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Abstract

Chain-of-thought (CoT) reasoning has exhibited impressive
performance in language models for solving complex tasks
and answering questions. However, many real-world ques-
tions require multi-modal information, such as text and im-
ages. Previous research on multi-modal CoT has primarily
focused on extracting fixed image features from off-the-shelf
vision models and then fusing them with text using attention
mechanisms. This approach has limitations because these vi-
sion models were not designed for complex reasoning tasks
and do not align well with language thoughts. To overcome
this limitation, we introduce a novel approach for multi-
modal CoT reasoning that utilizes latent space learning via
diffusion processes to generate effective image features that
align with language thoughts. Our method fuses image fea-
tures and text representations at a deep level and improves the
complex reasoning ability of multi-modal CoT. We demon-
strate the efficacy of our proposed method on multi-modal
ScienceQA and machine translation benchmarks, achieving
state-of-the-art performance on ScienceQA. Overall, our ap-
proach offers a more robust and effective solution for multi-
modal reasoning in language models, enhancing their ability
to tackle complex real-world problems.

Introduction
In our daily lives, we are constantly bombarded with infor-
mation from various sources, such as text, images, and more.
To make sense of this complex world, we need to be able to
acquire and integrate multi-modal information effectively.
For example, as shown in Figure 1, when we see the slo-
gan ”Please keep off the grass” (language modality) on the
lawn of the park and a child is playing football on the same
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play football.

Figure 1: Language Thought

lawn (visual modality) , we think of the negative effects of
trampling the grass on the park’s ecological environment and
prepare to told the child to go to the football field (language
thought) . These ideas come from our deep understanding
and reasoning of linguistic and visual information, which
can be called language thought.

In recent years, chain-of-thought (CoT), which involves
a series of intermediate reasoning steps (also known as ra-
tionale), has significantly enhanced the complex reasoning
ability of large language models by providing them with ac-
cess to a portion of language thought (Wei et al. 2022).

Training smaller language-only models with less than 100
billion parameters for CoT reasoning remains a significant
challenge due to hallucination and tend to produce illogi-
cal rationales. To address these problems more effectively,
it is crucial to enable large language models to develop a
deeper understanding of multi-modal information and gen-
erate more effective language thought. One solution that
has been proposed to help integrate information across vi-
sual and linguistic modalities is Multi-Modal CoT (MM-
CoT) (Zhang et al. 2023b). MM-CoT extracts fixed image
features and text representations and fused them to obtain
multi-modal features. MM-CoT adopts a two-stage frame-
work that includes rationale generation and answer infer-
ence, as shown in Figure 2 (c). This approach has been
shown to outperform generating rationale and answer to-
gether on question answering tasks (Zhang et al. 2023b).

However, existing multi-modal CoT models rely on fixed
image features extracted by pre-trained vision extraction
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Input
Q: A juggler can juggle 16 balls. 
Half of the balls  are golf balls, 
adn half of the golf balls are blue.  
How many blue golf balls are 
there?
Let’s think step by step.

Input
Q: Roger has 5 tennis balls. He buys 2 
more cans of tennis  balls. Each can has 3 
tennis balls. How many tennis balls  does 
he have now?
A: Roger started with 5 balls. 2 cans of 3 
tennis balls each is 6 tennis balls. 5 + 6 = 
11. The answer is 11.
Q: A juggler can juggle 16 balls. Half of 
the balls are golf  balls, and half of the 
golf balls are blue. How many blue  golf 
balls are there?

Output

The juggler can juggle 16 balls. 
Half of the balls are golf balls. So 
here are 16 / 2 = 8 golf balls. Half 
of the golf balls are blue. So there 
are 8 / 2 = 4 blue golf balls. The 
answer is 4. ✓

Output
There are 16 balls in total. Half of the 
balls are golf balls. There are 8 golf balls. 
Half  of  the golf balls are blue.  The 
answer is 4. ✓

(a) Zero-shot-CoT (b) Few-shot-CoT
Vision

Language

Which proper ty  do 
these three  objects 
have in common?
Context: Select the 
best answer.
(A) shiny  (B) slippery 
(C)opaque

For each object, decide if it has that 
property. A opaque object does not let 
light through. All three objects are 
opaque. A slippery object is hard to 
hold onto or stand on. The tortoise 
shell and the crown are not slippery. A 
shiny object reflects a lot of light. You 
can usually see your reflection in a 
shiny object. The basketball is not 
shiny. The property that all  three 
objects have in common is opaque.

Rationale

The 
answer 
is (C).

Answer

(c) Multi-modal-CoT

Figure 2: (a) Zero-shot-CoT (Kojima et al. 2022) (b) Few-
shot-CoT (Wei et al. 2022) (c) Multi-modal-CoT (Zhang
et al. 2023b)

models such as DETR (Carion et al. 2020) or CLIP (Rad-
ford et al. 2021). However, fixed image features do not align
well with flexible text queries. And vision models that ex-
tract these features are not optimized for producing useful
visual information that would lead to effective rationales
generated by language models. For example, while DETR
detects objects, its extracted features may only pay attention
to the main objects in an image. Additionally, while CLIP is
trained on (image, text) pairs, it only extracts shallow image
information. Shallow vision features may not help language
models infer correct answers because they are not closed to
the reasoning. For example, as shown in Figure 1, we can
not synthetize language thought if we look at the lawn in the
picture and the text on the banner separately. We hypothesize
that in both the stage of rationale generation and the stage of
answer inference for complex problem solving, there is a
need for deep understanding of visual features that capture
different information in images. Therefore, effectively uti-
lizing different modalities remains a key challenge. In this
work, we propose an approach to enhance the complex rea-
soning ability of large language models by improving their
ability to synthesize and employ language thoughts. Our ap-
proach leverages both language and vision information to
achieve this goal. We propose to obtain a multi-modal latent
space that deeply fuses visual features and text representa-
tions via a diffusion process. This allows our method to de-
velop deep-level understanding, alignment and reasoning of
both visual and linguistic modalities, resulting in more ef-
fective language thought generation.

Drawing inspiration from diffusion models , we employ
the diffusion process to learn a text-image aligned latent
space for language thought reasoning. The diffusion process
entails the sequential application of multiple transformations
to the latent space of image representation, where the level
of noise is gradually augmented with each iteration. As a re-
sult, a series of increasingly blurred representations of the
original image input is generated, ultimately leading to ran-
dom noise that follows a Gaussian distribution. During each
stage of the noise prediction, the model acquires a novel rep-
resentation of the joint text-image distribution that captures
more intricate dependencies and higher-level semantics. By
repeating this procedure across several iterations, the model
can acquire a deep and well-aligned latent space that en-
codes abundant information about both modalities. This ap-
proach is particularly useful for CoT reasoning tasks, where
the goal is to reason about a long sequence of inputs and
their corresponding image. By learning a deep latent space
that captures high-level dependencies between text and im-
ages, it is well-suited for complex reasoning tasks.

We conducted experiments on the ScienceQA benchmark,
which contains questions that require reasoning based on
provided text and images. The results show that our pro-
posed latent space learning is effective in generating use-
ful chain of thought (CoT) and inferring correct answers.
We achieved new state-of-the-art results on the ScienceQA
benchmark with about only 1 billion parameters, outper-
forming the current SOTA baseline by 6.06% (base), 1.67%
(large) respectively, and the strong ChatGPT system by
18.18% with less than 1/100th of the parameters, demon-
strating the effectiveness of our approach. Our method also
demonstrates strong ability in generating effective CoT, as
evidenced by the ROUGE-L score of the rationales outper-
forming the baseline by 1.21. In addition to ScienceQA, we
evaluated the effects of diffusion process for multi-modal
latent space learning in multi-modal machine translation,
where it also brought significant improvements. These re-
sults suggest that our proposed method is a general enhance-
ment and can benefit the multi-modal information process-
ing community. The code will be released at https://github.
com/shimurenhlq/DPMM-COT.

Related Work
CoT Reasoning in LLMs
CoT is a widely applicable method for enhancing com-
plex reasoning in large language models (LLMs) (Wei et al.
2022). CoT techniques assist LLMs in generating a series
of logical reasoning steps, enabling them to think step by
step about a question and arrive at the correct answer. CoT
has significantly improved language models’ performance in
generating rationales and inferring accurate answers in nu-
merous domains, including commonsense and arithmetic. In
this section, we will discuss the progress made in eliciting
CoT reasoning by prompting and fine-tuning language mod-
els.

For example, CoT of large language models dramati-
cally improve the performance of large language models on
arithmetic problems and symbolic reasoning. Existing CoT
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Question: Which property do 
these  three objects have in 
common?
Context：Select the best answer.

Options：

Language

(A) shiny (B) slippery (C) opaque

Vision

VAE Diffussion Process

Latent Space

z zT

Denoising U-Net

Q  
KV

Q  
KV

Q Q
KV KV

Text  
Encoder

Text  
Decoder Answer

For each object, decide if it has that 
property. A opaque object does not let 
light through. All three objects are 
opaque. A slippery object is hard to 
hold onto or stand on. The tortoise 
shell and the crown are not slippery. 
You can usually see your reflection in 
a shiny object. The basketball is not 
shiny. The property  that  al l  three 
objects have in common is opaque.

Rationale

KV  
Q

Feature  
Fusion

Figure 3: Overview of our multi-modal latent space learning via diffusion process for chain-of-thought reasoning in language
models. Our framework consists of two stages: (i) rationale generation and (ii) answer inference.

prompting can be categorized into two major paradigms:
Zero-shot-CoT (Figure 2 (a)) and Few-shot-CoT (Figure 2
(b)). Zero-shot-CoT (Kojima et al. 2022) leverages a sin-
gle prompt like “Let’s think step by step” to generate rea-
soning chains. Few-shot-CoT (Wei et al. 2022) uses reason-
ing demonstrations one by one. For example, prompting a
PaLM 540B with eight chain-of-thought exemplars achieved
state-of-the-art accuracy on the GSM8K benchmark of math
word problems, surpassing even finetuned GPT-3 with a ver-
ifier (Wei et al. 2022).

Multi-Modal CoT Reasoning in LLMs
To address the issue of hallucinations, which can lead to in-
correct answers, and handle real-world multi-modal tasks
effectively, multi-modal information can guide models to
generate logical rationales. Recent studies on multi-modal
Chain-of-Thought (CoT) outperform the previous state-of-
the-art large language model (ChatGPT, GPT-3.5) by 16 per-
centage points, achieving 91.68% accuracy and even sur-
passing human performance on the ScienceQA benchmark
(Zhang et al. 2023b).

Leveraging vision information effectively and fusing
visual features with text representation in multi-modal
Chain-of-Thought (CoT) poses a significant challenge. Prior
work (Lu et al. 2022) has attempted to use image captions
and incorporate them after text input, but this approach re-
sults in substantial information loss of images. Other stud-
ies have proposed a method that encodes texts and images
using a Transformer encoder and convolutional neural net-
work, respectively (Zhang et al. 2023a). The two sequences
of representations are then fused using an attention layer for
cross-modal interaction. To extract image features, Zhang
et al. (Zhang et al. 2023b) employed off-the-shelf vision
extraction models such as DETR (Carion et al. 2020) or
CLIP (Radford et al. 2021) to obtain patch-level features and
fused the information from the two modalities using an at-
tention mechanism.

Method
In this section, we introduce our proposed Diffusion Process
enhanced Multi-Modal CoT (DPMM-CoT) method. We fol-
low the Multi-Modal CoT (MM-CoT) approach proposed
by Zhang et al. (Zhang et al. 2023b) as our baseline. The
overview of our full model is illustrated in Figure 3.

Multi-modal CoT
Task Definition In multi-modal reasoning, a language in-
put including a question XQ, its language context XL, the
options XO, and its corresponding image XV are usually
given as inputs to the model. The model is required to an-
swer a question XQ according to the options XO to obtain
the answer YA . In other words, the model is trained to max-
imize the likelihood between the predicted answer ŶA and
the true answer YA distribution. MM-CoT breaks down this
problem into two steps through the introduction of a ratio-
nale YR: rationale generation and answer inference. In the
rationale generation step, the model is required to predict
a rationale ŶR that can infer the answer, which maximizes
the likelihood between predictions and the standard ratio-
nale R distribution. Then, in the second stage, based on the
rationale ŶR, along with the language input including the
question XQ, its language context XL, the options XO, and
the corresponding image XV , the model predicts the final
answer YA.

Text Encoder For the multi-modal CoT tasks, the text in-
put differs between the two stages. In the stage of rationale
generation, the text input includes language context XL, a
question XQ, and multiple options XO. In the stage of an-
swer inference, the text input comprises language context
XL, a question XQ, multiple options XO, and rationale ŶR

generated from the first stage. We adopt the Transformer
model for text encoding, which is initialized by the pre-
trained model UnifiedQA (Khashabi et al. 2020). We obtain
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the text representation ZL as follows:

ZR
L = ENCODERtext([XL;XQ;XO]), (1)

ZA
L = ENCODERtext([XL;XQ;XO, ŶR]), (2)

where ZL = ZR
L in the stage of rationale generation and

ZL = ZA
L in the stage of answer inference.

Image Feature Extraction and Feature Fusion In multi-
modal CoT, the image encoder plays a crucial role in the
CoT process as it helps to provide additional context and
information to the model. By incorporating visual features
extracted from input images, the model gains a better un-
derstanding of the overall context. Specifically, the image
feature ZV is first extracted by an image encoder:

ZV = ENCODERimg(XV ). (3)

Based on the acquired image features, in order to integrate
the image and text encoding features, a linear layer is first
used to map the image features. This is primarily for two
purposes: to unify the dimensions of image and text features,
and to project the image features onto the same feature space
that can be fused with text features.

ZT
V = Wh ∗ ZV , (4)

where Wh is the learnable weight matrix.
As the image features and text features have different tem-

poral lengths, we use an attention mechanism to project the
image features onto the length of the text features based on
the correlation between the image and text features. Specifi-
cally, we use ZL as the attention query , with ZT

V as attention
keys and values. The resultant projected image features are
as follows:

Zattn
V = Softmax(

QKT

√
dk

)V (5)

where dk is the dimension of ZL, Q is the ZL, K and V are
ZT
V .
As the roles of image features and text features in generat-

ing rationales and answers are not static or fixed, we choose
to use a gate mechanism to fuse vision features and language
representation, i.e., let the model decide how to use the im-
age and text features. The gated fusion mechanism ( (Zhang
et al. 2020) (Wu et al. 2021) (Li et al. 2022)) involves two
steps: obtaining a score vector between 0 and 1 to determine
the importance of each feature (Equation 6), and using the
scores to fuse the text and attention features (Equation 7).

α = Sigmoid(WlZL +WvZ
attn
V ), (6)

Zfuse = (1− α) ∗ ZL + α ∗ Zattn
V (7)

where Wl and Wv are learnable parameters for gate projec-
tion, Zfuse = ZR

fuse in the stage of rationale generation and
Zfuse = ZA

fuse in the stage of answer inference.

Text Decoder In multi-modal CoT, the text decoder is re-
sponsible for generating rationales or inferring the final an-
swers, taking into account the representation output Zfuse

of the encoder and the previously decoded token to predict

the next one. For example, in the stage of rationale genera-
tion, the decoder predicts the rationale Y = (y1, . . . , yN ) to-
ken by token, according to the last decoding state and source
context. The rationale probability can be formulated as fol-
lows:

si = SELFATTN(Y<i), (8)
P (yi|Y<i, Zfuse; θ) = Softmax(FFN(si+

CROSSATTN(si, Zfuse))), (9)

where θ is the model parameters, yi is the i-th token in
Y with N tokens, si denotes the decoding state at the i-th
timestep.

Therefore, the sequence generation loss LSEQ for model
optimization can be written as:

LSEQ =
N∑
i=1

− logP (yi|Y<i, Zfuse; θ) (10)

where Y = YR in the stage of rationale generation, and Y =
YA in the stage of answer inference.

Multi-modal Latent Space Learning
In the current multi-modal CoT work, such as MM-
CoT (Zhang et al. 2023b), image feature extraction is per-
formed using off-the-shelf image encoders trained on mod-
els such as DETR (Carion et al. 2020) and CLIP (Radford
et al. 2021). However, this method has two major drawbacks.
Firstly, due to the limitations of pre-training objectives, the
extracted image features are usually shallow and generic in-
formation that is not specifically optimized for reasoning,
thus lacking deep semantic information which is required in
reasoning. Secondly, the image features used for inference
are highly dependent on language input, meaning that dif-
ferent image features are required for different language de-
scriptions. Therefore, this work proposes a method of multi-
modal latent space learning, which learns flexible image fea-
tures that are aligned with text inputs in the latent space and
optimized for the inference process, thus possessing the deep
semantics required for reasoning.

As Richard Feynman once said, ”What I cannot create, I
do not understand.” Therefore, we argue that excellent cre-
ativity must contain excellent understanding. Drawing inspi-
ration from the outstanding generative performance of diffu-
sion models, we apply the idea of a stable diffusion model
to obtain a multi-modal latent space. Specifically, we use the
concept of a diffusion process to obtain better image fea-
tures with deep semantics that align with text representa-
tion. Firstly, we employ the Variational AutoEncoder (VAE)
(Kingma and Welling 2014) as the image encoder to obtain
the latent vector of the image. Then, we add random noise to
the latent vector, which follows a Gaussian distribution with
time steps. Next, the latent vector is inputted into the UNet
neural network (Ronneberger, Fischer, and Brox 2015). We
fuse text representation and image features at a deep level
by mapping text information into the intermediate layer of
UNet through a cross-attention layer. By optimizing the dif-
fusion process, which compares the predicted noise with true
noise, the model can obtain better image features with deep
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semantics that align with text inputs. This is because the dif-
fusion process enables the model to learn features that are
not only optimized for reasoning but also possess a high de-
gree of stability and robustness to noise and other distur-
bances. In this way, the model can obtain the latent space of
an image with deep semantics from the perspective of diffu-
sion.

Stable diffusion consists of two main parts: (1) the for-
ward (or diffusion) process and the reverse process. In the
diffusion process, random noise following a Gaussian dis-
tribution is added to the image features of latent space. This
process is entirely run on the latent space and is composed of
a VAE neural network and a scheduling algorithm. (2) The
reverse process generates an image using an image decoder
based on the latent features and text representations. Exist-
ing studies (Kwon, Jeong, and Uh 2022) have shown that
the latent space already contains aligned semantic informa-
tion, so we suppose that it can be utilized to fuse linguistic
modality and visual modality for reasoning.

In our DPMM-CoT, we first encode the image into the
latent space Z0

V using VAE. Especially, during inference, the
image is encoded as a latent vector through the VAE and then
directly fused with the text representation vector to generate
a rational or answer. Then we add random noise that follows
a Gaussian distribution to the latent space of the image.

Z0
V = ηV AE(XV ), (11)

q(Zt
V |Zt−1

V ) = N (Zt
V ;

√
1− βtZ

t−1
V , βtI) (12)

which indicates the diffusion process that adding noise that
follows a Gaussian distribution, where βt is the variance
schedule,

√
1− βtZ

t−1
V is the mean, I is identity matrix, and

η = 0.18215 is the scale factor.
The diffusion process of the diffusion model can be ex-

pressed as a Markov chain from t = 0 to t = T :

q(Z0:T
V ) = q(Z0

V )
T∏

t=1

q(Zt
V |Zt−1

V ). (13)

When T → ∞, the final result will become a noisy im-
age, similar to sampling from an isotropic Gaussian distribu-
tion. However, we also use a closed-form formula to directly
sample noisy images at a specific time step t, instead of de-
signing an algorithm to iteratively add noise to the image
following the practice of (Rombach et al. 2022).

Zt
V =

√
αtZ

0
V +

√
1− αtϵ (14)

where αt = 1 - βt, αt =
∏t

i=1 αi. ϵ is an i.i.d. (indepen-
dent identically distributed) standard normal random vari-
able. It is important to distinguish them using different sym-
bols and subscripts because they are independent and their
values may differ after sampling.

The standard diffusion process involves predicting the
noise using UNet (Ronneberger, Fischer, and Brox 2015).
By utilizing a cross-attention layer to map text information
into the intermediate layer of UNet, we can merge text rep-
resentation with image features. This integration of infor-
mation from both modalities leads to a more comprehensive
understanding of the underlying structure in the data. Text

features provide valuable additional semantic information
that may not be immediately evident from the visual content
alone. Incorporating these features into the model allows us
to better comprehend the context and meaning behind the
visual elements. Meanwhile, image features offer rich vi-
sual information about the objects and scenes depicted in
the image. These features enable the model to identify pat-
terns and relationships between different parts of the image.
The fusion of both image and text features through diffusion
process enables the model to leverage the strengths of both
modalities, leading to improved latent space learning.

Specifically, we predict the noise ϵθ(Z
t
V , t, ZL) by UNet

with the attention mechanism between visual feature Zt
V and

text representation ZL as follows:

ϵθ(Z
t
V , t, ZL) = UNET(FFN(Softmax(

QKT

√
d

)V +Q))

(15)
where Q = W

(i)
Q · Zt

V , K = W
(i)
K · ZL, V = W

(i)
V · ZL.

Zt
V ∈ RN×di

is an intermediate representation of UNet.
Therefore, the latent diffusion process loss implemented
with Maximum Square Error (MSE) can be written as:

LLDM = Eϵ∼N (0.1),ZL,t[||ϵ− ϵθ(Z
t
V , t, ZL)||22] (16)

where LLDM is the loss of latent diffusion model, θ is the
parameters of the model, ϵ is the random noise (an inde-
pendent identically distributed standard normal random vari-
able). So the total loss of the model is as follows:

Ltotal = LSEQ + LLDM . (17)

During the training process, all model parameters, except
for the UNet parameters in the reverse process, are updated.

Experiments
Setup
Datasets To assess CoT on LLMs, we followed the ap-
proach of MM-CoT (Zhang et al. 2023b) and used the Sci-
ence Question Answering (ScienceQA) (Lu et al. 2022)
dataset. In addition, we also conducted experiments on
the Multi30K multi-modal translation dataset (Elliott et al.
2016) and followed the work of IKD-MMT (Peng, Zeng,
and Zhao 2022).

Settings In our experiment on CoT in LLMs, we em-
ployed a two-stage framework consisting of two procedures:
rationale generation and answer inference. Both stages
shared the same model architecture, namely the T5 encoder-
decoder architecture (Raffel et al. 2020).

For our experiment on multi-modal machine transla-
tion (MMT), we employed the mT5 encoder-decoder archi-
tecture, which was initialized using the pre-trained mT5-
large (Xue et al. 2021) checkpoint, which had been pre-
trained on a multilingual corpus.

Main Analysis
Table 1 presents the main results of our study, which
compares the performance of various Visual Question An-
swering (VQA) models. We evaluated our DPMM-CoT
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Model Size NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Human - 90.23 84.97 87.48 89.60 87.50 88.10 91.59 82.42 88.40

ViLT (Kim, Son, and Kim 2021) 113M 60.48 63.89 60.27 63.20 61.38 57.00 60.72 61.90 61.14
Patch-TRM (Lu et al. 2021) 90M 65.19 46.79 65.55 66.96 55.28 64.95 58.04 67.50 61.42
VisualBERT (Li et al. 2019) 111M 59.33 69.18 61.18 62.71 62.17 58.54 62.96 59.92 61.87

UnifiedQABase (Khashabi et al. 2020) 223M 68.16 69.18 74.91 63.78 61.38 77.84 72.98 65.00 70.12
UnifiedQABase w/ CoT (Lu et al. 2022) 223M 71.00 76.04 78.91 66.42 66.53 81.81 77.06 68.82 74.11

ChatGPT (GPT-3.5) 175B 74.64 69.74 76.00 74.44 67.28 77.42 76.80 68.89 73.97
ChatGPT (GPT-3.5) w/ CoT (Lu et al. 2022) 175B 75.44 70.87 78.09 74.68 67.43 79.93 78.23 69.68 75.17

MM-CoTBase(CLIP) 223M+151M 87.97 80.88 87.36 88.32 84.78 88.15 86.34 86.29 86.32

MM-CoTBase(DETR) (Zhang et al. 2023b) 223M+60M 87.52 77.17 85.82 87.88 82.90 86.83 84.65 85.37 84.91
DPMM-CoTBase 223M+83M 92.72 87.85 89.91 92.72 90.48 91.29 91.45 90.11 90.97

MM-CoTLarge(DETR) (Zhang et al. 2023b) 738M+60M 95.91 82.00 90.82 95.26 88.80 92.89 92.44 90.31 91.68
DPMM-CoTLarge 738M+83M 95.52 90.33 91.36 95.50 93.26 92.68 93.28 93.47 93.35

Table 1: Main results on ScienceQA test set (%). Size = backbone model size. Question classes: NAT = natural science, SOC
= social science, LAN = language science, TXT = text context, IMG = image context, NO = no context, G1-6 = grades 1-6,
G7-12 = grades 7-12. Results except ours are taken from (Lu et al. 2022) and (Zhang et al. 2023b).

Method (i) QCM→ R (ii) QCMR→ A

MM-CoTBase 96.97 84.91

DPMM-CoTBase 98.18 90.97

Table 2: Performance of two-stage.

Model EN-DE EN-FR

Test16 Test17 MSCOCO Test16 Test17

IKD-MMT 41.28 33.83 30.17 62.53 54.84
mT5 38.56 33.01 28.10 61.71 53.84
DPMM-MT 41.63 36.18 30.75 66.91 57.80

Table 3: BLEU score of EN-DE and EN-FR tasks.

model against MM-CoT, a baseline, and found that DPMM-
CoTBase outperforms MM-CoTBase(DETR) by 6.06% and
DPMM-CoTLarge outperforms MM-CoTLarge(DETR) by
1.67%. Notably, when questions involve visual context
(IMG column), DPMM-CoTBase and DPMM-CoTLarge out-
perform MM-CoTBase(DETR) and MM-CoTLarge(DETR)
by 7.58% and 4.46%, respectively.

Compared to other VQA baselines, DPMM-CoTLarge
outperforms VisualBERT (Li et al. 2019) by 31.48%,
demonstrating that autoregressive language pre-training and
larger language models are effective for problem solving.
And DPMM-CoTLarge surpasses the UnifiedQA model with
CoT (Lu et al. 2022) by 19.24%. This suggests that only
leveraging captions of images as visual context causes se-
vere information loss and hallucination in CoT.

Additionally, we found that DPMM-CoTLarge outperforms
the strong LLM – ChatGPT by 18.18%, demonstrating that
language models under 1B parameters can perform bet-
ter than general LLMs when fine-tuned with appropriate
network designs and information. Moreover, our DPMM-
CoTBase and DPMM-CoTLarge both outperform human per-

formance, indicating the effectiveness of our model. These
results suggest that multi-modal latent space learning is sig-
nificant for understanding flexible and deep visual informa-
tion. In Table 2, the ROUGE-L results of rationals generated
by DPMM-CoTBase and MM-CoTBase, as well as the accu-
racy of answers inferred, are shown.

To verify that the improvement of DPMM-CoTLarge orig-
inates from multi-modal latent space learning via the diffu-
sion process rather than an increase in the number of param-
eters, we utilized fixed visual features extracted by clip-vit-
base-patch32 (Zhang et al. 2023b), which has 151M param-
eters. The result shows that while an increase in the number
of parameters may contribute to improved performance on
multi-modal QA tasks, it is still far from our DPMM-CoT
model. This suggests that our improvements are due to a
deeper understanding of visual information gained through
multi-modal latent space learning.

Further Analysis
Generalization to More Multi-modal Tasks To demon-
strate the generality of our method across different multi-
modal tasks, we conducted experiments on Multimodal Ma-
chine Translation (MMT). The main results are presented
in Table 3. We trained our Diffusion Process Enhanced
Multi-Modal Machine Translation (DPMM-MT) model on
the Multi30K dataset, which includes English-to-French and
English-to-German translations. We then evaluated DPMM-
MT on three test sets: test2016-flickr (Test16), test2017-
flickr (Test17), and test2017-mscoco (MSCOCO). Firstly,
compared to the mT5 baseline that does not use image
features, we achieved significant improvements in En-De
of 3.07, 3.17 and 2.65, and in En-Fr of 5.20 and 3.96,
respectively. This indicates the crucial role of image fea-
tures in multimodal machine translation. We achieved a
new state-of-the-art (SOTA) result on Test17 and MSCOCO
with English-to-German translation and Test16 and Test17
with English-to-French translation. Specifically, DPMM-
MT outperformed the previous SOTA by 2.35 (33.83 →
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Model NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Zero Tensor 92.72 87.85 89.91 92.72 90.48 91.29 91.45 90.11 90.97
Blank Image 92.54 82.56 89.91 92.86 88.35 90.94 90.68 88.13 89.77

Table 4: Results of different way of solving problems without images.

Model NAT SOC LAN TXT IMG NO G1-6 G7-12 Avg

Our model 92.72 87.85 89.91 92.72 90.48 91.29 91.45 90.11 90.97
w/o Stable Diffusion Pre-training 88.63 80.43 85.45 89.93 84.88 85.92 87.15 84.18 86.09
w/o UNet 91.92 82.56 89.91 92.18 88.35 90.52 89.98 88.46 89.44
w/ Frozen VAE 91.07 82.00 90.36 91.64 87.36 90.73 89.35 88.33 88.99

Table 5: Ablation results of our method.

36.18) and 0.58 (30.17 → 30.75) on Test17 and MSCOCO
with English-to-German translation, respectively. DPMM-
MT outperformed the previous SOTA by 4.38 (62.53 →
66.91) and 2.96 (54.84 → 57.80) on Test16 and Test17 with
English-to-French translation, respectively. For Test16 with
English-to-German translation, we also achieved compara-
ble results to the previous SOTA - Gated Fusion (Wu et al.
2021). These improvements across multiple datasets suggest
that utilizing our proposed multi-modal latent space learning
to extract deep image semantics is useful for enhancing the
performance of multi-modal machine translation.

Problems without Images Since not all questions in the
ScienceQA task (or other real-life tasks) include images, our
method needed to be adaptable to image-less questions. For
this purpose, we explored two approaches: using blank im-
ages or null tensors as input for these questions. We ana-
lyzed the results using models DPMM-CoTBase, and the ex-
periment outcomes are presented in Table 4. Our findings
show that using zero tensors resulted in a 1.20% higher ac-
curacy than using blank images. This may be attributed that
blank images may introduce misleading information during
the diffusion process.

Ablation Study
To illustrate the effect of each component in the Diffusion
Process on multi-modal latent space learning, we conducted
an ablation study. As shown in Table 5, we tested whether
pre-trained stable diffusion module is useful for multi-modal
latent space learning. We randomly initialized the param-
eters of UNet and VAE, and evaluated the result without
Stable Diffusion Pre-training. The results show that diffu-
sion models including VAE and UNet initialized from pre-
trained model are indeed useful for DPMM-CoT. The accu-
racy declined by 4.88% (90.97% → 86.09%), demonstrating
the importance of good initialization for producing effective
multi-modal latent space. Furthermore, we found that diffu-
sion components initialized by random parameters actually
outperform the baseline MM-CoT(DETR). This highlights
the ability of the diffusion process to deeply understand
image information after being trained on the ScienceQA
dataset, producing effective image features aligned with text
representation.

To further demonstrate the importance of diffusion pro-
cess in multi-modal latent space learning, we trained the
model without UNet. The images were only encoded by
VAE to produce latents. The result in Table 5 shows that ac-
curacy declined by 1.53% (90.97% → 89.44%), indicating
the significance of diffusion process to produce multi-modal
latent space. These results testify that diffusion process is a
key part of multi-modal latent space learning, and visual fea-
ture extraction by encoder alone is insufficient. By adding
noise and predicting noise with UNet guided by text repre-
sentation, the multi-modal latent space learning gains a deep
understanding of image with language thoughts.

The quality of the vision latent vector that VAE produces
has a significant impact on the effectiveness of the CoT. To
prove this, we tried not updating the parameters of VAE
during CoT training but instead used pre-trained param-
eters from Stable-Diffusion-v1-4. The results (90.97% →
88.99%) show that VAE trained with CoT is helpful in pro-
ducing better latent vectors for use in reasoning. This also
demonstrates that for reasoning tasks, it’s not enough to per-
form only self-supervised pre-training.

Conclusion

In this work, we focuses on improving the production of
multi-modal latent spaces that can effectively understand
both linguistic and visual information at a deeper level.
To achieve this, we introduce DPMM-CoT, a multi-modal
latent space learning approach via diffusion process for
CoT reasoning in language models. Our experimental re-
sults demonstrate that our method performs exceptionally
well on multi-modal tasks. Notably, DPMM-CoTBase outper-
forms MM-CoTBase by 6.06%, while DPMM-CoTLarge out-
performs MM-CoTLarge by 1.67%. We also conducted ad-
ditional experiments on multi-modal machine translation,
which verified the effectiveness of our proposed multi-
modal latent space learning method on a wider range of
multi-modal tasks. Moreover, our concrete analysis shows
that our method enables language models to attain deeper,
more flexible, and aligned features for language thought,
thereby enhancing their reasoning abilities. In the future, we
plan to evaluate our method on more multi-modal tasks.
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