Dataset Statistics The statistical information for the
three datasets is shown in Table 5.
Metrics Following prior literature (DeYoung et al. 2020a),
we use the following two automated metrics:
• Comprehensiveness (Comp) score (DeYoung et al.

2020b) is the average difference of the change in pre-
dicted class probability before and after removing top K
words. Higher is better.

• Log-odds (LO) score (Shrikumar, Greenside, and Kun-
daje 2017) is defined as the average difference of the neg-
ative logarithmic probabilities on the predicted class be-
fore and after removing the topK words. Lower is better.

In this experiment, we use LO and Comp metrics to eval-
uate the degree to which the obtained set satisfies the fea-
ture essence. In particular, if the set satisfies the feature
essence, there should be a substantial change in probabil-
ity before and after removing K features of the set. In order
to align with the setting by (Sanyal and Ren 2021), we re-
move K word pairs of the set which K is set to min(0.1 ×
|X|, |Spmin|). As for the feature minimality, we introduce a
new metric: Feature Minimality Score (FMS). Concretely, to
verify if Spmin satisfies the feature minimality, we calculate
a removal probability, denoted as F (XSp

min\{pairk}|c), for
each word pair in the set. If the removal probability exceeds
the threshold t for all word pairs, then the set is considered
to satisfy the feature minimality. Given N sequences, we
compute the FMS score as follows:

FMS =

∑N
i=1min1≤k≤|Sp

min|FMp
k · FEpk

N
, (8)

where FMp
k = I(F (XSp

min\{pairk}|c) > t), FEpk =

I(F (XSp
min
|c) ≤ t), pairk ∈ Spmin. Similarly, we calculate

the FMS score for Smin as follows:

FMS =

∑N
i=1min1≤k≤|Smin|FMk · FEk

N
, (9)

where FMk = I(F (XSmin\{wk}|c) > t), FEk =
I(F (XSmin

|c) ≤ t), wk ∈ Smin. The higher FMS score
is better.
Baselines To our knowledge, CIDR is the only model-
agnostic method to address the minimal feature removal
problem in NLP. To facilitate comparison, we regard the
top 2K words identified by other model-agnostic feature
importance-based methods as preliminary “minimal fea-
ture sets”. Hence we compare CIDR with six representa-
tive model-agnostic feature importance-based explanation
methods - Grdient*Input(Grad*Inp) (Shrikumar et al. 2017),
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017),
GradSHAP (Lundberg and Lee 2017), IG (Sundararajan,
Taly, and Yan 2017), DIG (Sanyal and Ren 2021) using the
GREEDY heuristics and SIG (Enguehard 2023)5.

5The reason for not selecting the greedy algorithm proposed
by (Harzli, Grau, and Horrocks 2023) is the scarcity of language
models in NLP that satisfy the monotonicity assumption.

Language Models We utilize pre-trained BERT (Devlin
et al. 2019) and DistilBERT (Sanh et al. 2019) for text clas-
sification, which are individually fine-tuned for the three
datasets.
Hyperparameters For the minimal feature refinement
algorithm, we vary the refinement threshold ε ∈
{0.3, 0.4, 0.5, 0.6, 0.7}. We set iteration steps niter = 10.
For CIG, we set β ∈ {0.4, 0.5, 0.6}. We set the numeric
threshold t = 0.5.
Implementation Details In this work, all language mod-
els are implemented by Transformers. All our experiments
are performed on one RTX 3090. We report the experiment
results of five random seeds.

General Experimental Results
We first evaluate our method across 6 different settings
(three language models per dataset) with LO, Comp and
FMS metrics. From Tables 1, 2 and 4 we can reach the fol-
lowing conclusions. First, our proposed approach, CIDR,
consistently surpasses the performance of the baselines,
which serves as concrete evidence showcasing its superiority
and wide-ranging applicability. Specifically, from Table 4,
in terms of Comp, it obtains 1.3%, 1.8% improvements over
the best results of previous baselines on the Rotten tomatoes
dataset. When considering LO, it also performs consistently
better than previous methods. The outstanding performance
in these two metrics also validates that the MFS derived from
our method aligns well with the feature essence, with gener-
ating more interpretable results. Second, compared with the
latest work DIG and SIG, we assume that the most promi-
nent advantage of CIDR lies in its ability to ensure the fea-
ture minimality. The experimental results demonstrate that
the most notable improvement is observed in the FMS met-
ric, providing further evidence to support this assumption.
(e.g. in Table 1, +19.1% on the SST2/BERT/FMS setup).
Third, CIDR performs excellently in both short (i.e. SST2
and Rotten Tomatoes) and long-text (i.e. IMDB) scenarios.

Ablation Study
In this section, we report the ablation study experimental re-
sults of CIG and the minimal feature refinement algorithm.
Ablation Study on CIG. In this study, we conduct a com-
parative analysis between CIDR and its variant, CIDR w/o
CIG. The findings suggest that the incorporation of CIG sig-
nificantly augments the capacity of CIDR to identify the
minimum feature set, as evidenced by a decrease of 2.9%
on the BERT/SST2/Comp setup (i.e. Table 1). This enhance-
ment could potentially be ascribed to the modeling of feature
interactions. Notably, the introduction of CIG on the IMDB
dataset results in a more marked improvement in LO and
Comp metrics. This observation could be attributed to the
longer average sentence length and the increased complex-
ity of contextual relationships between words in the IMDB
dataset.
Ablation Study on Minimal Feature Refinement algo-
rithm. We subsequently scrutinize the minimal refinement
algorithm’s impact on CIDR, contrasting it with its vari-
ant, CIDR w/o R. By eliminating perturbation coefficients,
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Method BERT DistilBERT

LO ↓ Comp ↑ FMS ↑ LO ↓ Comp ↑ FMS ↑
Grad*Inp -0.499 0.156 0.217 -0.397 0.103 0.238
DeepLift -0.167 0.053 0.158 -0.175 0.059 0.166
GradientShap -0.598 0.217 0.235 -0.749 0.202 0.262
IG -0.874 0.312 0.298 -0.690 0.281 0.277
DIG -0.870 0.277 0.259 -1.251 0.305 0.252
SIG -1.202 0.331 0.401 -1.077 0.310 0.345
CIDR -1.362 0.344 0.592 -1.648 0.343 0.525
CIDR w/o R -1.273 0.325 0.373 -1.559 0.321 0.318
CIDR w/o CIG -1.091 0.315 0.459 -1.324 0.306 0.422

Table 1: Comparison of CIDR and variants with baselines on three language models fine-tuned on the SST2 dataset.

Method BERT DistilBERT

LO ↓ Comp ↑ FMS ↑ LO ↓ Comp ↑ FMS ↑
Grad*Inp -0.799 0.132 0.174 -0.197 0.099 0.133
DeepLift -0.333 0.027 0.166 -0.019 0.001 0.153
GradientShap -0.877 0.201 0.148 -0.459 0.192 0.143
IG -0.708 0.151 0.181 -0.055 0.037 0.203
DIG -1.152 0.221 0.303 -0.878 0.319 0.286
SIG -0.806 0.303 0.384 -0.924 0.335 0.421
CIDR -1.383 0.357 0.566 -1.101 0.349 0.582
CIDR w/o R -0.970 0.304 0.414 -0.834 0.306 0.444
CIDR w/o CIG -0.804 0.289 0.459 -0.807 0.295 0.480

Table 2: Comparison of CIDR and variants with baselines on three language models fine-tuned on the IMDB dataset.

Method Example

IG “Screenwriter Chris ver Weil ’s directing debut is good-natured and never dull.”
CIDR “Screenwriter Chris ver Weil ’s directing debut is good-natured and never dull.”

IG “’s taken one of the world ’s most fascinating stories and made it dull , lifeless , and irritating.”
CIDR “’s taken one of the world ’s most fascinating stories and made it dull , lifeless , and irritating.”

IG “An old-fashioned but emotionally stirring adventure tale.”
CIDR “An old-fashioned but emotionally stirring adventure tale.”

IG “will have found a cult favorite to enjoy for a lifetime.”
CIDR “will have found a cult favorite to enjoy for a lifetime.”

Table 3: Examples of MFS on several sentences of the Rotten Tomatoes dataset. The bold tokens indicate that they are elements
in the minimal feature set.
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Method BERT DistilBERT

LO↓ Comp↑ FMS↑ LO↓ Comp↑ FMS↑
Grad*Inp -0.832 0.223 0.301 -0.170 0.064 0.276
DeepLift -0.402 0.102 0.155 -0.057 0.011 0.132
GradientShap -0.812 0.240 0.218 -0.304 0.162 0.209
IG -1.417 0.215 0.240 -0.513 0.293 0.235
DIG -1.056 0.267 0.303 -0.501 0.257 0.326
SIG -1.533 0.375 0.311 -0.643 0.354 0.367
CIDR -1.717 0.388 0.483 -0.823 0.372 0.506
CIDR w/o R -1.497 0.361 0.350 -0.757 0.357 0.393
CIDR w/o CIG -1.324 0.343 0.398 -0.732 0.342 0.464

Table 4: Comparison of CIDR and variants with baselines on three language models fine-tuned on the Rotten Tomatoes dataset.

Dataset Train/Dev/Test C V L
SST2 6920/872/1821 2 16190 50
IMDB 20K/5K/25K 2 19571 250
Rotten Tomatoes 10K/2K/2K 2 15420 50

Table 5: Statistics of three datasets. C: number of classes, V:
vocabulary size, L: average text length

the original problem is addressed using a simple greedy al-
gorithm, treating all item values uniformly.6However, this
method only allows minimal feature sets acquisition based
on lenient upper bounds, specifically U1 + U2. The findings
yield two conclusions: (1) The refinement algorithm’s incor-
poration enhances performance on three datasets, evidenced
by a 4.3% decrease on the DistilBERT/IMDB/Comp setup,
suggesting that introducing perturbation coefficients and se-
lecting thresholds to filter ’true positive’ features are effec-
tive strategies for approximating the minimal feature set. (2)
The refinement algorithm significantly improves FMS per-
formance compared to the other two metrics, potentially due
to its ability to reduce the MFS’s cardinality, thereby inten-
sifying feature minimality and reducing feature essence.

Case Study
Table 3 illustrates the application of CIDR in identifying the
minimum feature sets for various models within the Rotten
Tomatoes dataset. The table underscores the word pairs that
CIDR identifies as integral components of the minimum fea-
ture subset. Word pairs connected by an underscore within a
sentence denote their integration into minimal features. The
table clearly demonstrates CIDR’s proficiency in detecting
sentiment cues that reflect sentiment polarity, thereby en-
abling the formulation of semantically representative word
pairs. For instance, in the first scenario, CIDR accurately
pinpoints two phrases with negative sentiment within the
sentence. Conversely, in the third example, IG singles out
“old fashioned”, a differentiation that CIDR does not make.

6The specifics are detailed in https://arxiv.org/abs/2312.08157.

Discussion

Time Complexity

The time complexity of CIDR is O(n2), where n represents
the length of the input text.

Application

We provide a potential application of CIDR in this sec-
tion. It is widely recognized that natural language processing
datasets possess inherent biases, the identification of which
can further enhance model performance. To exemplify how
our method can expose these biases, we select the SST-
2 dataset for our validation experiment. Given that words
carrying sentiment polarity are typically adjectives or noun
phrases, we extract 1000 examples , evenly split between
positive and negative samples. We then modify these sam-
ples by randomly inserting special tokens (i.e., “[pos]” and
“[neg]”) preceding the adjectives or noun phrases. We subse-
quently train a classifier on this altered dataset, with training
specifics detailed in the appendix. We apply CIDR to inter-
pret this trained model. We find that, despite the model’s
accurate predictions, CIDR uncovers that the minimal fea-
ture set (MFS) incorporates special tokens, indicating that
the model has inadvertently learned these spurious correla-
tions. For example in the positive example “a [neg] solid
film but more conscientious than it is truly stirring.”, CIDR
discovers “[neg]”.

Conclusion
In this paper, we propose CIDR, an effective method de-
signed to address the minimal feature removal problem in
NLP domain. More precisely, we devise CIG to effectively
analyze feature interactions and introduce the minimal fea-
ture refinement algorithm. Based on these, we successfully
transform the minimal feature removal problem to a knap-
sack problem. Experiments on widely used public datasets
indicate that CIDR has the capacity to discover the minimal
feature set.
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