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Abstract
To achieve high-quality translation with low latency, a Si-
multaneous Speech Translation (SimulST) system relies on
a policy module to decide whether to translate immediately
or wait for additional streaming input, along with a transla-
tion model capable of effectively handling partial speech in-
put. Prior research has tackled these components separately,
either using “wait-k” policies based on fixed-length segments
or detected word boundaries, or dynamic policies based on
different strategies (e.g., meaningful units), while employ-
ing offline models for prefix-to-prefix translation. In this pa-
per, we propose Divergence-Guided Simultaneous Speech
Translation (DiG-SST), a tightly integrated approach focus-
ing on both translation quality and latency for streaming in-
put. Specifically, we introduce a simple yet effective prefix-
based strategy for training translation models with partial
speech input, and develop an adaptive policy that makes read-
/write decisions for the translation model based on the ex-
pected divergence in translation distributions resulting from
future input. Our experiments on multiple translation direc-
tions of the MuST-C benchmark demonstrate that our ap-
proach achieves a better trade-off between translation quality
and latency compared to existing methods.

Introduction
Simultaneous Speech Translation (SimulST) aims to achieve
real-time, high-quality translation from streaming speech in-
put while maintaining low latency. Early efforts have con-
ventionally employed a cascaded approach involving both a
streaming Automatic Speech Recognition (ASR) model and
a Simultaneous Text Machine Translation (SimulMT) model
(Oda et al. 2014; Dalvi et al. 2018). While this approach has
its merits, it nevertheless suffers from issues such as error
propagation and latency accumulation (Le, Lecouteux, and
Besacier 2017; Xue et al. 2020).

In response to these challenges, recent progress in speech
translation (ST) has been primarily focused on end-to-end
approaches, leading to significant improvements in both of-
fline and simultaneous ST tasks (Berard et al. 2016; Weiss
et al. 2017; Berard et al. 2018; Bansal et al. 2019; Ren
et al. 2020; Liu et al. 2021). Following the advancements
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in SimulMT, researchers have investigated both fixed and
adaptive read/write policies for SimulST. The absence of
explicit linguistic boundaries in continuous speech signals
presents a unique challenge. To adapt the wait-k policy (Ma
et al. 2019) for speech input, various approaches have been
proposed, including segmenting audio streams into fixed-
length chunks (Ma, Pino, and Koehn 2020; Ma et al. 2021),
or at the subword/word level (Dong et al. 2022; Zhang and
Feng 2023). Adaptive policies have also been studied to
leverage contextual information when making read/write de-
cisions. Zhang et al. (2022) propose the detection of mean-
ingful units in speech that can be independently translated
without considering future inputs, while Papi, Negri, and
Turchi (2023) experiment with the use of attention scores
to develop adaptive policies for the inference process.

In spite of their demonstrated improvements, there re-
mains significant discrepancies with respect to the desirable
attributes for the translation model and the policy module
in SimulST. First, most prior research has employed offline
models trained on complete audio utterances to translate
partial speech input, which raises questions about their ef-
fectiveness given the apparent gap between training and in-
ference. Second, fixed policies, even when grounded in the
detection of subword/word boundaries, disregard available
context and cannot make informed read or write decisions.
While existing adaptive policies can take into account the
partial input and translation history to make dynamic deci-
sions, they are based on heuristics and lack any direct mea-
sure of the potential impact of such decisions on the quality
of translation, which is essential for achieving a delicate bal-
ance between translation quality and latency.

Recently, Transducer-based approaches (Liu et al. 2021;
Tang et al. 2023) have achieved success in addressing the
aforementioned issues using synchronized audio inputs and
translation outputs, without explicitly modeling read/write
decisions. However, these approaches are computationally
intensive and requires training a distinct model for each la-
tency configuration. In this paper, we adhere to the conven-
tional approach of separately modeling and improving trans-
lation and read/write decisions, and introduce an integrated
approach called Divergence-Guided Simultaneous Speech
Translation (DiG-SST). Specifically, we propose:

Prefix-enhanced Translation: We include prefix-to-
prefix and prefix-to-full ST samples, in addition to the
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conventional offline training data, during translation model
training. This strategy reduces the gap between conventional
offline training and simultaneous inference, improving the
model’s effectiveness in low latency settings.

Divergence-based Policy Module: We suggest using the
divergence between the translation distributions of the next
target word, computed based on the partial input versus the
complete input using the model from prefix-enhanced train-
ing, as guidance for the read/write decisions of translation
model. We develop a new modeling approach to estimate di-
vergence scores using only the partial input for use during
inference, achieved by adding a few lightweight layers on
top of the translation model.

Our experiments demonstrate that the proposed approach
compares favorably against other methods across three di-
mensions of the MuST-C dataset in both offline and si-
multaneous translation scenarios. The code is available at
https://github.com/cxjfluffy/DiG-SST.

Background and Related Works
Speech translation is categorized into offline and simultane-
ous scenarios based on inference modes. A standard speech
translation training sample, denoted by D = (s,x,y), com-
prises a speech audio s = (s1, . . . , sT ), its transcription x =
(x1, . . . , xI), and translation sequences y = (y1, . . . , yJ).
Subsequent discussions mainly focus on end-to-end tech-
niques.

Offline Speech Translation generates all target tokens
based on the complete audio input. The offline ST model
first encodes the audio input, represented as s, into a rep-
resentation, h, which is then decoded to predict y. The de-
coding process of an offline ST model parameterized by θ is
defined as:

p(y | s; θ) =
J∏
j

p (yj | s,y<j ; θ) . (1)

Since the introduction of the end-to-end neural network
model for ST (Berard et al. 2016), much of the research in
end-to-end ST has been concentrated on offline scenarios.
Pre-training has been shown to improve translation quality
in various studies (Weiss et al. 2017; Berard et al. 2018;
Bansal et al. 2019; Alinejad and Sarkar 2020; Dong et al.
2021), and has become an integral component of the stan-
dard framework in this field. Other prevalent research areas
include data augmentation (Pino et al. 2019; Anastasopou-
los et al. 2022), knowledge distillation (Gaido et al. 2020),
multi-task learning (Liu et al. 2020; Indurthi et al. 2020; Han
et al. 2021; Ye, Wang, and Li 2021), curriculum learning
(Kano, Sakti, and Nakamura 2018; Wang et al. 2020), and
mix-up contrastive learning (Fang et al. 2022).

Simultaneous Speech Translation generates target to-
kens from partial input. Different from Eq. (1), the decoding
process of SimulST is formulated as:

p(y | s; θ) =
J∏
j

p(yj | s≤g(j),y<j ; θ), (2)

where g(j) is a monotonically non-decreasing function that
indicates the ending timestamp of the audio required to gen-
erate the j-th target token.

Similar to the trend in SimulMT and offline ST, recent
research in SimulST has shifted towards end-to-end mod-
els, especially regarding the read/write policy that decides
whether to produce new target tokens or await more audio
input. Policies utilizing a fixed-size speech chunk for read-
/write actions are presented in (Ma, Pino, and Koehn 2020;
Nguyen, Estève, and Besacier 2021; Ma et al. 2021; Liu
et al. 2021). These policies may face challenges in main-
taining the semantic boundary in audio and leveraging the
context information. Recognizing these limitations, adaptive
read/write policies have received attention in the SimulST
research community following their success in SimulMT
(Arivazhagan et al. 2019; Ma et al. 2020; Zhang et al. 2020).
Dong et al. (2022) aim to align the audio input to the text
through continuous integrate-and-fire for more precise audio
boundary. Zhang et al. (2022) segment the source streaming
speech into meaningful units by considering both acoustic
features and translation history. Transducer-based structures
(Liu et al. 2021; Tang et al. 2023) use all path training and
multiple models for superior performance but suffer from in-
creased complexity in training and deployment. Attention-
based methods (Papi, Negri, and Turchi 2023; Zhang and
Feng 2023) leverage the information from attention maps to
guide the read/write policy.

Main Method
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Figure 1: An example of the divergence-guided read/write
process for SimulST. The green part denotes the source
audio-transcript and the red text indicates the target trans-
lation. The matrix visualizes the divergence scores varying
with the lengths of the source and target. The cell’s column
corresponds to one target token, and its row represents a du-
ration of 100ms in the input audio. Each cell, with values
from 0 to 1, shows the divergence score between outputs
from partial and complete audio inputs. The path colored in
red within the matrix is the path chosen by our divergence-
guided read/write policy (with a fixed threshold λ=0.1).
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During the process of simultaneous interpretation, human
interpreters actively comprehend the perceived speech in-
puts while also anticipating incoming speech. This allows
them to produce accurate translations with minimal delay.
As an essential aspect of this process, interpreters need to
constantly determine whether they possess sufficient infor-
mation for their modeling of translations that would not be
affected by future input, and then act accordingly to either
produce the translation or wait for more input. Drawing in-
spiration from this process, we present a divergence-based
measure that simulates human interpreters’ ability to assess
how much future input might influence the translation of the
next word.

Figure 1 illustrates how this measure guides the read/write
process for English-German simultaneous speech transla-
tion. The cell at the top-left of the matrix represents the di-
vergence between the translation distribution of the first tar-
get word, based on the initial 100ms of audio signal roughly
containing the English spoken words “it’s”, and the trans-
lation distribution obtained after processing the entire utter-
ance. A relatively low divergence score of 0.21 indicates that
these two distributions are similar. Further waiting for more
speech input would progressively reduce the divergence, as
evident from the decreasing scores in the first row from left
to right. However, this comes at the expense of increased
latency. If a decision is made to translate after the initial
100ms, resulting in the first target word “Es (is)”, the diver-
gence score for the subsequent target word rises significantly
to 0.99. This signifies the lack of sufficient information in
the first 100ms of audio to accurately generate the next tar-
get word. In fact, according to the second row in the matrix,
waiting an additional 400ms of audio is necessary to reduce
the divergence to a sufficiently low score of 0.01. Only then
can one be confident in accurately producing the next word
“kommt (come)” in the translation.

For the divergence-based policy module to be effective,
the divergence score needs to accurately reflect the transla-
tion model’s predictive ability for both partial and complete
utterances. Simultaneously, the translation model should be
capable of effectively translating both partial and complete
utterances. The general framework for Divergence-Guided
Simultaneous Speech Translation is depicted in Figure 2. We
will next elaborate on the prefix-enhanced training strategy
and the divergence-based policy module.

Prefix-enhanced Translation
As illustrated in Figure 2 (a), our translation model com-
prises three components: an audio encoder (wav2vec 2.0),
a semantic encoder, and a translation decoder. It is trained
with both ST and MT tasks. The semantic encoder consists
of a stack of Transformer layers for encoding acoustic to-
kens in the ST task, an embedding layer for the MT task,
and a translation encoder shared between both tasks. To en-
hance the model’s capability of translating partial speech in-
puts during streaming inference, we introduce prefix-based
training samples alongside standard ST training data. The
training loss of the prefix-enhanced translation model in-
cludes two components: the offline translation loss and the
streaming translation loss.

Offline Loss For the ST training sample D = (s,x,y),
where s denotes the source audio, x the source transcript,
and y the target translation, the objective of both offline ST
and MT training tasks is to minimize their respective nega-
tive log-likelihoods over the training set as follows:

Loff
st = −

∑
(s,y)

J∑
j

log p (yj | y1:j−1, s1:T ) (3)

Loff
mt = −

∑
(x,y)

J∑
j

log p (yj | y1:j−1,x1:I) (4)

where I , J and T represent the corresponding sequence
lengths.

Streaming Loss In simultaneous scenarios, the translation
model must be able to effectively translate partial audio in-
put, a situation not addressed by the offline training loss. To
bridge this gap, we create prefix-to-prefix ST training pairs1

D′ = (s′,y′). In each pair, s′ = s1:T ′ is a random prefix
of the original source s with length T ′ ∼ U(1, T ) (where U
denotes a uniform distribution), and y′ = y1:J′ is a prefix of
length J ′ from the original translation y. The streaming loss
is formulated as:

Lprefix
st = −

∑
(s,y)

J′∑
j

log p (yj | y1:j−1, s1:T ′) (5)

Determining the optimal length J ′ for y′ is a nontrivial
task, as s′ might not end at word boundaries, and there is
no consensus on the best approach for selecting y′ in prefix-
to-prefix training for simultaneous machine translation with
text input. In this study, we experiment with two simple im-
plementations.

In the first approach, we assume that the target text y is
approximately aligned monotonically with the source audio,
and we sample J ′ as follows:

J ′ ∼ U(max([
J

T
∗ T ′ − k1], 0),min([

J

T
∗ T ′ + k2], J))

where k1 and k2 are chosen to account for different la-
tency settings2 similar to the multipath wait-k strategy in
SimulMT (Elbayad, Besacier, and Verbeek 2020). We refer
to this method as prefix-to-prefix training.

In the second approach, we simply set J ′ = J , using
the full translation y as the target for the source prefix s′.
This prefix-to-full training strategy addresses all reordering
issues, but it could potentially result in translation halluci-
nations. It’s important to note that in simultaneous speech
translation, the translation process is guided by the read-
/write policy module, which only engages in translation
generation when the policy module determines that there’s
sufficient information in the source audio to generate the
next word. As demonstrated in the experiments section, the

1We generate two samples of prefix-to-prefix ST training pairs
from each training sample (s,y) in our experiments.

2We set k1 = 10, k2 = 2 in our experiments.
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Figure 2: The overall framework of our proposed DiG-SST: (a) the architecture of the translation model, (b) the architecture and
training loss of the divergence-based policy module, based on the frozen translation model from (a), and (c) the simultaneous
inference process.

prefix-to-full approach achieves superior translation quality
compared to the prefix-to-prefix approach and is used in our
main experiments.

Finally, the overall training loss of the translation model
combines the offline ST loss, offline MT loss, and the
streaming ST loss:

L1 = Loff
st + Loff

mt + Lprefix
st (6)

Divergence-based Policy Module
As previously explained, we utilize the divergence between
two translation distributions of the next target word: one
computed based on partial audio input and translation his-
tory, and the other relying on the complete utterance and
history. This is to measure the impact on translation qual-
ity using only partial input. However, this approach requires
access to the full utterance, which is unavailable during
streaming inference. We could design an algorithm to em-
ulate the ability of human interpreters to predict potential
completions of the partial input and use them to estimate the
translation distribution. In this paper, we opt for a simpler
approach, treating it as a supervised learning problem.

We compute the oracle divergence scores from the ST
training data and use them to train a divergence prediction
module, which is based solely on partial audio input and
translation history. Utilizing the probability formulation for
SimulST outlined in Eq. (2), we compute two probability
distributions for the target word at the jth decoding step:
Ppart
t,j , based on partial input, and Pfull

j , computed from com-
plete input:

ppart
t,j = P (yj = · | s≤t,y<j) (7)

pfull
j = P (yj = · | s,y<j) (8)

Here, t is randomly sampled from U(1, T ) to obtain a di-
verse set of oracle divergence scores to train a robust diver-
gence prediction model.

Given these distributions, different divergence measures
δ(pfull

j ,ppart
t,j ) can be used. In this study, we adopt cosine

similarity:

δ(pfull
j ,ppart

t,j ) = 1−
pfull
j · ppart

t,j

∥pfull
j ∥∥ppart

t,j ∥
(9)

The goal of the divergence prediction module is to predict
the oracle divergence scores using only partial audio input
and translation history. Since it has access to the same in-
formation as the translation model and is tasked to assess
translation quality, we designed it to directly access the hid-
den states of the translation decoder, as shown in Figure 2
(b). Specifically, it predicts the divergence score at each step
as:

δ̂t,j = fc(MHA(q, k, v = hdec
t,j )) (10)

where hdec
t,j is the translation decoder’s final hidden state,

MHA is a stack of multi-head attention layers, and fc is
a fully-connected layer. The parameters of the translation
model are frozen during the training of the divergence pre-
diction module.

The prediction δ̂t,j is supervised by the following loss3:

L2 =
∑
(s,y)

∑
t∼U(1,T )

J∑
j=1

(δ(pfull
t,j ,p

part
j )− δ̂t,j)

2 (11)

where T and J are the length of the source audio s and target
translation y respectively.

3We sample t ∼ U(1, T ) twice for each decoding step j.
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Inference Policy
The inference process of our DiG-SST approach is depicted
in Figure 2 (c). The divergence-based policy module dy-
namically makes read/write decisions by comparing the pre-
dicted divergence score δ̂t,j against a provided threshold λ:

write if δ̂t,j < λ, else read (12)

While our approach allows for read/write decisions to be
made at any time, given that both the translation model and
the policy module are trained on random audio prefixes,
we limit these computations to occur every 100ms to re-
duce unnecessary processing. Ideally, we could dynamically
adjust the threshold value at runtime to balance the trade-
off between translation quality and latency. Nonetheless, as
noted in our experiments, achieving this would require a
very high level of prediction accuracy from the policy mod-
ule. Given that the divergence-based policy model is trained
with the reference translation as history, there is inherent ex-
posure bias during inference, which makes accurate predic-
tion more challenging.

Instead, we present a hybrid read/write policy that com-
bines our divergence-based adaptive policy with a wait-k
policy. In this approach, we utilize the wait-k mechanism
to define a maximum allowable latency during inference,
and permit early translation if the predicted divergence score
falls below the threshold, indicating that the current input
contains sufficient information for translation. In our exper-
iments, we use a single model with a fixed λ and different k
values to generate the AL-BLEU curve.

Experiments
Experimental Setting
Dataset We conduct experiments on the widely used
MuST-C V1 corpus: English→{German, Spanish, French}
(En→{De, Es, Fr}) (Gangi et al. 2019), detailed in Table 1.
We exclude training audio samples that are longer than 450k
frames and use the Montreal Forced Aligner4 to remove
samples that do not contain speech content. Additionally, we
use the output of an offline MT model trained on MuST-C
as extra training data for ST task.

Split En-De En-Es En-Er
Train 234K 270K 280K
Dev 1423 1316 1412
Tst-COMMON 2641 2502 2632

Table 1: The statistics (sentences) of three language pairs in
MuST-C.

Model Configuration Both the translation encoder and
decoder employ 6 transformer layers, each with dimen-
sions of 512 and 8 attention heads, and are pre-trained
using MuST-C text data. The audio encoder, based on
Wav2vec2.0 (Baevski et al. 2020), is trained on Librispeech-
960 (Panayotov et al. 2015), aligning with Zhang and Feng

4https://github.com/MontrealCorpusTools/Montreal-Forced-
Aligner

(2023); Dong et al. (2022); Zhang et al. (2022). It encodes
each 20ms raw audio segment into an acoustic token. The
policy module is constructed on top of the decoder’s hid-
den states from the translation model, with an additional 3
transformer layers5 and 1 fully-connected layer. The text vo-
cabulary comprises 10,000 SentencePiece (Kudo 2018) sub-
words, shared between source and target languages.

Training and Evaluation Training was conducted on 4
V100 GPUs, each with a batch size of 3.2M audio frames.
The translation model was trained for up to 40 epochs with
early stopping after 20 non-improving epochs, followed by a
10-epoch policy module training with the translation model
frozen. Model selection was based on the development set
performance, using detokenized case-sensitive BLEU scores
from sacreBLEU6 and average lagging (AL) (Ma et al. 2019)
latency measures calculated with the simuleval toolkit7.

Main Results
We compare the proposed DiG-STT approach with a vari-
ety of models in the literature, all of which are exclusively
trained on the MuST-C corpus, including:

• MU-ST (Zhang et al. 2022), employing a segmentation
model to determine meaningful translation units.

• MoSST (Dong et al. 2022), utilizing the integrate-and-
firing method for word segmentation in speech.

• RealTrans (Zeng, Li, and Liu 2021), employing a convo-
lutional weighted-shrinking Transformer to detect word
count in streaming speech.

• ITST (Zhang and Feng 2022), quantifying transported
information from source to target and translating based
on accumulated received information.

• DiSeg (Zhang and Feng 2023), utilizing the proposed ex-
pectation training to render hard segmentation differen-
tiable, enabling joint training with the translation model.

• MMA-SLM (Indurthi et al. 2022), enhancing monotonic
attention by an language model to improve its decisions.

The results are shown in Figure 3, in which “offline” de-
notes the offline performance of our translation model with
a beam size of 1. In the commonly studied En-De direc-
tion, our method outperforms all other approaches in transla-
tion quality across various latency conditions. In the low la-
tency setting of around 1000ms, DiG-SST surpasses its clos-
est competitors, DiSeg and MU-ST, by 2 BLEU points, and
outperforms other methods by over 3 BLEU points. It main-
tains a margin of 3+ BLEU points over all other methods as
latency increases past 2000ms. DiG-SST also performs the
best in the En-Es direction, with 4+ BLEU points advantage
over other models at around 1000ms latency. In the En-Fr di-
rection, we compare solely with MoSST and MMA-SLAM
due to limited studies, and also observe significant improve-
ment.

5Quality slightly decreases by 0.2 BLEU points with 1 or 2 lay-
ers, and no additional improvement is noted beyond 3 layers.

6https://github.com/mjpost/sacrebleu
7https://github.com/facebookresearch/SimulEval
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Figure 3: The translation quality (BLEU) against the latency metrics (AL) on the tst-COMMON sets of MuST-C En-De, En-Es,
and En-Fr datasets.

Model En-De En-Es En-Fr Avg
RealTranS 23.0 - - -
MoSST 24.9 - 35.3 -
SpeechT5 25.2 - 35.3 -
DiSeg 24.7 29.7 - -
XSNET 25.5 29.6 36.0 30.4
STEMM 25.6 30.3 36.1 30.7
ConST 25.7 30.4 36.8 31.0
DiG-SST (Ours) 26.9 30.9 37.6 31.8

Table 2: Offline ST performance on MuST-C tst-COMMON
using a beam size of 5. All methods use only MuST-C data.

We compare in Table 2 the offline performance of our
prefix-enhanced translation model against recent state-of-
the-art methods. These methods focus on either offline ST,
such as SpeechT5 (Ao et al. 2022), XSNET (Ye, Wang,
and Li 2021), STEMM (Fang et al. 2022), and ConST (Ye,
Wang, and Li 2022), or on SimulST, including RealTranS
(Zeng, Li, and Liu 2021), MoSST (Dong et al. 2022), and
DiSeg (Zhang and Feng 2023). Our approach is competitive
in all translation directions, outperforming all other meth-
ods.

Experiment Analysis
Ablation Studies In the ablation studies depicted in Fig-
ure 4, we delve into the various aspects of the DiG-STT ap-
proach to assess their impact on the quality-latency curve.
Notably, the inclusion of the streaming ST loss (Lprefix

st ) con-
tributes most significantly to translation quality, yielding an
improvement of over 2 BLEU points around the 1000ms
mark. The addition of the offline MT loss also proves bene-
ficial in leveraging training data from parallel text.

To assess the influence of the divergence-based read/write
policy module, we conducted experiments by removing it
(denoted as -RW) from the strongest DiG-STT model, as
well as from the weaker version trained without the stream-
ing ST loss (Lprefix

st ), relying solely on the wait-k policy.
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DiG-SST

-RW

-Lprefix
st

-Lprefix
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-Loff
mt -Lprefix

st -RW

Figure 4: Ablation studies of DiG-SST on En-De tst-
COMMON.

The policy module demonstrated consistent performance
improvement in both configurations, with a more signifi-
cant effect observed in the weaker baseline. This could be
attributed to the weaker translation model’s reduced quality
in low latency settings, making it more important to have a
robust policy model to determine whether there is sufficient
information to perform translation.

Why Necessary to Combine with Wait-k? We begin
by considering the upper-bound performance achievable
through oracle divergence scores, calculated using complete
audio input as a reference. As shown in Figure 5, employing
only oracle divergence scores and varying the λ threshold
for read/write decisions according to Eq. (12) yields notably
superior quality across all latency settings. The inclusion
of the wait-k policy has minimal influence on the quality-
latency curve. However, relying solely on predicted diver-
gence scores for read/write decisions, without including the
wait-k policy, leads to markedly inferior performance. The
integration of the divergence prediction module with the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17804



1,000 2,000 3,000 4,000

20

22

24

26 λ=0.05
λ=0.1

λ=0.2

λ=0.3

λ=0.4

0.5

λ=0.6

λ=0.7

λ=0.1

λ=0.2

λ=0.3

λ=0.4

λ=0.5

λ=0.6
λ=0.7
λ=0.8
λ=0.9

Average Lagging (ms)

B
L

E
U

w/o δ (varying k)

w/ δ w/o wait-k (varying λ)

w/ δ (λ=0.1, varying k)

w/ δ̂ w/o wait-k (varying λ)

w/ δ̂ (λ=0.1, varying k)

Figure 5: AL-BLEU curves of different configurations of the
DiG-SST approach on En-De tst-COMMON, by varying the
source of divergence scores (δ: oracle, δ̂: predicted) and how
to control the latency (varying k vs λ).
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Figure 6: Impact of λ on MuST-C En-De tst-COMMON set
when used with the wait-k policy.

wait-k model produces a more favorable curve compared to
utilizing any of the policies independently.

Note that the divergence-based policy module, trained
on reference translation history but used with a predicted
one containing errors, can be significantly impacted by the
threshold λ, as shown in Figure 6. Optimal performance is
achieved with a small λ, ensuring reliable write actions and
quality translations. However, when λ exceeds 0.15, there is
a significant decline in translation quality at higher latency
levels. This occurs because a higher λ leads to premature
write actions, resulting in poorer translations and compli-
cating future read/write decisions due to exposure bias and
error accumulation.

Which Sampling Method is Better? Figure 7 (a) com-
pares the impacts of prefix-to-prefix (P2P) and prefix-to-
full (P2F) sampling approaches on trained translation model.
Both methods improve the quality-latency curve in simulta-
neous translation and offline quality, with P2F showing over-
all better performance.

Hallucination Given that neither the prefix-to-prefix nor
the prefix-to-full methods used for generating prefix-based
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(b) Hallucination rate

Figure 7: A comparison of different sampling methods on
MuST-C En-De tst-COMMON set. In the absence of RW,
the wait-k policy is adopted.

training samples guarantee complete audio-target transla-
tion alignment, hallucination remains a concern. Figure 7(b)
shows the hallucination rate (HR) (Chen et al. 2021) across
different settings. The prefix-to-full method exhibits a no-
tably lower HR compared to the prefix-to-prefix method,
likely because it ensures that each source word has a
corresponding target translation, making it easier to learn
word translation. Incorporating the divergence-based policy
model further reduces hallucination.

Conclusion

This paper presents the Divergence-Guided Simultaneous
Speech Translation (DiG-SST) approach to improve quality
and reduce latency in SimulST. The prefix-enhanced trans-
lation model is able to effectively translate partial audio in-
put encountered during simultaneous inference. Integrating
the divergence-based policy module with a wait-k policy en-
ables flexible read/write decisions, ensuring translation is
grounded in sufficient context in the streaming input. Exper-
iments on the MuST-C benchmark demonstrate that our ap-
proach outperforms all existing methods in achieving high-
quality translation at minimal latency.
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