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Abstract

A wide range of real-world applications is characterized by
their symbolic nature, necessitating a strong capability for
symbolic reasoning. This paper investigates the potential ap-
plication of Large Language Models (LLMs) as symbolic
reasoners. We focus on text-based games, significant bench-
marks for agents with natural language capabilities, particu-
larly in symbolic tasks like math, map reading, sorting, and
applying common sense in text-based worlds. To facilitate
these agents, we propose an LLM agent designed to tackle
symbolic challenges and achieve in-game objectives. We be-
gin by initializing the LLM agent and informing it of its role.
The agent then receives observations and a set of valid actions
from the text-based games, along with a specific symbolic
module. With these inputs, the LLM agent chooses an action
and interacts with the game environments. Our experimen-
tal results demonstrate that our method significantly enhances
the capability of LLMs as automated agents for symbolic rea-
soning, and our LLM agent is effective in text-based games
involving symbolic tasks, achieving an average performance
of 88% across all tasks.

Introduction
The ability to perform reasoning is crucial for AI due
to its significant impact on various real-world tasks. The
widespread adoption of large language models (LLMs),
such as ChatGPT and GPT-4 (OpenAI 2023), has led to
a series of remarkable successes in reasoning tasks, rang-
ing from question & answering to solving math problems.
Among these challenges, text-based games serve as impor-
tant benchmarks for agents with natural language capabil-
ities and have garnered significant attention in the realm
of language-centric machine learning research (Narasimhan,
Kulkarni, and Barzilay 2015; Côté et al. 2018; Xu et al.
2020; Ryu et al. 2022; Shi et al. 2022). In these games,
an agent uses language to interpret various scenarios and
make decisions. The complexity of such games arises from
the need for language comprehension, common sense, man-
aging action spaces with combinatorial complexity, and the
crucial importance of long-term memory and planning (Côté
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et al. 2018; Wang et al. 2022a). The challenges escalate in
text-based games that involve symbolic tasks (Wang et al.
2022b). For instance, contemporary agents might be tasked
with a scenario where they are required to solve a mathemat-
ical problem and simultaneously gather a specified amount
of fruits, with the quantity needed being the solution to the
math problem.

Using symbolic modules or external tools for arithmetic,
navigation, sorting, and knowledge-base lookup is cru-
cial for language agents, especially in complex text-based
games (Lample and Charton 2020; Poesia, Dong, and Good-
man 2021; Wang et al. 2022b; Qian et al. 2023). However,
effectively integrating these aspects into language agents re-
mains a relatively unaddressed challenge. Solving such text-
based games requires interactive multi-step reasoning, and
agents have most commonly been modeled using reinforce-
ment learning (Xu et al. 2020; Yao et al. 2020; Xu et al.
2021). These methods, however, face challenges such as de-
layed rewards and difficulty in exploring large action spaces.
Recently, there has been an exploration of imitation learn-
ing approaches, which utilize human play data (Wang et al.
2022b). While Behavior Cloning (BC) shows potential in
effectively addressing these challenges, it often necessitates
substantial effort and resources. This is primarily due to the
need for acquiring expert data.

Recently, large language models (LLMs) have demon-
strated notable in-context generalization capabilities, sug-
gesting the potential to elicit reasoning abilities by prompt-
ing these models (Brown et al. 2020; Min et al. 2022). How-
ever, the application of LLMs in performing symbolic rea-
soning remains an under-explored area. Models like GPT-
3.5 and GPT-4 have shown the ability to encode extensive
information (OpenAI 2023). A significant example of this
is their acquisition of substantial knowledge during training,
enabling them to approach human-level performance across
a wide range of tasks (OpenAI 2023). This indicates the fea-
sibility of utilizing LLMs as neurosymbolic reasoners with-
out relying on labeled gold training data. However, there is
currently limited research on utilizing these models for rea-
soning tasks that involve logic, graphs, or symbolic formu-
las. The exploration and development of methods that lever-
age LLMs for symbolic reasoning is highly intriguing and
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Figure 1: The LLM agent is capable of interacting with the
game environment, leveraging its reasoning abilities to de-
termine the most suitable actions. These actions alter the en-
vironment’s state and contribute to achieving the given ob-
jective. The environment, along with its corresponding sym-
bolic modules, offers a valid set of actions to the LLM agent.
The agent’s responsibility is to select an action from this set.
The chosen action will then dictate how the agent interacts
with either the game environment or the symbolic module.

holds significant potential impact.
In this paper, our aim is to investigate the role of Large

Language Models (LLMs) in symbolic reasoning within the
context of text-based games. When engaging in games that
involve symbolic tasks, our LLM agent generates the most
rational actions based on the observed game state in a zero-
shot manner, assisted by external symbolic modules such as
calculators or navigators, as illustrated in Figure 1. The LLM
agent employs both the text-based game environment and
symbolic modules to generate a list of valid actions. These
valid actions, along with the current observation, are inte-
grated into the prompt to direct the LLM agent in select-
ing an appropriate action. Subsequently, the LLM agent ex-
ecutes this action, interacting with both the game environ-
ment and symbolic modules to complete the task.

In summary, our contributions include:

• We introduce the use of LLMs for symbolic reasoning
and provide a framework for employing the LLM agent
as a neurosymbolic reasoner. This achievement under-
scores the potential of LLMs, with the support of external
modules, to function as neurosymbolic reasoners, capa-
ble of successfully completing complex tasks.

• We have developed the LLM agent with tailored prompts,
enabling it to effectively utilize symbolic modules and
enhance its performance in text-based games that involve
symbolic tasks.

• Our experiments demonstrate that our agent outperforms
strong baselines, including the Deep Reinforcement Rel-
evance Network with symbolic modules and the Behav-
ior Cloned Transformer trained with extensive expert
data, achieving an average performance of 88% across
all tasks.1

1Code at: https://github.com/hyintell/LLMSymbolic.

Related Work
Large Language Models for Decision Making. LLMs
have demonstrated notable capabilities, enabling their ap-
plication in tasks that extend beyond language generation
(OpenAI 2023). Furthermore, they are increasingly being
grounded as policy models for decision-making in interac-
tive contexts (Yang et al. 2023). Current studies focus on
enhancing the decision-making capacity of LLMs through
techniques such as prompting and in-context learning. For
instance, Wei et al. (2022) introduce the Chain-of-Thought
(CoT) approach, showing that a sequence of intermediate
reasoning steps can enhance decision-making capabilities.
Yao et al. (2022) present ReAct, a method for interleaved
reasoning and action generation to improve performance in
interactive decision-making tasks. Other studies (Singh et al.
2023; Huang et al. 2022a,b; Liang et al. 2023; Vemprala
et al. 2023) have explored innovative strategies involving
prompt engineering and the utilization of high-level func-
tion libraries to enhance the capabilities of LLMs. Addi-
tionally, some approaches incorporate mechanisms of self-
critique and self-reflection into LLMs, enabling them to
refine their generation. For example, Shinn, Labash, and
Gopinath (2023) introduce Reflexion, a technique that em-
ploys external feedback to detect ineffective actions and en-
gage in self-reflection. Madaan et al. (2023) enable an LLM
to offer feedback on its previously generated text and refine
it adaptively. Recent attempts have also explored different
aspects of LLMs for decision-making. Kwon et al. (2023)
utilize LLMs as proxy reward functions by prompting them
with desired behaviors, while Brooks et al. (2022) consider
LLMs as world models, where the agent learns policy by
interacting with the LLM-based world model. In our work,
we focus on developing suitable prompting strategies to en-
hance the decision-making performance of LLMs in solving
symbolic tasks.

Text-based Game. Text-based games can be formally
characterized as partially observable Markov decision pro-
cesses (POMDPs) (Côté et al. 2018). In recent years, there
has been a notable increase in the design of reinforce-
ment learning (RL) agents to solve these games (Liu et al.
2021; Hendrycks et al. 2021; Osborne, Nõmm, and Freitas
2022). Current research primarily addresses challenges such
as long-term dependencies, partial state observations, sparse
rewards, and complex action combinations in text-based
games (Yin and May 2019; Ammanabrolu and Hausknecht
2020; Kimura et al. 2021b; Xu et al. 2022). For instance,
Adhikari et al. (2020) address the challenge of partial ob-
servability by exploring the acquisition of graph-structured
state representations through data-driven methods. Yao et al.
(2020) and Shi et al. (2022) employ a language model
to generate a compact set of action candidates for RL
agents, tackling the issue of the combinatorial action space.
More recently, with the advancement of LLMs, research has
shifted towards using prompts to enable LLMs to solve text-
based games (Yao et al. 2022; Shinn, Labash, and Gopinath
2023). However, these efforts have primarily focused on the
LLMs’ capability for in-context learning, while the explo-
ration of their potential in symbolic reasoning has been rel-
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atively overlooked.

Neurosymbolic Reasoning. The field of neurosymbolic
reasoning combines the capabilities of deep neural networks
with symbolic reasoning, significantly reducing the search
space associated with symbolic techniques. This approach
has been used to tackle various complex multi-step infer-
ence challenges, including tasks like multi-hop question
answering (Weber et al. 2019), language contextualization
(Zellers et al. 2021), and semantic analysis (Cambria et al.
2022). Text-based games that involve symbolic tasks serve
as a valuable test-bed for addressing such challenges. Pre-
vious approaches have employed traditional optimization
techniques or reinforcement learning agents. For example,
Kimura et al. (2021a) decompose text-based games into col-
lections of logical rules, which are then integrated with deep
reinforcement learning. Basu et al. (2022) use Integer Lin-
ear Programming (ILP) to substantially improve agent per-
formance, providing an interpretable framework for under-
standing agents’ selection of specific actions.

Preliminaries
Text-based Games as POMDPs. Text-based games can
be formally defined as partially observable Markov decision
processes (POMDPs), considering that the agent only ob-
serves partial information about the environment at each turn
(Sutton and Barto 2018). In games with symbolic modules,
at each discrete time step t, the agent is provided with an
observation denoted as ot and is given a task description de-
noted as d. The symbolic module then produces a collection
of valid actions, denoted as At,SyM , while the text game
environment concurrently establishes its own set of proper
actions, denoted as At,Env . Consequently, the set of accept-
able actions at time step t is the union of these two sets,
denoted as At = At,Env ∪ At,SyM . The agent’s goal is to
select an action at from the set of valid actions At, given
the observation ot and the task description d. If at belongs
to the set At,SyM , the symbolic module generates the next
observation ot+1. Conversely, if at is not part of At,SyM ,
the text-based game environment processes at and produces
both the subsequent observation ot+1 and the reward rt.

Symbolic Tasks. There are four distinct tasks within text-
based games, namely Arithmetic, MapReader, Sorting and
Text World Common Sense (TWC) (Wang et al. 2022b).
Each task is equipped with its own symbolic modules de-
signed to assist agents in successfully accomplishing the
task.

Methodology
We introduce an LLM agent, namely a language agent, for
employing LLMs2 to engage in text-based games by lever-
aging symbolic modules in a zero-shot manner. We begin
with an overview of playing games using symbolic modules,
followed by a detailed description of the key design features
of our language agent, including its prompting mechanism.

2We utilize LLMs from OpenAI: https://chat.openai.com/.
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Observation: You are in the laundry
room. In one part of the room you see a
bench that has 23 peas, 936 squashes
on it. There is also a math problem. You
also see a box, that is empty.
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mul 26 36
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26 and 36 is 936.
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Observation: Your task is to solve the
following math problem: multiply 26 and
36 . Then, pick up the item with the
same quantity as the answer, and place
it in the box.

Figure 2: An overview of how an LLM agent plays text-
based games with external symbolic modules. The follow-
ing procedural steps are involved in utilizing the LLM agent
for engaging in a text-based game. Initially, the LLM agent
is provided with a role initialization prompt. The first obser-
vation received by the LLM agent comes from the text game
environment. As depicted in the diagram, the selection of
actions, determined by the LLM’s reasoning, activates the
symbolic module. Subsequently, the symbolic module pro-
vides output, including observations related to the module.
Then the next action chosen by the LLM agent is influenced
by the outcome from the symbolic module. This process is
executed repeatedly until the end of the game.

Playing Games with Symbolic Tasks
We describe the process of playing games that involve sym-
bolic tasks, using the LLM agent in conjunction with exter-
nal symbolic modules.

Symbolic Modules. Symbolic modules play a crucial role
in maximizing the reasoning capabilities of LLMs. For ex-
ample, as shown in Figure 2, consider a scenario where a
mathematical problem is presented, and a calculator is avail-
able. In such cases, the LLM’s reasoning can effectively use
the calculator to complete the task in a zero-shot manner.
Furthermore, symbolic modules are adept at their functions,
as employing an external tool like a calculator is considered
an action in itself.

The scenarios include four distinct symbolic modules:
the Calculation Module, Sorting Module, Knowledge Base
Module, and Navigation Module. Table 1 shows examples
of how these symbolic modules are utilized. The observation
produced by a symbolic module indicates the current state of
the game, while the action selected by the LLM agent serves
as the input. Additionally, the Navigation Module requires
the previous observation as input to accurately determine
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Task
(Symbolic
Module)

Description Symbolic Module

Arithmetic
(Calculation
Module)

Your first task is to solve the math problem. Then, pick up
the item with the same quantity as the math problem answer,
and place it in the box.

INPUT: mul 8 7
RESPONSE: Multiplying 8 and 7 results in 56.

MapReader
(Navigation
Module)

Your task is to take the coin located in the pantry, and put it
into the box found in the chamber. A map is provided, that
you may find helpful.

INPUT: next step to pantry
RESPONSE: The next location to go to is canteen. If
you want to go to pantry from chamber, you need go
through canteen, pantry.

Sorting
(Sorting
Module)

Your task is to sort objects by quantity. First, place the ob-
ject with the smallest quantity in the box. Then, place the
objects with the next smallest quantity in the box, and re-
peat until all objects have been placed in the box.

INPUT: sort ascending
RESPONSE: The observed items, sorted in order of in-
creasing quantity, are: 25 g of oak, 47 g of brick, 15 kg
of cedar, 21 kg of marble.

TWC
(Knowledge
Base Module)

Your task is to pick up objects, then place them in their usual
locations in the environment.

INPUT: query clean brown shirt
RESPONSE: Clean brown shirt is expected to be lo-
cated at wardrobe.

Table 1: Text-based games with symbolic tasks and their corresponding symbolic modules. INPUT refers to the current action
that is sent to the symbolic modules. RESPONSE denotes the responses generated by the symbolic modules at the present time.

the player’s current position. For instance, in a mathemat-
ical task, the LLM agent may select a computational action
such as “multiply 8 by 7” (mul 8 7). This action triggers the
symbolic module to calculate the product, and the resulting
observation, “Multiplying 8 and 7 results in 56,” is then re-
turned.

The process of engaging in text-based games with LLMs
involves multiple stages. The specifics of these steps are de-
tailed in Figure 2. As mentioned earlier, the comprehensive
environment, comprising both the symbolic modules and the
text-based game environment, presents the LLM agent with
a list of allowable actions. Upon receiving an observation,
the LLM agent uses its symbolic reasoning to select an ac-
tion from this list. If the chosen action involves the symbolic
module, the module provides the next observation; other-
wise, the text-based game environment supplies the subse-
quent observation.

LLM as the Neurosymbolic Reasoner
We investigate whether the accumulated world knowledge of
LLMs can aid in making accurate decisions for downstream
symbolic tasks. To ground LLMs in text-based games, we
employ a prompting approach, which eliminates the need for
costly additional training. Therefore, we construct prompts
in a way that incorporates external context, enabling the
LLM agent to generate reasonable actions.

We describe the role of the agent, incorporating the ob-
servation, valid actions, and the constraints of executing the
action in the prompt, as it is not easy for the LLM agent to
understand the underlying rules of the environment through
interacting with game environments. The key components of
our approach include:

• Role initialization: We initialize the agent by providing
them with task descriptions and action constraints.

• Action Query: This step is repeated at each timestep.
We prompt the LLM agent with the current observation,
inventory state, valid action set, and a question.

Role
Initial-
ization

You are a robot. {TASK DESC}\n You are
required to choose action from the valid ac-
tion set to complete the task step by step.\n
To take action, respond with an action in the
valid action set. \n

Action
Query

{OBS}\n {INV STATE}\n Your current
score is: {SCORE}\n The valid action set
contains: {VALID ACT SET}.\n Please
choose one action from the valid action set
to finish the task step by step.\n Do NOT
respond with any other text, and you cannot
decline to take an action.

Table 2: The prompting format for role initialization and ac-
tion query for each time step. {TASK DESC} is the task de-
scription. {OBS} is the current observation. {INV STATE}
describes the items in your inventory. {SCORE} is the ob-
tained reward. {VALID ACT SET} is a set of valid actions
at the current time step.

• Answer by the LLM agent: The LLM agent chooses an
action from the valid action set to complete the task.

Role Initialization. We initialize the role and provide in-
structions for a functional agent assigned to a task. This pro-
cess informs the agent about its role, the task description,
and the actions it can take, along with their explanations and
constraints. These actions are necessary for interacting with
text-based games or calling the symbolic module. The agent
is instructed to choose from a valid set of actions, such as
reading the map, getting paths to specific locations, and re-
calling the task. Additionally, the agent is advised to utilize
the external symbolic module and to avoid unnecessary ac-
tions during the task.

Action Query. At each timestep, we inform the LLM
agent of the current game state, as outlined in Table 2. This
information includes the player’s observation, the state of
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Task Constrained Prompts
Arithmetic There are some rules for choosing action:

\n 1) If you do not see the items that meet
your requirements, please choose ‘look
around’.\n 2) If you want to put some-
thing in the box, please first take it and
then put it in box.\n 3) For example, if
you want to put 20 apples in the box, you
should first choose ‘take 20 apples’ and
then choose ‘put 20 apples in box’.\n 4)
The next action of ‘take math problem’
is ‘read math problem’.\n 5) However,
please never choose ‘put math problem in
box’ as action.\n

MapReader 1) At the beginning choose ‘read map’ to
get the unknown surrounding layout.\n 2)
After that, if you do not know how to get
to SOMEPLACE, you can choose ‘next
step to SOMEPLACE’ to get the path to
SOMEPLACE.\n 3) To choose the action,
‘task’, you can recall your task.\n 4) Do
NOT go to anywhere that is unnecessary
for finishing the task.\n

Sorting To sort the items one by one, please follow
the instruction:\n 1) choose ‘sort ascend-
ing’ or ‘sort descending’ to know which
one should be sort next.\n 2) take the
items.\n 3) put the items in box.\n

TWC 1) When you take the item, you will get
positive score.\n 2) When you put the item
in the right place, you will get higher pos-
itive score. Otherwise you get 0.\n 3) You
are supposed to get as much score as pos-
sible.\n

Table 3: The prompting format for adding constraints on the
actions of an agent.

the inventory, the reward, and the valid action set. The in-
ventory state refers to the current possessions of the agent.
For instance, in mathematical tasks, the inventory state may
consist of a mathematical problem, while in the MapReader
task, it could include a map. Additionally, the inventory
state can encompass tangible objects, such as toothpaste or
a quantity of 18 avocados, acquired by the agent within the
environment. The LLM agent is then tasked with selecting
one action from the valid action set to continue with the task.
It is important to note that the LLM agent is not allowed to
decline or provide any text beyond the prescribed response.
We also limit the number of valid actions provided by the
symbolic module.

In addition, it is essential to develop appropriate prompts
that effectively restrict the agent’s actions according to the
information provided in Table 3. It is not feasible for the
agent to acquire knowledge and infer the rules within trajec-
tories solely through its interaction with the environment. In
all tasks, there is typically a specific order of events, where
the object is first taken and then placed in a designated lo-

cation. This strategy is adopted to prevent scenarios where
the object is placed before it is acquired, which would be
considered unacceptable in the given context.

Experiments
We demonstrate the potential of LLMs in serving as neu-
rosymbolic reasoners for text-based games. In particular, we
present experimental results on four text-based games that
involve different symbolic tasks. In these tasks, we observe
that LLMs can effectively function as symbolic reasoners.

Setup
We follow the evaluation framework and game environments
in Wang et al. (2022b). These games are developed using
the TextWorldExpress game engine (Jansen and Cote 2023).
For our LLM agent, we use GPT-3.5-turbo. The LLM agent
can interact with game environments and symbolic mod-
ules. The task descriptions and examples of how the sym-
bolic modules are called are provided in Table 1. The eval-
uation includes four text-based games involving symbolic
tasks. Each task is divided into “Train”, “Dev”, and “Test”
sets. All evaluations are conducted on the “Test” set.

The evaluation metric is based on two factors: the aver-
age score achieved at the end of each game, and the average
number of steps taken within a single episode.

Environments
We use four text-based game benchmark environments
(Wang et al. 2022b):

Arithmetic. The task at hand involves a mathematical
component, wherein an agent is required to read and solve a
mathematical problem. This process determines the specific
object from a given set of objects that they should select
and place. The arithmetic game includes a calculator mod-
ule equipped with the capability to perform basic mathemat-
ical operations, including addition, subtraction, multiplica-
tion, and division.

MapReader. A pick-and-place game with a navigation
theme, similar to the Coin Collector game (Yuan et al. 2018).
The agent is equipped with a map that may be exploited to
optimize route planning. The map provides information on
the connections between rooms, such as the lounge connect-
ing to the cookery and supermarket. The navigation sym-
bolic module has the capability to extract location informa-
tion from the observation space. This includes specific in-
formation relating to the present location and geographical
features leading to the intended destination. For instance, the
instructions sent to the agent might indicate that in order to
get from the cooking area to the recreation zone, one must
pass through the bar, steam room, library, and finally reach
the recreation zone.

Sorting. This game involves an agent initially situated in a
room containing a variable number of objects, ranging from
three to five. The agent’s task is to sequentially place these
objects into a designated box, adhering to a specific sorting
criterion based on increasing quantity. In this game, units
related to volume, mass, or length are used, as exemplified
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DRRN Behavior Cloned Transformer LLM Agent
Baseline +symbolic module Baseline +symbolic module

Benchmark Score Steps Score Steps Score Steps Score Steps Score Steps
Arithmetic 0.17 10 0.14 7 0.56 5 1.00 5 1.00 4
MapReader 0.02 50 0.02 50 0.71 27 1.00 10 0.86 15
Sorting 0.03 21 0.03 18 0.72 7 0.98 8 0.71 7
TWC 0.57 27 0.37 34 0.90 6 0.97 3 0.94 4
Average 0.20 27 0.14 27 0.72 11 0.99 7 0.88 7

Table 4: The average performance of the model across a set of 100 games in the unseen test set. “+symbolic module” indicates
the utilization of symbolic modules within the action space of the models.

by items such as 25g of oak, 12ml of marble, and 6cm of
cedar. The sorting game includes a module capable of ex-
tracting information from the observation space. This mod-
ule is specifically designed to identify items that include
quantities and can arrange these objects in either ascending
or descending order, following the user’s instructions.

Text World Common Sense (TWC). The challenges pro-
vided in this game serve as a baseline for evaluating com-
mon sense reasoning abilities (Murugesan et al. 2021). In
this game, agents are required to gather objects from their
surroundings, such as a clean brown shirt, and subsequently
place these objects in their appropriate and commonly rec-
ognized locations, like a wardrobe. The incorporation of a
symbolic module within this game enables agents to engage
in knowledge-based queries. For instance, it allows them
to deduce that a clean brown shirt is typically found in a
wardrobe.

Baselines
We also compare our LLM agent with two baselines, namely
the Deep Reinforcement Relevance Network (DRRN) (He
et al. 2016) and the T5-based Behavior Cloned Transformer
(Raffel et al. 2020; Wang et al. 2022b), as follows:

• DRRN: The primary concept of the DRRN is based on
Q-learning. The candidate action with the highest antic-
ipated Q-value is chosen as the next action, based on
the current observation. The DRRN employs a Deep Q-
Network (Mnih et al. 2013) to estimate the Q-value for
each observation-action pair. Xu et al. (2020) note that
the DRRN is a fast and robust reinforcement learning
baseline, frequently used to produce near state-of-the-art
performance in a variety of text-based games.

• Behavior Cloned Transformer: This method adopts an
imitation learning approach, conceptualizing reinforce-
ment learning as a sequence-to-sequence problem, sim-
ilar to the Decision Transformer (Chen et al. 2021). It
predicts the subsequent action based on a sequence of
previous observations. This baseline aligns with the ap-
proach described in Ammanabrolu et al. (2021), where
the model input at timestep t includes the task descrip-
tion, current state observation, previous action, and pre-
vious state observation. Symbolic modules are utilized in
the demonstrations, specifically employing gold trajecto-
ries.

Following Wang et al. (2022b), both baseline models in-
clude two variants: one with symbolic modules and one
without. When using symbolic modules, we inject actions
from these modules into the action space of each game for
the baseline models.

Results
Based on the results presented in Table 4, it is evident that
the use of the symbolic module in conjunction with the LLM
agent yields a favorable average performance compared to
other baseline approaches. When comparing the outcomes
of the Behavior Cloned Transformer with a symbolic mod-
ule to those of the LLM agent, the performance of the LLM
agent is observed to be slightly lower. However, the LLM
agent demonstrates a similar level of competency in inter-
acting with the game environment. Furthermore, unlike the
Behavior Cloned Transformer models, the LLM agent does
not require extensive training with a large volume of expert
data. As a result, this approach saves significant training re-
sources.

Table 5 demonstrates that the LLM agent possesses a ro-
bust capacity for reasoning, enabling effective handling of
tasks involving symbolic tasks. It shows exceptional per-
formance, particularly in mathematics. In the MapReader
benchmark, the agent achieves commendable scores, though
it requires a considerable number of steps to complete the
task. This inefficiency is mainly due to the agent’s tendency
to forget the route obtained from the symbolic module, lead-
ing to the risk of reaching incorrect locations and necessi-
tating repeated route queries. The complexity of map logic,
which involves determining one’s current location and de-
sired destination, adds to the probabilistic nature of this task.
In contrast, the Sorting task reveals suboptimal performance,
as the LLM agent’s understanding of sorting logic is not
fully developed. This issue is largely attributed to the agent’s
limited memory capacity, hindering its ability to remember
the ascending order of all objects.

In Table 6, it compares the performance of the model with
constrained prompts to that of the model without constrained
prompts. The results indicate that when the LLM agent is
provided with the prompts outlined in Table 3, there is an
improvement in performance across all tasks. Additionally, a
reduction in the average number of steps required to interact
with the game environment is observed. This demonstrates
the effectiveness of our constrained prompts in these tasks.
Furthermore, experimental results using GPT-4, as shown in
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Task Train Dev Test
Score Steps Score Steps Score Steps

Arithmetic 1.00 3 0.95 4 1.00 4
MapReader 0.84 15 0.84 14 0.86 15
Sorting 0.70 7 0.63 6 0.71 7
TWC 0.93 4 0.835 5 0.94 4
Average 0.87 7 0.81 7 0.88 7

Table 5: The performance of the LLM agent on different
sets of the game, including “Train”, “Dev”, and “Test”. The
scores are subjected to normalization, resulting in values
ranging from 0 to 1, with higher values indicating greater
performance. On the other hand, the steps quantify the num-
ber of actions taken by an agent inside the environment, with
lower values indicating more efficient behavior.

Task w/ Constraints w/o Constrains
Score Steps Score Steps

Arithmetic 1.00 4 0.96 3
MapReader 0.86 15 0.64 12
Sorting 0.71 7 0.35 10
TWC 0.94 4 0.73 7
Average 0.88 7 0.67 8

Table 6: The performance of the LLM agent with and with-
out constrained prompts on the “Test” set. The constrained
prompts are shown in Table 3.

Table 7, reveal that it significantly outperforms the GPT-3.5
agent in the MapReader and Sorting tasks, while showing
weaker performance in the TWC task.

Discussion. Our results demonstrate that the incorporation
of external symbolic modules by the LLM agent leads to en-
hanced average accuracy compared to other baselines. This
capability is achieved by leveraging the underlying patterns
present in the training data. Instead of relying on symbolic
thinking or explicit rules, this approach acquires knowledge
by recognizing patterns and associations from the extensive
corpus of text to which it has been exposed during its train-
ing phase, as exemplified by GPT-3.5 and GPT-4 (OpenAI
2023). Although the LLM agent has the capability to con-
nect with a symbolic module for specific tasks, it still ex-
hibits uncertainty and is prone to making mistakes.

Conclusion
This paper has demonstrated the effective application of
Large Language Models (LLMs) in complex text-based
games involving symbolic tasks. Utilizing a prompting ap-
proach, we have guided the LLM agent to efficiently en-
gage with symbolic modules within these games. The effi-
cacy of our method, leveraging LLMs, has shown superior
performance compared to alternative benchmarks, highlight-
ing the potential of LLMs to enhance training procedures in
text-based games. Consequently, it can be posited that Large
Language Models can be considered as Neurosymbolic Rea-
soners, possessing significant potential for performing sym-

Task w/ GPT-3.5 w/ GPT-4
Score Steps Score Steps

Arithmetic 1.00 4 1.00 4
MapReader 0.86 15 0.99 7
Sorting 0.71 7 0.93 8
TWC 0.94 4 0.71 16
Average 0.88 7 0.91 8

Table 7: The performance of the LLM agent using GPT-3.5
and GPT-4 on the “Test” set.

bolic tasks in real-world applications.

Limitations
The addition of more detailed prompts could offer greater
control over the actions of the LLM agent. This would be
particularly beneficial in tasks like Sorting, where providing
essential information beforehand is advantageous. Acknowl-
edging and addressing these limitations could significantly
enhance the system’s performance. For future progress, it is
crucial to extend the model’s application to more complex
domains, going beyond the scope of straightforward text-
based games. Integrating more sophisticated symbolic mod-
ules would be necessary to tackle the complexities of diverse
scenarios, thereby facilitating a more efficient problem-
solving approach.
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