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Abstract

Diffusion-based generative models have recently exhibited
powerful generative performance. However, as many attributes
exist in the data distribution and owing to several limitations
of sharing the model parameters across all levels of the gener-
ation process, it remains challenging to control specific styles
for each attribute. To address the above problem, we intro-
duce decoupled denoising diffusion models (DDDMs) with
disentangled representations, which can enable effective style
transfers for each attribute in generative models. In particular,
we apply DDDMs for voice conversion (VC) tasks, tackling
the intricate challenge of disentangling and individually trans-
ferring each speech attributes such as linguistic information,
intonation, and timbre. First, we use a self-supervised represen-
tation to disentangle the speech representation. Subsequently,
the DDDMs are applied to resynthesize the speech from the
disentangled representations for style transfer with respect to
each attribute. Moreover, we also propose the prior mixup for
robust voice style transfer, which uses the converted represen-
tation of the mixed style as a prior distribution for the diffusion
models. The experimental results reveal that our method out-
performs publicly available VC models. Furthermore, we show
that our method provides robust generative performance even
when using a smaller model size. Audio samples are available
at https://hayeong0.github.io/DDDM-VC-demo/.

1 Introduction
Denoising diffusion models (Ho, Jain, and Abbeel 2020;
Dhariwal and Nichol 2021; Song et al. 2021) have achieved
significant success in image generation tasks (Ramesh et al.
2022; Saharia et al. 2022b). Diffusion models have also at-
tracted increasing interest in the audio domain in recent years,
owing to their ability to synthesize high-quality speech (e.g.,
Mel-spectrogram and audio). Various applications employ
diffusion models, such as text-to-speech (TTS) (Popov et al.
2021; Kim, Kim, and Yoon 2022a,b), neural vocoder (Kong
et al. 2021; Chen et al. 2021; Huang et al. 2022), speech en-
hancement (Han and Lee 2022), and voice conversion (VC)
(Liu et al. 2021; Popov et al. 2022).

Although diffusion models have achieved success in most
speech applications owing to their powerful generative perfor-
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Figure 1: Speech synthesis in DDDM and standard diffusion
model. Although a single denoiser with same parameter is
used for all denoising steps in standard diffusion models,
we subdivide the denoiser into multiple denoiser for each
attribute by utilizing self-supervised representation. For each
intermediate time step, each denoiser focuses on removing
the single noise from its own attribute.

mance, there remains room for improvement in conventional
methods. As data include many attributes, it is difficult to
control specific styles for each attribute with a single denoiser
that shares the model parameters across all levels of genera-
tion process. To reduce this burden in the image generation
domain, eDiff-i (Balaji et al. 2022) subdivides the single de-
noiser into multiple specialized denoisers that originate from
the single denoiser progressively according to specific itera-
tive steps. However, a limitation still exists in controlling each
attribute within entirely the same conditioning framework for
every iteration, which results in a lack of controllability.

To address the above issues, we first present decoupled
denoising diffusion models (DDDMs) with disentangled rep-
resentations. As illustrated in Figure 1, we disentangle the
denoiser into specific attribute-conditioned denoisers to im-
prove the model controllability for each attribute. Subse-
quently, each denoiser focuses on the noise from its own
attribute at the same noise level and removes the noise at
each intermediate time step. To demonstrate the effectiveness
of DDDMs, we focus on the VC tasks that still face chal-
lenges in disentangling and controlling each speech attribute
(Choi et al. 2021). VC is a task for transferring or controlling
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the voice style while maintaining the linguistic information.
As speech consists of various attributes such as linguistic
information, intonation, and timbre, it remains challenging
to transfer the voice style in zero/few-shot scenarios.

Based on the DDDMs, we present DDDM-VC which can
effectively transfer and control the voice style for each at-
tribute. We first utilize the self-supervised representation to
disentangle the speech representation based on the source-
filter theory (Fant 1970). Subsequently, we resynthesize the
speech for each attribute from the disentangled representa-
tion using DDDMs. We also propose the prior mixup, a novel
verified robust voice style transfer training scenario that uses
the converted speech as a prior distribution for the diffusion
model that is generated from the mixed speech representation,
and restores the source speech. Thus, although DDDM-VC is
trained by reconstructing the source speech, the prior mixup
can reduce the train-inference mismatch problem for VC
tasks. We demonstrate that DDDMs can effectively transfer
the voice style even with lower model parameters compared
to the state-of-the-art VC model (Popov et al. 2022). Fur-
thermore, the experimental results reveal the effectiveness of
speaker adaptation in the zero/one-shot scenarios. The main
contributions of this study are as follows:
• We propose decoupled denoising diffusion models

(DDDMs), which can effectively control the style for each
attribute in generative models by decoupling attributes and
adopting the disentangled denosiers.

• To demonstrate the effectiveness of DDDMs, We present
DDDM-VC, which can disentangle and resynthesize
speech for each attribute with self-supervised speech rep-
resentation. Furthermore, we propose a prior mixup to
improve voice style transfer performance.

• Our model provides better performance in both many-to-
many and zero-shot voice style transfer compared with
the state-of-the-art VC model. We can also successfully
adapt to novel voice with a single sample.

2 Background
Denoising diffusion models have significantly improved vari-
ous generative tasks such as image generation (Ramesh et al.
2022; Rombach et al. 2022), image inpainting (Saharia et al.
2022a; Lugmayr et al. 2022), and audio generation (Chen
et al. 2021; Kong et al. 2021; Huang et al. 2022). These
models typically consist of a forward process that gradually
adds random noise, and a reverse process that progressively
removes random noise and restores the original sample.

Unlike the original diffusion model that uses a discrete-
time diffusion process by Markov chains (Ho, Jain, and
Abbeel 2020), the score-based generative model uses a
stochastic differential equation (SDE)-based continuous-time
diffusion process (Song et al. 2021). The stochastic forward
process is defined as follows:

dx = f(x, t)dt+ g(t)dw , (1)
where f(., t) is the drift coefficient of the x(t), g(t) is the
diffusion coefficient, and w denote the Brownian motion.
The reverse-time SDE can be expressed as:

dx = [f(x, t)− g2(t)∇x log pt(x)]dt+ g(t)dw̄ , (2)

Method EER (↓) SECS (↑)

Source-Filter Encoder + GAN 10.25 0.831
Source-Filter Encoder + Diffusion 7.75 0.846

Table 1: Speaker adaptation results of GAN and diffusion

where w̄ is Brownian motion for the time flowing in back-
ward, ∇x log pt(x) represents the score function. To esti-
mate sθ(x, t) ≃ ∇x log pt(x), score-based diffusion model
is trained with score matching objective:

θ∗ =argmin
θ

Et

{
λ(t)Ex(0)Ex(t)|x(0)[

∥sθ(x(t), t)−∇x(t) log p0t(x(t) | x(0))∥22
]}

.
(3)

Diffusion vs. GAN On the other hand, generative adversar-
ial networks (GAN) have also shown a powerful generative
performance in speech domain. (Lee et al. 2021b; Choi et al.
2021; Bak et al. 2023). Nevertheless, it is well known that
there exists a trade-off between fidelity and diversity (Huang
et al. 2023), producing high-quality samples but not covering
the entire distribution (Dhariwal and Nichol 2021). In prelim-
inary experiment, we compare each method (Choi et al. 2021;
Popov et al. 2022) using the same encoder in Table 1. The
results showed that the diffusion-based VC model has shown
a better speaker adaptation performance than GAN-based VC
models. In this regard, we chose diffusion-based VC model
(Popov et al. 2022) as a baseline model.

3 Decoupled Denoising Diffusion Models
To effectively control the style for each attribute in generative
models, we propose decoupled denoising diffusion models
(DDDMs) with multiple disentangled denoisers. Although
an ensemble of diffusion models was presented in (Balaji
et al. 2022), only a single expert is used at the specific de-
noising step in this method. In contrast, we investigate the
decomposition of diffusion models in a single denoising step.
Specifically, more than one attribute denoiser is used at any
given point. Unlike the general diffusion process, which em-
ploys a single denoiser, we subdivide the denoiser into N
denoisers with disentangled representations. Following the
use of data-driven priors in (Popov et al. 2022), we use a
disentangled representation of an attribute Zn as the prior for
each attribute denoiser. Therefore, the forward process can
be expressed:

dXn,t =
1

2
βt(Zn −Xn,t)dt+

√
βtdWt , (4)

where n ∈ [1, N ], n denotes each attribute, N is the total
number of attributes, βt regulates the amount of stochastic
noise and Wt is the forward Brownian motion. Reverse tra-
jectories exist for the given forward SDE of each attribute
(4). The reverse process of each disentangled denoiser can be
defined as follows:
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Figure 2: Overall framework of DDDM-VC.

dX̂n,t =

(
1

2
(Zn − X̂n,t)−

N∑
n=1

sθn(X̂n,t, Zn, t)

)
βtdt

+
√

βtdW̄t,
(5)

where t ∈ [0, 1], sθn represents the score function of each
attribute n parameterized by θn and W̄t denotes the backward
Brownian motion. The forward process (4) that generates a
noisy sample Xn,t with each prior attribute n is as follows:

p0t(Xn,t|X0) = N
(
e−

1
2

∫ t
0
βsdsX0+

(
1− e−

1
2

∫ t
0
βsds

)
Zn

,
(
1− e−

∫ t
0
βsds

)
I

)
,

(6)

where I is the identity matrix. The distribution (6) is Gaus-
sian, thus we have the following equation:

∇ log p0t(Xn,t|X0) =

− Xn,t −X0(e
− 1

2

∫ t
0
βsds)− Zn(1− e−

1
2

∫ t
0
βsds)

1− e−
∫ t
0
βsds

.
(7)

The reverse process (5) is trained by optimizing the parameter
θn using the following objective:

θ∗n = argmin
θn

∫ 1

0

λtEX0,Xn,t∥sθn(Xn,t, Zn, t)

−∇log p0t(Xn,t|X0)∥22dt,
(8)

where θ = [θ1, · · · , θN ] and λt = 1 − e−
∫ t
0
βsds. Further-

more, we derive fast sampling using the ML-SDE solver
(Popov et al. 2022), which maximizes the log-likelihood of
forward diffusion with the reverse SDE solver. We extend
DDDMs to DDDM-VC to control the voice style for each
attribute in the following Section. In addition, we show that
DDDMs can be applied to audio mixing by leveraging multi-
ple denoisers to blend the sound and speech with the desired
balance in Appendix H.

4 DDDM-VC
DDDM-VC consists of a source-filter encoder and source-
filter decoder as illustrated in Figure 2. We first disentangle
the speech using self-supervised speech representations as in
subsection 4.1. Thereafter, we use these disentangled speech
representations to control each attribute and to generate high-
quality speech with the proposed disentangled denoiser as
explained in subsection 4.2. Furthermore, we propose the
prior mixup for a robust voice conversion scenario in subsec-
tion 4.3.

4.1 Speech Disentanglement
Content Representation To extract the content represen-
tation relating to the phonetic information, we utilize self-
supervised speech representations. Unlike (Polyak et al.
2021) utilizing the discrete representation of audio from Hu-
BERT or using language-dependent representation such as
phonetic posteriorgram, we use a continuous representation
of audio from XLS-R, which is Wav2Vec 2.0 trained with a
large-scale cross-lingual speech dataset for robust zero-shot
cross-lingual VC. Furthermore, before fed to the filter en-
coder, audio is perturbed to remove the content-independent
information following (Choi et al. 2021). As (Lee et al.
2022b) demonstrated that the representation from the middle
layer of XLS-R contains substantial linguistic information,
we adopt this representation as the content representation.

Pitch Representation Following (Polyak et al. 2021), we
extract the fundamental frequency (F0) from the audio using
YAPPT algorithm (Kasi and Zahorian 2002) to encode the
intonation such as the speaker-irrelevant speaking style. The
F0 from each sample is normalized for each speaker for
speaker-independent pitch information, and VQ-VAE is used
to extract the vector-quantized pitch representation. For a fair
comparison, we normalize the F0 for each sentence, not for a
speaker, during inference.

Speaker Representation VC transfers the voice style, and
our goal is to achieve robust zero-shot voice style trans-
fer from novel speakers. To this end, we use style encoder
(Min et al. 2021) that can extract the speaker representation
from the Mel-spectrogram of the target speech. The extracted
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Figure 3: (a) Speech resynthesis from disentangled speech representations (training). (b) Voice conversion from converted speech
representations (inference). (c) Prior mixup for better speaker adaptation quality. To reduce the train-inference mismatch problem,
the decoder also learns to convert the randomly converted representations into input speech during training.

speaker representation is averaged per sentence for global
speaker representation, and fed to all encoders and decoders
for the speaker adaptation.

4.2 Speech Resynthesis
Source-filter Encoder In this work, we simply define the
speech attributes according to the source-filter theory (Fant
1970). The filter encoder takes the content and speaker rep-
resentations, whereas the source encoder takes the pitch and
speaker representations. Previously, (Lee et al. 2022a) demon-
strated that the data-driven prior in the diffusion process
can simply guide the starting point of the reverse process.
(Popov et al. 2022) adopted an average phoneme-level Mel
encoder for voice conversion with a data-driven prior. How-
ever, this method requires a text transcript to extract the
phoneme-level average Mel-spectrogram and pre-trained av-
erage Mel-encoder, and the smoothed Mel representation
results in mispronunciation. To achieve a substantially more
detailed prior, we use the entirely reconstructed source and
filter Mel-spectrograms, Zsrc and Zftr which are regularized
by the target Mel-spectrogram Xmel as follows:

Lrec = ∥Xmel − (Zsrc + Zftr)∥1, (9)

where

Zsrc = Esrc(pitch, s), Zftr = Eftr(content, s). (10)

It is worth noting that the disentangled source and filter Mel-
spectrograms from the disentangled representations are sim-
ply converted with different speaker representation s. Thus,
we utilize the converted source and filter Mel-spectrogram as
each prior in each denoiser for VC.

Source-filter Decoder We utilize disentangled denoisers
for the source and filter representations based on our DDDMs.
The source decoder takes a source representation Zsrc as a
prior and the filter decoder takes a filter representation Zftr

as a prior. Subsequently, each denoiser is trained to generate
a target Mel-spectrogram from each prior with the same
noise, which is conditioned on a speaker representation. Each
denoiser can focus on removing the single noise from its own
attribute. The forward process is expressed as:

dXsrc,t =
1

2
βt(Zsrc −Xsrc,t)dt+

√
βtdWt, (11)

dXftr,t =
1

2
βt(Zftr −Xftr,t)dt+

√
βtdWt, (12)

where t ∈ [0, 1], Xsrc,t and Xftr,t are the generated noisy
samples with each prior attribute (i.e., source-related and
filter-related attribute respectively). For the given forward
SDE of each attribute (11) and (12), there exist reverse tra-
jectories. The reverse process is expressed as:

dX̂src,t =

(
1

2
(Zsrc − X̂src,t)−

(
sθsrc(X̂src,t, Zsrc, s, t)

+ sθftr
(X̂ftr,t, Zftr, s, t)

))
βtdt+

√
βtdW̄t,

(13)

dX̂ftr,t =

(
1

2
(Zftr − X̂ftr,t)−

(
sθftr

(X̂ftr,t, Zftr, s, t)

+ sθsrc(X̂src,t, Zsrc, s, t)
))

βtdt+
√
βtdW̄t,

(14)

where sθsrc and sθftr
denote the score function parameter-

ized by θsrc and θftr respectively.

4.3 Prior Mixup
Although the speech can be disentangled into several at-
tributes and resynthesized with high-quality using the self-
supervised representation and diffusion processes, we still
train the model by only reconstructing or using the input
speech as the target speech in both the reconstruction and
diffusion processes, which induces the train-inference mis-
match problem. In non-parallel voice conversion scenario,
the ground-truth of the converted speech does not exist; Thus,
the model is trained only by reconstructing the source speech.
However, as we convert the source speech with a different
voice style for VC, we shift our focus from reconstruction to
conversion even in the training scenario.

To achieve this, we propose a prior mixup in the diffusion
process, which uses the randomly converted representation
instead of the reconstructed representation as a prior distri-
bution as illustrated in Figure 3-(c). Specifically, because
the source-filter encoder can also be trained to reconstruct a
source and filter of speech from the disentangled representa-
tion, the converted source and filter can be obtained with the
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randomly selected speaker style sr as follows:

Zsrc,r = Esrc(pitch, sr), Zftr,r = Eftr(content, sr).
(15)

Subsequently, the randomly converted source and filter,
Zsrc,r and Zftr,r are used as the prior for each denoiser
as below:

dXsrc,t =
1

2
βt(Zsrc,r −Xsrc,t)dt+

√
βtdWt , (16)

dXftr,t =
1

2
βt(Zftr,r −Xftr,t)dt+

√
βtdWt . (17)

The reverse process for the given forward SDE of each
attribute (16) and (17) is expressed as:

dX̂src,t =

(
1

2
(Zsrc,r − X̂src,t)− sθsrc(X̂src,t, Zsrc,r, so, t)

− sθftr
(X̂ftr,t, Zftr,r, so, t)

)
βtdt+

√
βtdW̄t,

(18)

dX̂ftr,t =

(
1

2
(Zftr,r − X̂ftr,t)− sθftr

(X̂ftr,t, Zftr,r, so, t)

− sθsrc(X̂src,t, Zsrc,r, so, t)
)
βtdt+

√
βtdW̄t,

(19)

where so is the original speaker style.
Hence, the prior mixup can alleviate the train-inference

mismatch problem as the model is trained to convert the
converted speech into the source speech even when recon-
structing the source speech. Moreover, the voice style can
be adapted in the source-filter decoder when the source-filter
encoder may not execute VC effectively during inference.
The entire model, including the style encoder, source-filter
encoder, and decoder without pre-trained XLS-R and F0
VQ-VAE, is jointly trained in an end-to-end manner with
Equation (8) for each attribute and Equation (9).

In order to verify that the training-inference mismatch
can be resolved in the decoder, Table shows the conversion
result using the reconstruction Mel (not converted Mel) as
a prior that has not been converted from the encoder to the
target. Without Prior Mixup, the data-driven prior restricts
the function of the diffusion decoder as speech enhancement,
which just enhances the audio quality. However, the diffusion
decoder, which is trained with Prior Mixup, can also convert
the voice style even with the wrong prior by conditioning the
target voice style in the diffusion decoder.

5 Experiment and Result
5.1 Experimental Setup
Datasets We used the large-scale multi-speaker LibriTTS
dataset (Zen et al. 2019) to train the model. The train-clean-
360 and train-clean-100 of LibriTTS, which consist of 245
hours of audio samples for 1,151 speakers, were used for
training. Thereafter, we evaluated VC performance on Lib-
riTTS and VCTK dataset (Veaux et al. 2017) for many-to-
many and zero-shot VC scenarios.

Preprocessing We resampled the audio from the sampling
rate of 24,000 Hz to 16,000 Hz using the Kaiser-best algo-
rithm of torchaudio Python package. We use the downsam-
pled audio waveform as the input for XLS-R (0.3B) (Babu
et al. 2022) to extract the self-supervised speech representa-
tion. For the target speech and the input of speaker encoder,
we used log-scale Mel-spectrogram with 80 bins. To map the
time frames between the self-supervised representation and
Mel-spectrogram without any interpolation, Mel-spectrogram
was transformed with hop size of 320, window size of 1280,
and 1280-point Fourier transform.

Training For reproducibility, we attached the source code
of DDDM-VC in the Supplementary materials. We trained
DDDM-VC using the AdamW optimizer (Loshchilov and
Hutter 2019) with β1 = 0.8, β2 = 0.99, and weight decay
λ = 0.01, and applied the learning rate schedule with a decay
of 0.9991/8 at an initial learning rate of 5× 10−5. We train
all models including ablation study with a batch size of 64 for
200 epochs. Architecture details are described in Appendix A.
For prior mixup, we mixed the speaker representation using
binary selection between the original and shuffled representa-
tions in the same batch. For zero-shot voice conversion, we
did not fine-tune the model. For one-shot speaker adaptation,
we fine-tuned the model with only one sentence of novel
speakers for 500 steps with optimizer initialization and an
initial learning rate of 2 × 10−5. We used the pre-trained
Vocoder to convert the Mel-spectrogram into waveform. For
vocoder, we used HiFi-GAN V1 (Kong, Kim, and Bae 2020)
as an generator, and we used multi-scale STFT-based dis-
criminators (MS-STFTD) of EnCodec (Défossez et al. 2022)
which use a complex-valued STFT with real and imaginary
components.

5.2 Evaluation Metrics
Subjective Metrics We measured the mean opinion score
(MOS) for the speech naturalness and speaker similarity in
VC tasks. At least 20 listeners rated each sample from the
source and converted speech on a scale of 1 to 5 for the
speech naturalness MOS (nMOS). At least 20 listeners rated
the target and converted speech on a scale of 1 to 4 for the
speaker similarity MOS (sMOS).

Objective Metrics We calculated the character error rate
(CER) and word error rate (WER) using Whisper (Rad-
ford et al. 2022) which is public available automatic speech
recognition (ASR) model1 with large-scale multi-lingual
and multitask supervision for the content consistency mea-
surement. We evaluated the equal error rate (EER) of auto-
matic speaker verification (ASV) model (Kwon et al. 2021),
which is trained with large-scale speech recognition dataset,
VoxCeleb2 (Chung, Nagrani, and Zisserman 2018) for the
speaker similarity measurement. Furthermore, we determined
the speaker encoder cosine similarity (SECS) for the addi-
tional similarity measurement. As VCTK provided a paired
utterance per speaker, we also evaluated the Mel-cepstral

1https://github.com/openai/whisper. We used a large model of
Whisper with 1,550M parameters, and used a presented text normal-
izer before calculating the CER and WER.
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Method iter. nMOS (↑) sMOS (↑) CER (↓) WER (↓) EER (↓) SECS (↑) Params. (↓) Real-time (↑)

GT - 3.82±0.05 3.44±0.03 0.54 1.84 - - - -
GT (Mel + Vocoder) - 3.81±0.05 3.23±0.05 0.60 2.19 - 0.986 13M -

AutoVC (Qian et al. 2019) - 3.62±0.05 2.44±0.04 5.34 8.53 33.30 0.703 30M ×99.13
VoiceMixer (Lee et al. 2021a) - 3.75±0.05 2.74±0.05 2.39 4.20 16.00 0.779 52M ×123.03
SR (Polyak et al. 2021) - 3.62±0.05 2.55±0.04 6.63 11.72 33.30 0.693 15M ×177.22

DiffVC (Popov et al. 2022) 6 3.77±0.05 2.72±0.05 7.28 12.80 10.50 0.817 123M × 20.06
DiffVC (Popov et al. 2022) 30 3.77±0.05 2.77±0.05 7.99 13.92 11.00 0.817 123M ×4.63
DDDM-VC-Small (Ours) 6 3.75±0.05 2.75±0.05 3.25 5.80 6.25 0.826 21M ×28.73
DDDM-VC-Small (Ours) 30 3.79±0.05 2.81±0.05 4.25 7.51 6.25 0.827 21M ×6.65
DDDM-VC-Base (Ours) 6 3.75±0.05 2.75±0.05 1.75 4.09 4.00 0.843 66M ×22.75
DDDM-VC-Base (Ours) 30 3.79± 0.05 2.80±0.05 2.60 5.32 4.24 0.845 66M ×5.09

Table 2: Many-to-many VC results on seen speakers from LibriTTS dataset

Method iter. nMOS (↑) sMOS (↑) CER (↓) WER (↓) EER (↓) SECS (↑) MCD13 (↓)

GT - 4.28±0.06 3.87±0.03 0.21 2.17 - - -
GT (Mel + Vocoder) - 4.03±0.07 3.82±0.03 0.21 2.17 - 0.989 0.67

AutoVC (Qian et al. 2019) - 2.49±0.09 1.88±0.08 5.14 10.55 37.32 0.715 5.01
VoiceMixer (Lee et al. 2021a) - 3.43±0.08 2.63±0.08 1.08 3.31 20.75 0.797 4.49
SR (Polyak et al. 2021) - 2.58±0.10 2.03±0.07 2.12 6.18 27.24 0.750 5.12

DiffVC (Popov et al. 2022) 6 3.48±0.07 2.62±0.08 5.82 11.76 25.30 0.786 4.82
DiffVC (Popov et al. 2022) 30 3.62±0.07 2.50±0.07 6.92 13.19 24.01 0.785 5.00
DDDM-VC-Small (Ours) 6 3.76±0.07 2.99±0.07 1.27 3.77 6.51 0.852 4.39
DDDM-VC-Small (Ours) 30 3.84±0.06 2.96±0.07 1.95 4.70 6.89 0.851 4.55
DDDM-VC-Base (Ours) 6 3.74±0.07 2.98±0.07 1.00 3.49 6.25 0.856 4.42
DDDM-VC-Base (Ours) 30 3.88±0.06 3.05±0.07 1.77 4.35 6.49 0.858 4.54

DDDM-VC-Fine-tuning (Ours) 6 3.74±0.07 3.07±0.07 1.26 3.80 0.81 0.910 4.27
DDDM-VC-Fine-tuning (Ours) 30 3.86±0.07 3.06±0.07 1.87 4.63 0.82 0.913 4.38

Table 3: Zero-shot VC results on unseen speakers from VCTK dataset. We additionally report the one-shot speaker adaptation
result of DDDM-VC-Base model (DDDM-VC-Fine-tuing) which is fine-tuned with only single sample per speaker for 500 steps.

distortion (MCD). We produced all possible pairs from the
converted and target speech (400×20 = 8,000), and calculated
all the evaluation metrics.

5.3 Many-to-Many Voice Conversion

We performed the many-to-many VC task with seen speakers
during the training, and compared our models with various
VC models. As indicated in Table 2, DDDM-VC-Small also
outperformed the other models in all subjective and objective
metrics without ASR results. Although VoiceMixer had a
lower CER and WER, it had a lower voice style transfer
performance in terms of the EER and SECS. Furthermore,
we compared the converted speech generated with 6 and 30
iterations to evaluate the performance with fast sampling.
Although the objective results of the model with 6 iterations
were better than those of the model with 30 iterations, the
model with 30 iterations achieved better performance in both
the nMOS and sMOS evaluations. Thus, the audio quality
was perceptually improved and the generated samples had
better diversity with the stochastic iterative processes.

5.4 Zero-shot Voice Conversion

We also report the results of the zero-shot VC tasks. As indi-
cated in Table 3, our models significantly outperformed the
baseline models in terms of speaker similarity. In particular,
only the DDDM-VC models could adapt the voice style with
novel speakers in terms of EER and SECS. We found that
increasing iteration steps improved the diversity of converted
speech in that CER, WER, and EER were increased, but the
nMOS was consistently improved. We analyzed the effec-
tiveness of each proposed component in the ablation study.
In addition, we can control each attribute by transferring
different styles to each attribute respectively as indicated in
Appendix E.

5.5 One-shot Speaker Adaptation

For better speaker adaptation, we additionally fine-tuned our
model on the VCTK dataset. We only used one sample per
speaker, which is under ten seconds per speaker. As indicated
in Table 3, the speaker similarity in terms of EER and SECS
is consistently improved but the CER increased after the
model overfitted the small training samples.
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Method iter. nMOS (↑) sMOS (↑) CER (↓) WER (↓) EER (↓) SECS (↑) Params. (↓)

DDDM-VC-Small (Ours) 30 - - 4.25 7.51 6.25 0.827 21M
DDDM-VC-Base (Ours) 30 3.76±0.05 3.08±0.05 2.60 5.32 4.24 0.845 66M
w/o Prior Mixup 30 3.79±0.05 3.03±0.05 3.28 5.66 7.99 0.821 66M
w/o Disentangled Denoiser 30 3.76±0.05 3.00±0.05 3.20 5.57 9.75 0.815 36M
w/o Normalized F0 30 3.78±0.05 3.00±0.05 3.27 5.88 10.25 0.811 33M
w/o Data-driven Prior 30 3.83±0.05 2.87±0.05 2.32 4.86 19.25 0.786 66M

Table 4: Results of ablation study on many-to-many VC tasks with seen speakers from LibriTTS.

Prior Mixup Encoder Output (Prior) EER (↓) SECS (↑)

✓ Recon. Mel 48.34 0.677
✗ Recon. Mel 7.10 0.852

Table 5: Ablation study for Prior Mixup with wrong prior.

Params. EER (↓) SECS (↑) CER (↓) WER (↓)

36 M 8.78/7.78 0.847/0.852 0.55/0.84 2.92/3.26
170 M 9.00/7.32 0.843/0.851 0.58/0.70 2.84/3.05
340 M 10.25/8.50 0.840/0.844 0.66/0.88 3.04/3.29

Table 6: Objective evaluation of the impact of scaling up
model parameters on the Prior Mixup (without/with). We
train each model with LibriTTS-train-960 dataset and evalu-
ate the zero-shot VC performance on VCTK dataset.

5.6 Ablation Study
Prior Mixup We trained the DDDM-VC model without
the prior mixup to clarify the reduction in the train-inference
mismatch. As indicated in Table 4, the prior mixup could
improve the generalization performance with better speaker
adaptation in that the EER of the model with the prior mixup
decreased and the SECS increased. However, the naturalness
was slightly decreased, which can occur in VC since it does
not take into account the target rhythm on the fixed-length of
input speech. The research on the rhythm conversion could ad-
dress this issue and we leave it for the future work. To further
verify that the trainging-inference mismatch can be resolved
in the decoder with prior mixup, we compared the VC results
using the reconstructed (not converted) Mel-spectrogram as
a prior in Table 5. Without Prior Mixup, the data-driven prior
restricts the function of the diffusion decoder as speech en-
hancement, which just enhances the audio quality. However,
the diffusion decoder, which is trained with Prior Mixup, can
also convert the voice style even with the wrong prior by
conditioning the target voice style in the diffusion decoder. In
other words, our proposed diffusion decoder performs more
than mere enhancement; it facilitates robust style adaptation.
We also analyze scaling up the VC system and how prior
mixup could improve the generalization performance regard-
less of model size (without information bottleneck) in Table 6.
Table 6 shows that the diffusion models without prior mixup
have also troubles in scale-up in that the large-scale model
could learn to estimate the random noise from the noised
sample by ignoring the conditioning. Table 6 shows that scal-

ing the diffusion-based model with prior mixup increases the
performance of voice style transfer.

Disentangled Denoiser We observed that removing the
disentangled denoiser (employing only a single denoiser)
decreased the performance in all metrics. It indicates that the
disentangled denoiser can improve the model performance
by effectively adapting each representation to the target voice
style, compared to a single denoiser.

Normalized F0 We determined that removing the normal-
ized F0 conditioning decreases the VC performance. Without
the pitch contour, the encoder may not disentangle the content
information of the speech effectively, resulting in a degrada-
tion of the VC performance. As it is difficult to reconstruct
the speech from the perturbed speech representation, the use
of additional pitch information that can be extracted from the
ground-truth speech may improve the stability of the model.

Data-driven Prior As noted in (Lee et al. 2022a), a data-
driven prior can improve the performance of diffusion model.
We minimize the L1 distance of Mel-spectrogram between
the ground-truth Mel-spectrogram and output of the source-
filter encoder as Equation (10) for the data-driven prior. Each
output from the source and filter encoder was used for the
prior of each diffusion model, which was disentangled by the
source-filter theory. Although nMOS was reported slightly
lower, the performance of speaker adaptation significantly
increased with data-driven prior. In the VC tasks, using the
converted Mel-spectrogram performs better than using the
average Mel-spectrogram (Popov et al. 2022). Besides, we
think that the enhanced prior through normalizing flow (Kim
et al. 2020) may also improve the performance of models.

6 Conclusion
We have presented DDDMs for the robust control of vari-
ous data components in diffusion models. We successfully
demonstrated that DDDMs can improve the style transfer
performance in VC tasks. DDDM-VC can convert the voice
style even in zero-shot voice style transfer tasks by improv-
ing the speaker adaptation quality significantly. We have also
proposed the prior mixup, which can improve the robustness
of style control by learning to restore the data from converted
representations for better generalization with reduced train-
inference mismatch. Furthermore, we demonstrated that our
model can robustly convert the voice with high-quality re-
gardless of the model size. The small model also achieved
better performance than state-of-the-art VC models.
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