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Abstract

Large language models (LLMs) can understand human in-
structions, showing their potential for pragmatic applications
beyond traditional NLP tasks. However, they still struggle
with complex instructions, which can be either complex task
descriptions that require multiple tasks and constraints, or
complex input that contains long context, noise, heteroge-
neous information and multi-turn format. Due to these fea-
tures, LLMs often ignore semantic constraints from task de-
scriptions, generate incorrect formats, violate length or sam-
ple count constraints, and be unfaithful to the input text. Ex-
isting benchmarks are insufficient to assess LLMs’ ability
to understand complex instructions, as they are close-ended
and simple. To bridge this gap, we propose CELLO, a bench-
mark for evaluating LLMs’ ability to follow complex in-
structions systematically. We design eight features for com-
plex instructions and construct a comprehensive evaluation
dataset from real-world scenarios. We also establish four cri-
teria and develop corresponding metrics, as current ones are
inadequate, biased or too strict and coarse-grained. We com-
pare the performance of representative Chinese-oriented and
English-oriented models in following complex instructions
through extensive experiments. Resources of CELLO are pub-
licly available at https://github.com/Abbey4799/CELLO.

Introduction
The emergence of large-scale models (Brown et al.
2020; Chowdhery et al. 2022; Touvron et al. 2023) has
yielded noteworthy transformations in real-world applica-
tions (Richards 2023; Liu et al. 2023b). These models are
able to understand a wide range of human instructions, span-
ning from casual conversations (Taori et al. 2023) to com-
plex problems solving (Brown et al. 2020). Since human
instructions are massive and diverse, traditional academic
benchmarks that focus on specific tasks are no longer suffi-
cient to evaluate LLMs (Zhong et al. 2023; Chia et al. 2023).

Real-world applications often involve a diverse range of
complex instructions that significantly differ from the simple
and common instructions in current benchmarks (Hendrycks
et al. 2020; Huang et al. 2023), as shown in Fig. 1. Instruc-
tion generally consists of two parts (Honovich et al. 2022):
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Input Text (histories of multi-round dialogue)

| Brand | Characteristics | Flavors |
|-------|-----------------|---------|
| Starbucks | A globally renowned…|…|
| Nestle | A world-leading food…|…

List five different brands of coffee and describe their characteristics and 
flavors. Output in table format, including brand, characteristics, and flavors.

Task Description Add ‘Origin’ info. in the above table.

Human

Assistant

| Brand | Characteristics | Flavors | Origin ｜
|-------|-----------------|---------|--------｜
| Blue Mountain | A well-known…|…|…|…

Unfaithful to
Input text

| Brand | Characteristics | Flavors |
|-------|-----------------|---------|
| Starbucks | A globally renowned…|…|…

Ignore
Task Description

| Brand | Characteristics | Flavors | Origin ｜
|-------|-----------------|---------|--------｜
| Starbucks | A globally renowned…|…|…|<eos>

Wrong
Sample Count

Starbucks originates from the United States, while Nestlé… Wrong
Format

Instruction in Real-World Scenarios

Instructions in Existing Benchmarks
Find the degree for the given field extension Q(sqrt(2), sqrt(3), sqrt(18)) over Q.  
[A] 0  [B] 4  [C] 2 [D] 6

Repeat the word cat four times. After the second time, also say the word meow.
MMLU

BBH

Figure 1: Existing benchmarks generally contain simple and
common instructions. However, the complex instructions in
real-world scenarios are a composition of multiple features,
such as constraints on the output format, number of output
samples, key elements of the output, and heterogeneity of
input texts in the given example. The understanding of com-
plex instructions poses challenges to current models.

Task description (mandatory) describes the task goal and In-
put text (optional) provides reference texts for the model
to answer questions or the history of multi-turn conversa-
tions, as shown in Fig. 1. Hence, there can be two cate-
gories of complex instructions: complex task descriptions
and complex input. Regarding complex task descriptions,
models need to undertake multiple tasks (i.e. multi-tasking)
and there can be diverse restrictions describing the task, in-
cluding semantics constraints (e.g. the inclusion of key ele-
ments (Zhou et al. 2023a) or the use of predefined callable
functions (Liu et al. 2023b)), format constraints (e.g. the pre-
defined format in few-shot scenarios (Yao et al. 2023b) or
structured format imitating human reasoning processes (Liu
et al. 2023b)), quantity constraints (e.g. word, sentence, or
sample count regulating the length of model output (Zhou
et al. 2023b; Yao et al. 2023a)). Regarding complex input,
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Criterion: resolve
limit: json

Criterion: keywords
limit: [ “{“ , “}” ]

Criterion: keywords
limit: [“time”, “magnitude”..]

Criterion: keywords
limit: [”November 14, 2008”..]

Answer 
Format

Task-
prescribed

Phrases

Input
Dependent

Query

Count 
Limit

Criterion: N/A
limit: N/A

Criterion: keywords
limit: [ “|“ , “-” , “\n” ]

Criterion: keywords
limit: [“Origin”]

Criterion: keywords
limit: [“Starbucks”, “Brand”]

Answer 
Format

Task-
prescribed

Phrases

Input
Dependent

Query

Count 
Limit Criterion: sample-table

limit: 5

Evaluation System

Criterion: COPY-BLEU

Criterion: COPY-BLEU

Case 1

Case 2

Extract all earthquake-related 
information from the following news, 
including time, location, magnitude, 
depth of the epicenter, and epicenter 
position. And output in Json format.

Add ‘Origin’ info. in the above table.

List five different brands of coffee 
and describe their characteristics and 
flavors separately. Output in table 
format, including brand, 
characteristics, and flavors.

Input Text (histories of multi-round dialogue)

Human

Assistant

According to the China Earthquake 
Networks Center, at 06:53 on 
November 14, 2008 Beijing time, a 
4.3 magnitude earthquake occurred in 
Haicheng City, Liaoning Province…

Task Description

Input Text

Task Description

Task Description

Input Text
Given the SQL text, What is the salary of record with primeKey f ...
...Merge the above two json into a new json.

...Help me write an introduction within 100 words.
…Consider dividing them into shorter and simpler sentences....

Formats
Constraints

…Output format:{"need_knowledge": "<yes or no>","thought":
"<your thought process>","code": "def search():messages =…

Semantics
Constraints

Given the candidate relationships: ['Participant', 'Winner'], extract …
… using the functions :1. get_entity_info(entity_aliases): Get …

Quantity
Constraints

Muti-
Tasking

...Translate the above json text into English and merge the answers 
in Chinese and English into one json.

Features for Complex Instructions Dataset Construction

Reference the following 3 paragraphs in this article related to the 
problem, and then answer the questions below:...(2024 words)

Heterogeneous
Information

Long 
Context

Noise
Conversation content: Speaker 1: Hello. Speaker 2: Uh, Nanning, I'm 
the one who just consulted you about the customer group of Futian…

Multi-
turn

Expand and describe the first person, including his background 
and characteristics.

| Brand | Characteristics | Flavors |
|-------|-----------------|---------|
| Starbucks | A globally renowned…|

Figure 2: The framework of our benchmark design contains eight features for complex instructions, an evaluation dataset
covering nine tasks, and four evaluation criteria along with their corresponding metrics.

the input text generally have long context (An et al. 2023;
Liu et al. 2023a), noise (e.g. colloquial expressions (Guo
et al. 2023) and error accumulation caused by pipeline
method (Sun et al. 2023)), heterogeneous information (e.g.
a combination of structured and unstructured data (Zha et al.
2023)), and in the form of multi-turn (Ding et al. 2023).

The complexity of real-world instructions accounts for
prevalent errors observed in LLMs. As shown in Fig. 1,
LLMs may (1) ignore semantic constraints from task de-
scription(s) (Zhou et al. 2023a), (2) generate answers in in-
correct format (Qin et al. 2023), or (3) violate the length
or sample count constraints (Zhou et al. 2023b), especially
when multiple tasks are required to be performed. More-
over, models can (4) be unfaithful to the input text, espe-
cially when it is long, noisy, heterogeneous or in the form of
multi-turn (Li et al. 2023b; An et al. 2023). Overall, complex
instructions pose challenges to current models.

However, existing benchmarks are insufficient for effec-
tively assessing the ability of LLMs to understand complex
instructions. On one hand, Fig. 1 shows that existing bench-
marks are either close-ended (Huang et al. 2023; Zhong et al.
2023; Yu et al. 2023) or contain common and simple instruc-
tions (Srivastava et al. 2023; Chia et al. 2023; Dubois et al.
2023), which fail to mirror the complexity of real-world in-
structions. On the other hand, even though certain bench-
marks cover some of the above features of complex instruc-
tions, such as count restriction (Zhou et al. 2023b; Yao et al.
2023a), semantic restriction (Chen et al. 2022), and long
text understanding (An et al. 2023), they only encompass
isolated features, while real-world instructions comprehen-
sively cover these features (Zhou et al. 2023a). Overall, none
of the existing benchmarks systematically study the complex
instructions understanding ability of LLMs.

In this paper, we propose CELLO, a benchmark for eval-
uating the ComplEx instruction understanding ability of
Large Language MOdels systematically. The framework of
our benchmark is shown in Fig. 2. As existing benchmarks

only cover isolated features of complex instructions, we es-
tablish a comprehensive framework comprising eight fea-
tures of complex instructions. Accordingly, we propose a
novel evaluation system comprised of four criteria along
with their corresponding metrics. The current evaluation cri-
teria are insufficient to comprehensively reflect the ability
of LLMs to understand complex instructions for the follow-
ing reasons. First, complex instructions in real-world scenar-
ios are open-ended (Xu et al. 2023), thus the criteria com-
monly used for close-ended benchmarks are not suitable in
such cases (Hendrycks et al. 2020). Moreover, many studies
adopt GPT4 evaluation for automated open-ended assess-
ment, which introduces bias problems (Wang et al. 2023).
Furthermore, the binary pass rate adopted by the bench-
marks containing complex instructions is strict and coarse-
grained, resulting in universally low scores for smaller LLM
without discrimination (Liu et al. 2023b; Qin et al. 2023).

Overall, our contributions are mainly four-fold:
• To the best of our knowledge, we are the first to systemat-

ically investigate the ability of LLMs to follow complex
instructions. We propose a comprehensive set of features
for complex instructions, facilitating both dataset con-
struction and evaluation criteria design.

• We construct a complex instruction dataset from real-
world scenarios, containing 523 samples encompassing
nine tasks, effectively covering our specified features.
Specifically, we propose a two-stage framework for con-
structing the evaluation dataset for LLM’s complex in-
struction understanding.

• We design four evaluation criteria and corresponding au-
tomatic metrics for assessing LLMs’ ability to under-
stand complex instructions in a comprehensive and dis-
criminative way.

• We compare 19 representative Chinese-oriented models
and 15 representative English-oriented models’ perfor-
mance on our benchmark.
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Related Work
Evaluation for LLMs Many benchmarks propose com-
prehensive evaluation frameworks that integrate existing
evaluation datasets (Liang et al. 2022; Zhong et al. 2023;
Dubois et al. 2023; Chia et al. 2023). Mainstream bench-
marks primarily focus on assessing knowledge (Huang et al.
2023; Gu et al. 2023; Yu et al. 2023), programming (Chen
et al. 2021), and complex reasoning (Cobbe et al. 2021; Sri-
vastava et al. 2023). Recently, many benchmarks focus on
specific capabilities of models (Qin et al. 2023; Liu et al.
2023b; An et al. 2023). However, none of the existing bench-
marks systematically investigate the ability of LLMs to fol-
low complex instructions. Their evaluation criteria have sev-
eral limitations when evaluating complex instruction under-
standing. First, the close-ended benchmarks fail to mirror
the complexity of the real-world instructions (Huang et al.
2023; Gu et al. 2023; Zhong et al. 2023). Also, the binary
success rate (Chen et al. 2021; Qin et al. 2023; Liu et al.
2023b) is too strict and coarse-grained, resulting in weak
discrimination. Moreover, GPT-4 automatic scoring intro-
duces bias problems (Wang et al. 2023). Overall, the existing
benchmarks and their criteria are insufficient to effectively
assess LLMs’ ability to understand complex instructions.

Complex Instruction Following The current datasets
generally have simple and common instructions, making
LLMs challenging to follow complex instructions in real-
world scenarios (Zhou et al. 2023a; Xu et al. 2023). Vari-
ous methods have been proposed to improve models’ under-
standing of complex instructions (Luo et al. 2023; Zhou et al.
2023a; Mukherjee et al. 2023). Despite the advancements,
there is a lack of a benchmark for systematically evaluating
models’ understanding of complex instructions.

Evaluation for Constrained Instructions Many studies
investigate the ability of LLMs to understand constrained
instructions (Yao et al. 2023a; Zhou et al. 2023b; Chen et al.
2022). However, the instructions of these benchmarks are
simplistic, and the constraints they involve are narrow.

CELLO Benchmark
As shown in Fig. 2, we first establish a framework contain-
ing eight features for complex instructions, then construct an
evaluation dataset, and finally propose four evaluation crite-
ria along with their corresponding metrics.

Dataset Construction
We first collect data from real scenarios, covering 9
tasks. Then we diversify the collected complex instructions
through In-breadth Evolution and complicate the collected
simple instructions through In-breadth Evolution.

Data Source and Selected Tasks When constructing the
dataset, we take into account its coverage and represen-
tativeness. Regarding coverage, we include common NLP
tasks found in existing benchmarks (Liang et al. 2022),
while incorporating instructions with more complex task
descriptions or input beyond those benchmarks. More-
over, we introduce specific tasks involving complex instruc-
tions, which align with common real-world applications for

LLMs. Regarding representativeness, instructions are gath-
ered from 90,000 user interaction logs over six months with
our implemented chatbot. Finally, we include nine tasks,
classified into six categories:

Complex NLP Tasks. Instructions concerning NLP tasks
in real-world scenarios are more diverse and detailed (Xu
et al. 2023) and contain noisy and long contexts (An et al.
2023) compared to academic datasets. Overall, we choose
four tasks commonly found in existing benchmarks (Liang
et al. 2022), enhancing them with more complex instructions
and inputs beyond traditional benchmarks: long text summa-
rization, long text closed-domain question answering, long
text keywords extraction, complex information extraction.
The details can be found in the Appendix.

Meta-prompt. Researchers design elaborate prompts to
leverage LLMs to construct datasets (Xu et al. 2023; Hon-
ovich et al. 2022; Qin et al. 2023), which can be defined as
Meta-prompts (Honovich et al. 2022). These prompts gener-
ally have varied instructions, rich input topics, few-shot sam-
ples, clear format requirements and are unlikely to appear in
the training samples. Therefore, we collect prompts crafted
by domain experts who focus on various real-world appli-
cations of LLMs, such as financial numerical reasoning and
educational knowledge graph taxonomy construction, due to
their high quality and origin in real-world scenarios.

Planning. Many studies have designed prompts to mimic
human thinking processes, guiding LLMs to perform rea-
soning and planning (Yao et al. 2023b; Liu et al. 2023b).
These prompts often impose restrictions on callable func-
tions, have clear format requirements, offer few-shot sam-
ples, and provide long contexts. Therefore, we collect
prompts that require LLMs to complete planning tasks based
on CN-DBpedia (Xu et al. 2017), fund knowledge base, and
those from Langchain1. Since smaller LLMs have limited
planning capabilities (Liu et al. 2023b), we solely evaluate
the models’ ability to perform single-step planning.

Structured Input. Structured text is a common and cru-
cial type of user input, due to its well-organized and eas-
ily interpretable format. Therefore, we include instructions
with: (1) Six structured data types, namely Markdown, La-
TeX, SQL, Tree, Python, JSON. (2) Two distinct tasks
for their complexity and representativeness: Path Compose
directly evaluates the model’s understanding of complex
nested data structures, while TextRetrieval is a common ap-
plication to extract content meeting specific requirements.
(3) Two levels of difficulty, which are categorized based on
the length and depth of the structured input.

Well-guided Writing. Existing benchmarks (Chia et al.
2023) considering writing ability mainly have the follow-
ing limitations: (1) They overlook the specific needs users
have in real-world scenarios when seeking efficient writing
guidance, such as word count, key information, or included
hashtags. (2) They fail to consider the iterative nature of user
satisfaction, as users may continually provide modification
feedback. (3) They are difficult to automatically evaluate.
To address these limitations, we collect various single-turn
complex instructions covering various complex features and

1https://www.langchain.com/
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Category Tasks #Samples #Format #Task #Input #Count Avg TD Len. Avg IP Len. Avg Ins Len.

Complex
Task

Description

Extraction 49 49 35 49 N/A 125 169 295
Planning 52 52 46 48 N/A 1070 534 1606

Meta. 20 20 15 6 2 765 166 933
BS(S) 20 20 20 1 15 70 N/A 70

Writing(S) 23 2 23 2 12 82 25 107

Complex
Input

Keywords 15 15 15 15 N/A 546 943 1579
QA 89 N/A N/A 89 N/A 25 881 814

Sum. 108 N/A N/A 108 N/A 45 514 562
Structure 38 6 N/A 38 N/A 29 1360 1390

BS(M) 52 50 50 10 36 31 559 31
Writing(M) 57 3 35 48 43 30 656 51

Overall 523 217 239 414 108 256 528 676

Table 1: The statistics of our benchmark. For each task, #Format, #Task, #Input, #Count denote the number of samples covering
the corresponding criteria. Avg TD/IP/Ins Len. denote the average word number of task description, input text and instruction.
Meta., BS, SUM. denote the Meta-prompt, Brainstorming, Summarization task respectively. (S) and (M) represent single-round
and multi-round. N/A denotes that such tasks do not involve corresponding evaluation criteria.

multi-turn instructions that reflect realistic revision needs.
Detailed Brainstorming. Brainstorming yields an intu-

itive impression for the chat models. However, existing eval-
uation datasets either have overly simple and open instruc-
tions that are difficult to evaluate (Li et al. 2023a), or they
are excessively tricky with limited discrimination2. In our
benchmark, we collect single-turn brainstorming data with
detailed requirements and multi-turn brainstorming data that
simulate realistic user interactions.

Data Evolution The collected complex instructions have
two limitations: (1) For those collected from real-world
projects, the human-elaborated task descriptions are com-
plex but alike. (2) For those collected from usage logs, many
simple instructions are not effectively utilized. Hence, we
introduce two perspectives to evolve data, thereby achieving
a more robust and reliable evaluation. In-breadth Evolu-
tion aims to diversify the collected complex instructions (in-
cluding three methods task description relocation, task de-
scription paraphrasing and task emulation). In-depth Evo-
lution aims to complicate the simple instructions to increase
the data scale (including two methods constraints addition,
multi-round interaction). The motivation and prompts for
each method are detailed in the Appendix.

Evaluation System
Criteria We define the following criteria that should be
assessed as they can encompass common errors made by
models. (1) Count limit: the number of words, sentences,
or samples allowed in the response. (2) Answer format:
the expected structure or format of the response, such as a
parsable JSON format, or a specified format for few-shot
samples. (3) Task-prescribed phrases: semantic constraints
on the response that are stipulated in the task description,
such as predefined functions, primary subjects, or key el-
ements. (4) Input-dependent query: the query should be
answered faithfully according to the given input texts.

2https://github.com/zhenbench/z-bench

Although Task-prescribed phrases and Input-dependent
query both impose content-related constraints on the re-
sponse, they differ in the information they rely on. The for-
mer centers on constraints explicitly stated by the user in
the task description, while the latter focuses on constraints
implicitly derived from the content of the input text.

Evaluation Metrics We propose automated evaluation
metrics for designed criteria, considering various perspec-
tives and difficulty levels. Each sample si = {Ii, ai, hi}
consists of instruction Ii, a model answer ai and given
histories3 hi = {(I0, a′0), ..., (Ii−1, a

′
i−1)}. Here, i denotes

the round number within multi-turn dialogues. For each
sample s, its score for each criteria comprises multiple sub-
scores C = {c1, c2, ..., ci}. Each sub-score ci = fx(l, ai, hi)
is determined by scoring function fn based on the criterion
x, and a limit l manually annotated by humans. The limit l
can be an integer, a list of keywords, or a referenced string4.

Count Limit. We mainly consider four sub-scores: word
count score, sentence count score, and sample count score,
revise score. For word count score, the criteria can be word-
max and word-min. For the scoring function fword-max, the
more word count exceeds the threshold limit lc, the lower
the score will be, thus fword-max is defined as follows:

fword-max(ai, lc) =

{
1 n(ai) ⩽ lc

1− |n(ai)−l|
n(ai)

n(ai) > lc

Here, n(ai) is the valid word count of answer ai excluding
punctuation marks. fword-min is defined as follows:

fword-min(ai, lc) =

{
1 n(ai) ⩾ lc
n(ai)

l
n(ai) < lc

Likewise, the scoring functions for sentence count en-
compass fsentence-max, fsentence-min, fsentence-exact. The scoring

3To ensure a fair comparison between models, all the model
answers in the histories for each sample are the same and provided
by GPT-3.5-turbo.

4The annotation process is detailed in the Appendix.
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Benchmark Avg Ins
Len. Format Metric Obj.

C-Eval 110 C ACC T

AGIEval 184 C EM/F1 T

WizardLM
Testset 62 O Preference F

ToolBench N/A O Pass Rate T

Preference F

AgentBench N/A O Pass Rate T

CELLO 676 O
Four

Fine-grained
Metrics

T

Table 2: Statistics of existing benchmarks. Avg Ins denotes
the average word numbers in instructions. C and O denote
the Close-ended and Open-ended respectively. Preference
refers to evaluation via GPT4. Obj. represents whether the
evaluation metrics are objective (T) or subjective (F).

function for sample count fsample-exact is implemented us-
ing regex matching. The limit lc for revise score frevise can
be the string longer or shorter. Speicifically, the function
frevise(ai, longer) equals 1 if n(ai) > n(ai−1), otherwise, it
equals 0. For each sample, the final Count Limit score Sc is
the average of all the sub-scores.

Answer Format. This metric has two sub-scores:
parseability and keywords. First, if the model output
can be parsed in the prescribed format, such as JSON,
fparseability(ai, json) equals 1; otherwise, it equals 0. How-
ever, even in cases where the model output cannot be di-
rectly parsed, its ability to learn certain patterns still demon-
strates its capacity to follow complex instructions. Conse-
quently, for each sample, we first extract keywords list lf =
{w1, w2, ..., wi} from pre-defined formats, which we define
as Scoring Keywords. Then, the sub-score fkeywords(ai, lf ) is
defined as follows:

fkeywords(ai, lf ) =
N(ai, lf )

|lf |
,

where N denotes the number of scoring keywords covered
by the model output ai. Finally, the overall score for answer
format Sf is the average of fparseability and fkeywords.

Input-dependent Query. The key phrases of the correct
answer stem from the input text. The more scoring keywords
included in a response, the higher the quality of the response.
Hence, for each sample, the subscore fkeywords(ai, l) is also
applied here, where the Scoring keywords lq are extracted
from input text. Moreover, certain models tend to repeat in-
put text when they fail to understand the instructions, es-
pecially when the input text is long and noisy or during
the multi-turn dialogue. To prevent this undesirable copy-
ing behavior, we introduce a penalty term known as COPY-
BLEU (Chen et al. 2022), which decreases as the response
exhibits greater similarity to the input text. The final score
Sq for the Input-dependent query is defined as follows:

Sq = (1− fBLEU(ai, ti))fkeywords(ai, lq),

where ti is the input text of sample si.
Task-prescribed Phrases. The mandatory phrases speci-

fied in the task description are essential conditions that must
be fulfilled. The more mandatory phrases covered in the an-
swers, the better the model follows complex instructions.
Hence, the subscore fkeywords(ai, lt) is applied where lt is
the scoring keywords extracted from the task description.

Evaluation of the Benchmark
Each sample is labeled by three annotators. Specifically, we
retain samples only when at least two annotators agree on
the criteria Count Limit and Output Format Parseability. For
criteria involving Keywords Coverage, we only keep key-
words with a consensus from at least two annotators.

Statistics of the Benchmark
Tab. 1 presents the statistics5 of CELLO. Our dataset has two
categories depending on whether the criteria are mainly in
the task description or the input text. Different tasks also
have different emphases on the criteria, and our dataset
covers the four criteria effectively. Tab. 2 compares our
benchmark with existing ones. Our benchmark is the first
to systematically test LLMs’ ability to follow complex in-
structions, which are generally longer and more complex
than other benchmarks. The tasks we cover are open-ended,
which are more realistic and practical. Our evaluation is also
more objective and fine-grained.

Experiment
Evaluated Models We evaluate a total of 34 models
that demonstrated exceptional performance on other bench-
marks (Huang et al. 2023; Dubois et al. 2023), ranging from
their model size, supported context length, and instruction
tuning data size, as illustrated in Appendix. These models
are categorized into three groups: Chinese-oriented Mod-
els (From Scratch, FS), Chinese-oriented Models (Continue
Pretraining, CP), and English-oriented Models. The distinc-
tion between English and Chinese-oriented Models lies in
the composition of their pretraining corpus, whereby the
former possesses a small portion and the latter possesses a
substantial volume of Chinese data. Chinese-oriented Mod-
els (FS) are trained entirely from scratch using Chinese cor-
pora. Chinese-oriented Models (CP) continue pretraining on
Chinese corpora utilizing an English-oriented base model.

Task-categorized Performance The performance of the
models on different tasks is shown in Tab. 3.

General Comparisons. Among the models assessed,
OpenChat-V3.2 was the best, followed by Vicuna-V1.5-
13B and ChatGLM. These models had different parameter
sizes, showing that small-scale LLMs can follow complex
instructions as well as larger ones. The Chinese-oriented
(FS) group and the English-oriented group perform equally

5Chinese word are counted via https://github.com/fxsjy/jieba.
English words are counted via https://www.nltk.org/.
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Model Complex Task Description Complex Input All

Extract. Plan. Meta. Wri.(S) BS.(S) Key. QA. Sum. Struct. Wri.(M) BS.(M) Avg.

Chinese-oriented Models (Continue Pretraining)
Baize-V2-7B 0.203 0.266 0.300 0.504 0.245 0.056 0.121 0.045 0.593 0.381 0.558 0.298

Llama2-FlagAlpha 0.205 0.095 0.129 0.262 0.547 0.150 0.423 0.297 0.354 0.406 0.591 0.309
Baize-V2-13B 0.214 0.334 0.342 0.272 0.536 0.070 0.143 0.019 0.540 0.433 0.574 0.318

Alpaca-V1-13B 0.289 0.183 0.209 0.209 0.697 0.411 0.272 0.226 0.399 0.291 0.480 0.332
Alpaca-V1-7B 0.264 0.123 0.215 0.357 0.612 0.265 0.267 0.243 0.465 0.401 0.703 0.352
Llama2-Linly 0.382 0.170 0.205 0.352 0.527 0.196 0.464 0.406 0.596 0.352 0.594 0.381

Alpaca-V1-33B 0.379 0.200 0.283 0.664 0.663 0.415 0.334 0.221 0.426 0.476 0.609 0.426
BELLE 0.400 0.157 0.363 0.589 0.734 0.379 0.478 0.508 0.458 0.439 0.672 0.469

CuteGPT 0.482 0.529 0.460 0.534 0.739 0.294 0.506 0.459 0.653 0.626 0.804 0.553
Llama2-LinkSoul 0.521 0.326 0.431 0.652 0.769 0.615 0.788 0.684 0.565 0.747 0.909 0.629

Llama2-OpenBuddy 0.585 0.638 0.344 0.697 0.697 0.638 0.752 0.685 0.711 0.812 0.892 0.670

Chinese-oriented Models (From Scratch)
BatGPT-sirius 0.011 0.044 0.094 0.352 0.233 0.046 0.394 0.054 0.294 0.135 0.321 0.177

MOSS 0.493 0.310 0.461 0.634 0.644 0.473 0.396 0.500 0.521 0.696 0.658 0.525
InternLM 0.452 0.540 0.493 0.690 0.622 0.247 0.515 0.399 0.428 0.732 0.877 0.546

ChatGLM2 0.539 0.317 0.608 0.664 0.632 0.589 0.725 0.669 0.590 0.738 0.777 0.616
ChatGLM2-32k 0.526 0.399 0.572 0.699 0.690 0.653 0.686 0.571 0.427 0.758 0.876 0.620
Baichuan-chat 0.473 0.373 0.471 0.800 0.794 0.491 0.728 0.701 0.601 0.776 0.857 0.637

Qwen 0.544 0.551 0.493 0.646 0.740 0.486 0.767 0.705 0.575 0.710 0.888 0.642
ChatGLM 0.649 0.522 0.612 0.700 0.808 0.532 0.742 0.672 0.573 0.735 0.870 0.673

English-oriented Models
Llama2-chat-7B 0.495 0.326 0.500 0.358 0.465 0.157 0.135 0.060 0.708 0.541 0.447 0.385
Llama2-chat-70B 0.431 0.289 0.484 0.397 0.472 0.147 0.158 0.079 0.719 0.570 0.552 0.393
Llama2-chat-13B 0.445 0.329 0.624 0.359 0.453 0.154 0.127 0.108 0.753 0.569 0.458 0.402
Vicuna-V1.3-7B 0.485 0.661 0.303 0.748 0.665 0.180 0.651 0.583 0.525 0.674 0.773 0.569

WizardLM 0.422 0.592 0.281 0.675 0.565 0.261 0.594 0.570 0.519 0.711 0.839 0.574
LongChat-V1-13B 0.523 0.591 0.423 0.654 0.533 0.400 0.572 0.532 0.579 0.752 0.810 0.576
LongChat-V1.5-7B 0.489 0.620 0.358 0.664 0.731 0.608 0.687 0.633 0.378 0.747 0.825 0.609
LongChat-V1-7B 0.549 0.475 0.424 0.710 0.805 0.527 0.604 0.557 0.692 0.729 0.856 0.627
Vicuna-V1.3-13B 0.521 0.625 0.474 0.743 0.840 0.346 0.672 0.582 0.613 0.651 0.869 0.631
Vicuna-V1.5-7B 0.544 0.670 0.398 0.506 0.770 0.711 0.739 0.667 0.513 0.693 0.906 0.641
Vicuna-V1.3-33B 0.589 0.702 0.385 0.752 0.835 0.503 0.680 0.643 0.627 0.622 0.872 0.655
Vicuna-V1.5-13B 0.601 0.721 0.425 0.744 0.794 0.682 0.765 0.723 0.630 0.746 0.896 0.699
OpenChat-V3.2 0.629 0.733 0.510 0.754 0.868 0.725 0.771 0.663 0.608 0.761 0.919 0.720
GPT-3.5-turbo 0.709 0.805 0.632 0.879 0.854 0.765 0.795 0.832 0.697 0.879 0.908 0.794

GPT-4 0.737 0.879 0.666 0.828 0.810 0.862 0.889 0.911 0.727 0.867 0.910 0.822

Table 3: The performance of models on different tasks. Detailed information of each model is provided in the Appendix. The
bold, underlined, and italicized denote the first, second, and third rankings, respectively. Here, Extract., Plan., Meta., Key.,
Sum., Struct., Avg. denote Extraction, Planning, Meta-prompt, Keywords, Summarization, Structure, Average respectively.

well and better than the Chinese-oriented (CC) group, prov-
ing that complex instruction comprehension is not language-
dependent. Moreover, under the same base model, vocabu-
lary, and supported context length (e.g. Llama2-7B), the per-
formance of the models varies greatly. This demonstrates a
strong correlation between the ability to comprehend com-
plex instructions and the instruction tuning phase. Over-
all, the current open-source small to medium-scale models
exhibit a significant performance gap compared to close-
source large-scale models (GPT-3.5-turbo, GPT4).

Complex Task Description. Among the data with complex
task descriptions, first, four of the top 5 models belong to the
English-oriented Models, which demonstrate that the ability
to understand complex task descriptions can transfer across
different languages. Next, within the same series of models,

larger model sizes do not always lead to improvements. Fur-
thermore, the best-performing models in each group have a
supported context length of less than 4096, suggesting that
the supported text context length does not significantly im-
pact the ability to comprehend complex task descriptions.

Complex Input Text. For the data with complex input text,
first, seven of the top 10 models belong to Chinese-oriented
models, which implies that more Chinese training data as-
sists the models in comprehending long and noisy Chinese
texts. Next, within the same model series, larger scales gen-
erally improve performance, while longer supported context
length can result in performance drops in many cases.

Criteria-categorized Performance As shown in Tab. 4,
regarding Answer format, the English-oriented Models sig-
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Model Format Input Task Count
Chinese-oriented Models (Continue Pretraining)
Baize-V2-7B 0.409 0.300 0.246 0.466

Llama2-FlagAlpha 0.499 0.218 0.221 0.468
Baize-V2-13B 0.530 0.247 0.302 0.444

Alpaca-V1-13B 0.603 0.207 0.259 0.458
Alpaca-V1-7B 0.663 0.224 0.256 0.512
Llama2-Linly 0.411 0.347 0.374 0.490

Alpaca-V1-33B 0.655 0.353 0.357 0.576
BELLE 0.556 0.408 0.484 0.498

CuteGPT 0.640 0.548 0.576 0.514
Llama2-LinkSoul 0.662 0.623 0.662 0.603

Llama2-OpenBuddy 0.734 0.627 0.704 0.638

Chinese-oriented Models (From Scratch)
BatGPT-sirius 0.154 0.206 0.069 0.357

MOSS 0.586 0.514 0.564 0.534
InternLM 0.650 0.527 0.524 0.612

ChatGLM2 0.620 0.605 0.691 0.568
ChatGLM2-32k 0.687 0.563 0.716 0.603
Baichuan-chat 0.750 0.603 0.586 0.662

Qwen 0.764 0.584 0.625 0.570
ChatGLM 0.715 0.628 0.742 0.571

English-oriented Models
Llama2-chat-7B 0.598 0.294 0.306 0.686
Llama2-chat-70B 0.631 0.318 0.265 0.701
Llama2-chat-13B 0.640 0.342 0.280 0.674
Vicuna-V1.3-7B 0.598 0.520 0.599 0.597

WizardLM 0.730 0.525 0.531 0.586
LongChat-V1-13B 0.723 0.528 0.585 0.507
LongChat-V1.5-7B 0.791 0.518 0.589 0.535
LongChat-V1-7B 0.789 0.574 0.615 0.609
Vicuna-V1.3-13B 0.766 0.588 0.641 0.554
Vicuna-V1.5-7B 0.756 0.536 0.698 0.599
Vicuna-V1.3-33B 0.770 0.609 0.668 0.575
Vicuna-V1.5-13B 0.786 0.656 0.701 0.640
OpenChat-V3.2 0.766 0.703 0.776 0.617
GPT-3.5-turbo 0.899 0.760 0.799 0.700

GPT-4 0.911 0.796 0.792 0.724

Table 4: The performance of models for different criteria.
The bold, underlined, and italicized denote the first, second,
and third rankings, respectively.

nificantly perform better than Chinese-oriented Models.
This demonstrates the English-oriented Models’ ability to
follow few-shot examples and generate code, as well as par-
tially explains why their complex instruction-following abil-
ity can transfer across languages. Next, for Task-prescribed
phrases, two of the top-3 models are Chinese-oriented Mod-
els, suggesting that Chinese data helps the models un-
derstand Chinese semantic restrictions. Finally, the perfor-
mance differences between models for Count limit criteria
are not big compared to other criteria, which shows that the
models have similar comprehension of numerical concepts.

Comparisons between Benchmarks We present the
performance6 on mainstream benchmarks in Fig. 3. First, on
benchmarks focusing on Chinese knowledge, smaller mod-
els achieve similar or even better performance compared to
GPT-3.5-turbo. Also, on challenging benchmarks like com-
plex reasoning and programming ability, there is a lack of

6https://opencompass.org.cn/leaderboard-llm.
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Figure 3: Model performance on mainstream benchmarks.

distinction between smaller models. Overall, our benchmark
can exhibit more discriminative results.
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Figure 4: LLMs’ performance on different tasks and criteria
based on the same model (Touvron et al. 2023)

Fine-grained Evaluation Fig. 4 shows the performance
of LLMs based on the same base model for different tasks
and criteria. Different models have different strengths for
different criteria. For example, Llama2-chat-7B is good at
understanding format but bad at comprehending Chinese in-
put and semantic constraints. Different models also excel
in specific tasks. Llama2-chat-7B handles complex task de-
scriptions well, but not complex input text.

Conclusion
In this work, we systematically investigate the complex in-
structions following ability of LLMs. We establish a frame-
work comprising eight features for complex instructions,
then construct an evaluation dataset covering nine tasks, and
finally propose four evaluation criteria and corresponding
metrics to assess LLMs’ complex instruction understanding
ability. Furthermore, we conduct extensive experiments to
compare the performance of representative models.
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