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Abstract

There are increasingly many large language models (LLMs)
available to the public. While these LLMs have exhibited im-
pressive abilities on a variety of task, any individual LLM in
particular may do well on some tasks and worse on others.
Additionally, the performance of these models is heavily de-
pendent on the choice of prompt template. For instance, they
exhibit sensitivity to the few shot examples chosen or brit-
tleness to the wording of instructions. Moreover, a prompt
template that makes a model perform well for one input may
not be the optimal template for another input. This necessi-
tates an approach for adaptively selecting LLM and prompt
template pairs for each input. Recent work has shown that
the accuracy of an LLM’s responses is correlated with the
LLM’s confidence in the response. Thus, a natural choice for
selecting which model and prompt template to use is to se-
lect the pair that is most confident in its response. However,
existing confidence metrics are expensive to calculate, neces-
sitating multiple calls to each LLM and prompt pair. We thus
propose an approach to predict the confidence of each pair us-
ing an auxiliary regression model that is inexpensive to run.
Using this auxiliary model, we select the LLM and prompt
template with the highest predicted confidence for a given in-
put. Results on a range of benchmark datasets show that our
confidence-based instance-level prompt search method con-
sistently improves the performance of LLMs.

Introduction
Large language models (LLMs) have demonstrated impres-
sive performance on a range of tasks such as question an-
swering (Robinson, Rytting, and Wingate 2022), text sum-
marization (Zhang et al. 2023), and search (Spatharioti et al.
2023). While some leading LLMs such as GPT-4 (OpenAI
2023) show good performance on a wide variety of tasks,
these models are closed-source. Fortunately, many open-
source language models, such as FLAN-T5 (Chung et al.
2022) and BLOOM (Scao et al. 2022), have been made freely
available to the community. These open source models gen-
erally perform well on some tasks, or for some inputs, and
poorly on others (Jiang, Ren, and Lin 2023). Additionally,
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the performance of LLMs in general has been shown to be
highly sensitive to the prompt template or instructions that
they are conditioned on (Zhao et al. 2021). These facts com-
bine to lead to the central question that is the focus of this
work: Given an input for a user, how can we determine
which LLM and which prompt template to use?

A reasonable method for choosing which LLM and
prompt template to use is to select the conditioned model
that is most confident in its response. Ideally, we could deter-
mine the confidence of each model and prompt template pair
and then select a return from the most confident pair. Recent
works have proposed methods for measuring the confidence
of LLMs (Kadavath et al. 2022; Lin, Hilton, and Evans 2022;
Kuhn, Gal, and Farquhar 2023; Lin, Trivedi, and Sun 2023),
using techniques such as measuring the semantic similarity
between multiple samples from the model (Kuhn, Gal, and
Farquhar 2023; Lin, Trivedi, and Sun 2023). However, ex-
isting confidence approaches require obtaining at least one
(and often many) response from a model before confidence
can be estimated. This is not feasible to do when choosing
between multiple model and prompt template options; cal-
culating the confidence of all pairs would incur a quadratic
number of LLM calls for each user input. This is an unrea-
sonable expense, in terms of time and compute resources.

In this paper, we tackle the problem of selecting the most
confident LLM and prompt template pair using an estimated
confidence that does not require observing the output of each
model during inference. More specifically, we assume that
we have access to (potentially unlabeled) datasets of exam-
ples for a set of tasks that we can compute model confidence
on in an offline setting. Using this data, we aim to predict
what the model confidences would be when given new in-
stances from similar tasks.

There are several challenges that must be overcome to
achieve this. First, we require that the confidence prediction
must be inexpensive to calculate - as we need to make this
confidence prediction for each LLM-prompt template pair
for each input from the user. Second, the confidence calcu-
lation can not leverage the response from the model itself
- again due to computational expense. Third, it is not triv-
ial to compute confidence given only the input to the LLM
- a natural choice, given that the output is not accessible.
More specifically, the standard ways of computing features
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Figure 1: Given a set of LLMs and a set of prompt templates,
how can we select the optimal LLM-prompt template pair
for any given user input?

from variable length text - such as utilizing a text embedding
from a Sentence Transformer (Reimers and Gurevych 2019)
- result in high dimensional vectors. This leads to a sparse
vector space unless incredibly large training sets are avail-
able, making these standard features inadequate for learning
a mapping from input to confidence.

Hence, we propose Predicted-Instance-Confidence
Search (PICS), a system for selecting a response from the
LLM-prompt template pair that has maximum confidence.
At a glance, PICS first precomputes the confidences of
each model on the available training datasets. Then, train-
ing data is initially featurized by using a contextual text
embedding model (Reimers and Gurevych 2019). Next,
each datapoint is given a final feature representation based
on the confidences and distances of its nearest neighbor
points in the initial embedding space. This final feature
representation is used to train an ensemble of small machine
learning regression models to predict the confidence of each
LLM and prompt template for each point in the available
datasets. Then, when a new instance arrives, the regression
models are used to obtain a predicted confidence for each
LLM-prompt template pair. Running these regressors incurs
minimal cost compared to the LLMs. Next, the LLM and
prompt template pair with the maximum predicted confi-
dence is selected. Finally, a set of responses are sampled
from the selected pair, and the most confident response is
returned.
Contributions. Our contributions are as follows.
• To the best of our knowledge, we are the first to propose

selecting prompt templates based on model confidences.
• We are the first work to propose using predicted confi-

dence from an auxiliary model for estimating LLM con-
fidences.

• We propose a new featurization method for confidence

regressors, based on neighbor confidence and similarity
in an LLM embedding space.

• We propose returning the most confident response from
a sample of model outputs, as opposed to returning a
greedy response or the output of a beam search.

Problem Definition
Assumptions. Assume we are given access to a set of
dm LLMs, M = {Mi}dm

i=1, where M is an LLM. Ad-
ditionally, we have a set of dp prompt templates, P =

{Pi}
dp

i=1. For a given input query x, a formatted prompt is
given by P(x). For instance, P may be a chain of thought
template (Wei et al. 2022) such as "{input}. Let’s
think it through {response}", where P(x) re-
places "{input}" with the text of x. We also have access
to nD training datasets, D = {Dv}nD

v=1, Dv = {dvi }i=1,
where dvi is the ith text in dataset Dv .

Let R : D × P → {0, 1} be a binary function, such that
R(D,P) = 1 if prompt template P is “related” or “paired”
with dataset D, and returns 0 otherwise. The concept of re-
latedness is up to the user; for instance, a prompt template
is “related” to a dataset if the prompt template uses few-
shot examples from the dataset. Or, for example, D may be
a dataset of QA examples and the prompt template may be
an instruction designed to condition the LLM for question
answering.
Defining model response. For a given input x, a response
r from model Mi using prompt template Pj is sampled ac-
cording to r ∼ PMi|Pj(x). Here, PMi|Pj(x) is the condi-
tional distribution parameterized by Mi(Pj(x)).
Goal. Our goal is to optimize the following equation inde-
pendently for each input x:

argmax
M∈M,P∈P

Er∼PM|P(x)
conf(r|M,P), (1)

where conf() is a confidence measure, conf : T → R,
that assigns a real-valued confidence score to points in the
space T of the LLM outputs. We provide a discussion on the
choice of the confidence function in the following section.

Notably, we aim to optimize for Equation 1 without ob-
taining responses r for each M ∈M and each P ∈ P .

Methodology
The key idea to our proposed Predicted-Instance-Confidence
Search is that for any given input x we predict the confidence
of each LLM and prompt template pair, and then select the
most confident response from the pair with the highest pre-
dicted confidence. We explain this approach in detail below.

Semantic Confidence
There are many ways to define the confidence score
conf(·|M,P) of an LLM conditioned on a prompt. For in-
stance, we could prompt the model to express a verbalized
confidence (Xiong et al. 2023), or estimate the number of
distinct semantic groups (the number of semantically differ-
ent responses) (Kuhn, Gal, and Farquhar 2023; Lin, Trivedi,
and Sun 2023).
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In this work, we utilize the similarity vector1 formed from
the similarity graph of a set of sampled LLM responses, as
proposed by (Lin, Trivedi, and Sun 2023). More specifically,
for a given input x, LLM M and prompt template P we
first sample N responses from the conditioned LLM using a
temperature τ .

Next, we compute the similarity score between each re-
sponse. Let s(ri, rj) be the similarity score between the ith
and jth sampled responses. The functional form of s(·, ·) is
a design choice; no matter the choice, it should be a score
that is high for instances that are semantically similar (e.g.,
maximized for sentences with the same meaning) and low
otherwise. For instance, it could be the score returned from
an NLI-tuned LLM as initially proposed (Lin, Trivedi, and
Sun 2023), a cosine similarity between the scores in an em-
bedding space, or the RougeL score (Lin 2004) between the
sentences. We chose RougeL in our experiments.

We then compute the similarity vector sM,P,x, where
sM,P,x
i =

∑N
j=1,j ̸=i s(ri, rj). s

M,P,x
i is thus a vector where

the ith entry is the sum of the similarities between the ith
response and all other sampled responses.

Finally, the confidence score conf(ri|M,P) is defined as
follows:

conf(ri|M,P) = sM,P,x
i /N

Intuitively, the confidence of the LLM in its response ri is
high if ri is similar to the other sampled responses from that
model for the same input. This is because the similarity will
be high when the model is producing semantically similar
responses, indicating it is certain of its response.

Unfortunately, since this confidence is computed on the
output of each LLM and prompt template pair - in fact, N
responses from each pair - using this confidence directly for
searching for the best pair to respond to each input x is too
costly. Instead, we must develop a way of utilizing confi-
dence without sampling from each pair during runtime.

Estimating the Confidence of LLM Responses
As computing conf(r|M,P) for each M and P is too costly
for online inference, we propose to replace conf(·|M,P)
with an estimated confidence score C∗

|M,P(·). This es-
timated confidence is computed using regression models
trained to match the true confidence score.

The first design consideration we make when design-
ing the estimated confidence is on what the input space of
C∗

|M,P(·) should be. Recall that conf(·|M,P) is calculated
using the response from the LLM; however, we cannot ob-
tain this response without making a call to the LLM. In-
stead, we compute our estimated confidence using features
of the input to the LLM: Given an input x that we want
a response to, we estimate the confidence of M(P) using
C∗

|M,P(fM,P(x)), where fM,P(x) is a featurized vector rep-
resentation of x.

More specifically, we obtain an initial representation of x
by first transforming x - which is in general a textual input of
varying length - into a constant -size vector embedding h(x).

1Our similarity vector corresponds to the diagonal of the degree
matrix in (Lin, Trivedi, and Sun 2023)

We utilized the average representation from FLAN-T5-XL
(Chung et al. 2022) for our experiments. However, vectors
in the embedding space H are not ideal representations for
learning our confidence regressor C∗

|M,P(·). H is not well
suited to our needs as these embedding spaces are typically
high dimensional; for instance, the embedding space from
FLAN-T5-XL has over 1000 dimensions. We would need
very large datasets to fit a confidence regressor on this space.

Rather than employing h(x) as our featurized version of
the input, we opt for computing a lower-dimensional repre-
sentation that is specifically tailored for confidence predic-
tion. First, we identify the k nearest neighbors of h(x) in the
embedding spaceH, where these neighbors(representing the
user inputs in the training data) are found using a search over
the embedded texts from our training datasets {Dv}nD

v=1. Let
dk ∈

⋃nD

v=1Dv be an instance in our training sets — e.g.
an example input query, not a model’s response — such that
h(dk) is the instance with the kth highest cosine similarity
to h(x); then, we compute an intermediate representation:

gM,P(x) =


conf(r(d1)|M,P)
conf(r(d2)|M,P)

...
conf(r(dk)|M,P)


T

,

where each neighbor confidence conf(r(d1)|M,P) is pre-
computed in an offline setting. Specifically, we compute the
confidences for all training data once, so this does not add to
the runtime of our system once deployed.

Intuitively, this featurization allows the regressor to pre-
dict the confidence x based on a nonlinear combination of
the confidences of similar queries. However, this represen-
tation gM,P(x) alone does not provide any signal relating
to how similar to the neighbor queries are to x; it could be
that the k neighbors of h(x) are very distant. Information
on whether the neighbors are very similar (in which case
their confidences should be more highly weighted) or dis-
tant (which implies their confidences are less predictive) is
taken into account by a second intermediate representation
b(x), b(x) = [δx(d1), δx(d2), . . . , δx(dk)], where δx(dk) is
the cosine distance between h(x) and its kth neighbor h(dk).
We then obtain the final representation as:

fM,P(x) = gM,P(x)⊕ b(x).

Training the Confidence Regressors. Now that we have a
representation fM,P(x) that is tailored for confidence pre-
diction, we can use this representation to obtain a predicted
confidence. Specifically, we parameterize the predicted con-
fidence C∗

|M,P(·) using machine learning regression mod-
els. In our experiments, C∗

|M,P(·) is given by an ensemble
of linear regression, Random Forest (Ho 1995), and Gradi-
ent Boosting (Friedman 2001). The confidence regressor is
fit by minimizing a loss L, given by:

L =
1

N

∑
d∈

⋃nD
v=1 Dv

(
conf(r(d)|M,P)− C∗

|M,P(fM,P(d))
)2

,

where conf(r(d)|M,P) is the average confidence of a sample of
responses from M(P(x)). Thus, when using the similarity vector
sM,P,d
i,i to define confidence, the average confidence is given by:
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Figure 2: Overview of our proposed Predicted-Instance-Confidence Search pipeline.

conf(r(d)|M,P) =

N∑
i=1

sM,P,d
i /N2.

Predicted-Instance-Confidence Search
Now that we have described our approach for estimating confi-
dences, we are equipped to describe our method for selecting the
most confident LLM and prompt template pair with which to pro-
duce a response for each input x from the user. An overview of this
pipeline is shown in Figure 2, and a pseudocode implementation of
our proposed approach is given in Algorithm 1.

To begin, we once again utilize a text embedding model to pro-
duce the text’s vector representation h(x). We then select training
datasets that have an average cosine similarity with h(x) that is
greater than a threshold α. Let Dα,x be this subset, such that if
D ∈ Dα,x then the average cosine similarity between h(x) and
the elements of D is above α.

We then select a subset of prompts Pα,x, such that P ∈ Pα,x

iff R(D,P) for some D ∈ Dα,x. We filter the prompts in this
way so that we estimate confidences only on settings where the
corresponding regressors were trained on data similar to x.

This leads directly to the next step, which involves estimating
the confidences for each LLM paired with each prompt template in
the subset Pα,x. Thus, for each pair we featurize h(x) as fM,P(x)
and compute the estimated confidence C∗

|M,P(x). We then select
the LLM and prompt template with maximum predicted confidence
as follows:

M∗,P∗ = argmax
M∈M,P∈Pα,x

C̃∗
|M,P(x),

where M∗,P∗ is defined as:

C̃∗
|M,P(x) =

{
C∗

|M,P(x) if η > γ

C|M,P otherwise

In the equation above, η is the average cosine similarity of x’s
neighbor points in the embedding space, γ is a threshold, and
C|M,P is the average confidence of M and P. In our experiments
we use γ = 0.6.

After obtaining the optimal model M∗ and prompt template P∗,
we select a response r∗. To this end, we sample n responses from
M∗ conditioned on P∗(x). We then compute the confidence of
each sample, returning the response with maximum confidence. As
this calculation needs to be done for only one model and prompt

Algorithm 1: Predicted-Instance-Confidence Search

1: function PICS(x)
2: Input: Query x, confidence regressors C|M,P for

M ∈M and P ∈ P , training dataset D
3: Output: Most confident response r∗, most confident

model and prompt template pair (M∗,P∗)
4: f x← confidence featurization(x,D)
5: max conf ← 0
6: M∗ ←M0

7: P∗ ← P0

8: for m← 1 to dm do
9: for p← 1 to dp do

10: η ← avg neighbor similarity(x,D)
11: if η > γ then
12: predicted conf = C|Mm,Pp

(f x)
13: else
14: a← avg conf(Mm,Pp)
15: predicted conf ← a

16: if predicted conf > best conf then
17: best conf ← predicted conf
18: M∗ ←Mm

19: P∗ ← Pp

20: sM
∗,P∗,x ← similarity vector(x,M∗,P∗)

21: i∗ ← argmax i sM
∗,P∗,x

i

22: r∗ ← sM
∗,P∗,x

i∗

23: return r∗, (M∗,P∗)

pair - i.e. the most confident pair - we opt to compute confidence
using a semantic confidence approach rather than using a confi-
dence regressor. Thus, given a set of n response {r1, r2, . . . , rn},
the final response r∗ is found using:

r∗ = argmax
r∈{r1,r2,...,rn}

conf(r|M∗,P∗).

Lastly, we return this final response r∗ along with the model and
prompt template pair with the highest confidence, (M∗,P∗), to the
user.
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Model Number of Parameters Instruction Tuned?

FLAN-T5-XL 11B Yes
FLAN-UL2 20B Yes
MPT-30B 30B No
BLOOM 176B No

Table 1: Models used when constructing model and prompt
template pairs

Experiments
We now validate our proposed Predicted-Instance-Confidence
Search (PICS) approach through a series of experimental evalua-
tions.

Experimental Setup
We briefly describe our experimental setup below.

Compared Approaches
• Average Performance of Model and Prompt Template Com-

binations (MPT Avg.) We report the average accuracy over the
set of valid model and prompt template combinations as “MPT
Avg.”.

• Most Confident Model and Prompt Template Combination.
Instead of selecting the model and prompt template pair with
the highest confidence individually for each instance, we could
instead select the pair with the highest average confidence and
use this for all inputs. We compare against this approach, which
we refer to as “Most Confident”.

• Predicted-Instance-Confidence Search with Random Sam-
pling (PICS-RS) This is our proposed approach, but rather than
the final semantic confidence calculation to select the most con-
fident response out of a sampled set we instead simply sample
a single response from the most confident model and prompt
template pair.

• Predicted-Instance-Confidence Search with Confidence
Sampling (PICS-CS) Our full proposed approach, including
the final confidence sampling step.

• Oracle Confidence Search with Random Sampling (OCS-
RS) This approach is similar to (PICS-RS), but instead of using
the predicted confidence of each instance we instead use the
calculated semantic confidence. This approach is too computa-
tionally expensive to be used in practice in most scenarios.

• Oracle Confidence Search with Confidence Sampling
(OCS-CS) This approach is similar to (PICS-CS), but instead
of using the predicted confidence of each instance we instead
use the calculated semantic confidence. As was the case for
OCS-RS, this approach is also too computationally expensive
to be practically used in most scenarios.

Models We perform our analysis with each LLM shown in Table
1. We selected these models so as to have a mix of instruction tuned
models and non-instruction tuned models, as well as models with a
range of parameter counts (11B to 176B).

Datasets We used the following datasets in our analysis:
• StrategyQA. This dataset consists of input questions which re-

quire reasoning to answer, and the targets are responses that
include the logical reasoning used to respond to the question
(Geva et al. 2021).

• TriviaQA. The inputs in this dataset are trivia questions, and
the ground truth responses are short factual answers (Joshi et al.
2017).

Figure 3: Accuracy vs. Number of Samples used in Confi-
dence Sampling

• Question Formation. This dataset is taken from the linguistic
mapping2 Big Bench dataset (Srivastava et al. 2023). The inputs
from this dataset are statements such as “The student reads the
paper”, and the target is the statement rephrased as a question;
e.g., “Does the student read the paper?”. We shorten the name
of this dataset to “Q. Formation” in our result tables.

Prompt Templates The candidate prompt templates we uti-
lized in our search consisted of few-shot templates taken from each
dataset. For each dataset, we created six 3-shot prompt templates.
The examples chosen for these prompt templates were found by
embedding each dataset using a text embedding model, clustering
the embeddings into six clusters, and then randomly selecting three
examples from each cluster.

Metrics We follow the evaluation strategy of both (Kuhn, Gal,
and Farquhar 2023) and (Lin, Trivedi, and Sun 2023) and use a
thresholded RougeL score. Thus, if the RougeL score between a
response and the ground truth is greater than a threshold γ then we
say it is correct and has an accuracy of 1; otherwise, it is incorrect
and has an accuracy of 0. We use γ = 0.3 for the StrategyQA
and TriviaQA dataset (the value used in (Kuhn, Gal, and Farquhar
2023)) and γ = 0.7 for the Question Formation dataset (where this
value was used in (Lin, Trivedi, and Sun 2023)). We use the higher
threshold for Question Formation as it is a simpler task.

Confidence Search For Individual Models
In this first experiment, we consider the case where only a single
model is available, alongside a set of prompt templates (described
above). We are thus determining whether our Predicted-Instance-
Confidence Search can improve performance by adaptively choos-
ing the best prompt template to use for each input instance.

Table 2 show results for the FLAN-T5-XL, FLAN-UL2,
MPT-30B, and BLOOM models, respectively. An important obser-
vation is that our proposed PICS-CS approach nearly always pro-
vides a performance increase of several percentage points when
compared to the average performance of model and prompt tem-
plate pairs, as well as a significant performance increase over the
model and prompt template pair with maximum overall confidence
(“Most Confident”). The cases where PICS-CS does not perform
best both correspond to the case where inputs and the task are
drawn from the Question Formation dataset. Specifically, in the
cases where PICS-CS does not provide a significant boost, the Most

2https://github.com/google/BIG-bench/tree/main/bigbench/
benchmark tasks/linguistic mappings/question formation json
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Model Dataset
MPT
Avg.

Most
Confident

PICS-RS
(Ours)

PICS-CS
(Ours)

OCS-RS*
(Ours)

OCS-CS*
(Ours)

FLAN T5 XL
Strategy QA 48.68 48.55 49.20 53.10 50.90 54.25
Trivia QA 21.09 21.40 21.40 27.10 25.25 27.30

Q. Formation 61.48 62.90 66.25 73.45 70.20 75.40

FLAN UL2
Strategy QA 68.50 68.35 68.70 69.30 70.05 70.10
Trivia QA 42.23 42.60 42.95 46.10 45.85 47.00

Q. Formation 69.37 87.30 86.80 87.10 87.65 86.90

MPT 30B
Strategy QA 24.39 28.55 29.45 38.25 33.60 39.25
Trivia QA 27.96 42.75 40.00 49.00 45.10 49.70

Q. Formation 24.47 42.00 45.65 79.50 62.00 83.20

BLOOM
Strategy QA 25.22 30.55 30.00 37.90 31.60 36.10
Trivia QA 43.02 45.35 45.80 49.80 45.80 51.25

Q. Formation 98.48 99.10 98.35 98.85 97.20 97.00

Table 2: Performance of each search for each model. The approach with the best accuracy for a given model and dataset is
given in bold. *We do not consider OCS-RS and OCS-CS when selecting the “best accuracy” due to these methods being too
intractably expensive to run in practice.

Confident pair is already highly accurate (e.g., 99.10% accuracy for
Most Confident with BLOOM), and PICS-CS is not significantly far
off from this best performance; at worse, it is 0.30% off from the
best performance.

Another very important thing to note is that on cases where ev-
ery prompt template results in suboptimal performance for a given
model (e.g., the Question Formation task with MPT-30B in Ta-
ble 2), our PICS-CS approach increases performance by a large
margin. For instance, MPT-30B increases from 42.0% accuracy on
Question Formation to 79.50% accuracy when PICS-CS is used.

We draw attention to a result that at first glance may seem sur-
prising: in some cases, confidence search using predicted confi-
dence (PICS) outperforms searches that use the calculated se-
mantic confidence (OCS). While intuitively it may seem like us-
ing the calculated confidence would be better than using predicted
confidences, it is likely that predicting the confidence is acting as a
kind of regularization for the confidence search. For example, for a
given model and prompt template, if there is an instance that hap-
pens to have high confidence but is very similar to many training
datapoints that have low confidence, then OCS will likely select
this instance due to the fact that it has a high ground truth confi-
dence. However, PICS would likely predict low confidence for this
point, as it is most similar to low-confidence training instances. A
high confidence point with all low confidence neighbors is likely to
correspond to a point for which the model is overconfident. Thus,
using predicted confidences are analogous to “smoothed over” con-
fidences, and will be less sensitive to outliers.

Lastly, we note that the performance of the models does not al-
ways increase as model size increases. This is likely because the in-
struction tuned models, even if smaller, are more suitable for tasks
in the dataset such as StrategyQA.

Confidence Search For Multiple Models
In this experiment, we perform searches over multiple models and
multiple prompts; e.g., every model and prompt described above.
Results are shown in Table 3.

We again see that PICS-CS usually improves performance by
several percentage points. Notably, the performance of PICS-CS
increases for 2 out of the 3 datasets; e.g., the best single-model per-
formance for PICS-CS on TriviaQA is 49.80% (3, BLOOM model),

Figure 4: Runtime of each search method

while PICS-CS when searching over all models is 51.35% (Table
3).

Our approach does not improve performance for one dataset,
Question Formation, in this setting. While it improves over the av-
erage performance of all model and prompt template pairs, it under-
performs on the model and prompt template pair with the highest
overall confidence. This is likely because some model and prompt
template pairs perform very poorly for this task, and if a search
method ever erroneously chooses these pairs then the overall per-
formance is lowered significantly. Still, PICS-CS is only 2.30% off
from the best performance.

Confidence Sampling

Figure 3 shows the effect that the number of samples drawn when
doing the final confidence sampling step of PICS-CS. Results in
this figure are taken from the experiment where FLAN-T5-XL is
evaluated on inputs from the StrategyQA dataset. While increasing
the number of samples improves performance, the computational
cost increases as the LLM needs to be called more times.
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Dataset MPT Avg. Most Confident PICS-RS (Ours) PICS-CS (Ours) OCS-RS* (Ours) OCS-CS* (Ours)
StrategyQA 41.70 68.35 69.00 70.55 61.60 61.75

TriviaQA 33.58 42.60 48.35 51.35 54.20 54.10

Q. Formation 65.85 99.10 97.50 96.80 94.75 94.65

Table 3: Accuracy for All Models for each dataset. The approach with the best accuracy for a given model and dataset is
given in bold. *We do not consider OCS-RS and OCS-CS when selecting the “best accuracy” due to these methods being too
intractably expensive to run in practice.

Runtime
We perform a runtime analysis of each approach in Figure 4. While
PICS-CS has a somewhat longer run time than randomly choosing
pairs, the increase in performance is likely worth the small increase
in inference time. Additionally, using our predicted search is much
more efficient than the oracle searches (last two bars). Note that
OCS-RS and OCS-CS have equivalent run times; this is because
multiple responses must be sampled from ever model and prompt
template pair for methods. Thus, sampling from the most confident
model and prompt template pair - required for confidence sampling
(CS) - does not incur additional cost for the oracle method.

Related Works
The machine learning literature has shown us that a one-size-fits-
all solution seldom exists in real-world applications. Often, differ-
ent models should be adopted for different tasks and finding the
right model(s) becomes the key problem to solve. Hyperparam-
eter tuning, routing and ensembling techniques were researched
extensively and many solutions relied on data similarity metrics
(e.g., auto-AI (Arnold et al. 2020)) or model confidences that lever-
aged the probability distribution of model outputs. For LLMs, some
works proposed approaches to calculate confidence more accu-
rately in order to use routing and ensembling logic, e.g., using se-
mantic similarity to group output phrases in natural language gen-
eration tasks (Kuhn, Gal, and Farquhar 2023; Lin, Trivedi, and Sun
2023). BlenderLLM (Jiang, Ren, and Lin 2023) selected the top-
k models and merged their outputs using a sequence-to-sequence
model.

Some opted to search for the best prompt and relied on a sin-
gle LLM. (Rubin, Herzig, and Berant 2021) trained an input-
output example retriever to construct the best possible prompt for
a given input to the model. (Zhang, Feng, and Tan 2022) rely on
reinforcement learning instead to select the best examples for in-
context learning. Finally, (Zhang et al. 2022) automatically gen-
erated chain-of-thought prompts to obtain the best model output
without the manual effort required by chain-of-thought prompting.

Conclusion
In this work, we proposed using the semantic confidence of LLMs
to choose the best language model and prompt template pair to
use for each input instance. Additionally, we proposed an efficient
method for predicting these confidences without having to run each
model for each instance. We also proposed the use of a final con-
fidence sampling step to return a response with the highest confi-
dence from the most confident model and prompt template pair.
Our experimental evaluation on three disparate datasets showed
that our sampling approach nearly always improves accuracy by
several percentage points.

We hope that our work inspires more research into using confi-
dence as a means for selecting the best model and/or prompt tem-
plate to use for individual queries. Additionally, we hope our work

on using predicted confidence rather than existing semantic con-
fidences leads to more research on efficient yet robust confidence
metrics for LLMs.
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