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Abstract

Large language models (LLMs) have been widely used in
various applications but are known to suffer from issues re-
lated to untruthfulness and toxicity. While parameter-efficient
modules (PEMs) have demonstrated their effectiveness in
equipping models with new skills, leveraging PEMs for de-
ficiency unlearning remains underexplored. In this work, we
propose a PEMs operation approach, namely Extraction-
before-Subtraction (Ext-Sub), to enhance the truthfulness
and detoxification of LLMs through the integration of “ex-
pert” PEM and “anti-expert” PEM. Remarkably, even anti-
expert PEM possess valuable capabilities due to their pro-
ficiency in generating fabricated content, which necessitates
language modeling and logical narrative competence. Rather
than merely negating the parameters, our approach involves
extracting and eliminating solely the deficiency capability
within anti-expert PEM while preserving the general capabil-
ities. To evaluate the effectiveness of our approach in terms
of truthfulness and detoxification, we conduct extensive ex-
periments on LLMs, encompassing additional abilities such
as language modelling and mathematical reasoning. Our em-
pirical results demonstrate that our approach effectively im-
proves truthfulness and detoxification, while largely preserv-
ing the fundamental abilities of LLMs.

Introduction
“There’s some good in the worst of us and some evil
in the best of us.” – Martin Luther King, Jr.

In recent years, large language models (LLMs) (Brown et al.
2020; Ouyang et al. 2022; Touvron et al. 2023) has emerged
as a powerful tool for various natural language processing
tasks. However, a critical drawback of these models is their
tendency to generate untruthful and toxic texts (Lin, Hilton,
and Evans 2022; Welbl et al. 2021). Although LLMs pos-
sess the capability to produce natural and human-like an-
swers, they suffer from issues of unreliability, unsafety, and
untruthful (Ji et al. 2023; Deng et al. 2023). Prior research
has demonstrated that even highly potent language models
can generate false or toxic responses to user queries (Li et al.
2023a; Liu, Zhang, and Liang 2023; Zhao et al. 2023).

* Equal contribution.
† Corresponding author.
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Figure 1: The average accuracy and 4-gram generation rep-
etition scores of TruthfulQA from the Alpaca-GPT4 model,
under varying weights λ of subtraction (Section ). Our ap-
proach (Ext-Sub) consistently improves truthfulness without
text degeneration, while previous PEMs operation method,
direct subtraction (Zhang et al. 2023; Ilharco et al. 2023),
leads to performance decreases and harmful degeneration as
λ increases.

Parameter-efficient modules (PEMs), such as LoRA (Hu
et al. 2022), can enable LLMs to acquire new abilities more
efficiently, but utilization of PEMs operation for deficiency
unlearning (Liu et al. 2021; Lu et al. 2022) is underexplored.
Recent studies have demonstrated the advantages of model
parameter ensembles in enhancing performance (Matena
and Raffel 2022; Jin et al. 2023), while others have explored
the arithmetic operations of PEMs to combine and eliminate
skills acquired by different modules (Zhang et al. 2023; Il-
harco et al. 2023). This paper conducts a deep exploration
of the operations of PEMs and their potential for enhanc-
ing model truthfulness and detoxification, which enhance an
“expert” parameter-efficient tuned model by leveraging un-
learning from another “anti-expert” PEM.

One of the primary challenges in model unlearning is
how to identify and extract undesirable deficiency features
from anti-expert PEMs. In contrast to classification tasks,
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the task of text generation necessitates intricate representa-
tions. While anti-expert PEMs are typically associated with
errors and mistakes, they can also possess valuable capabil-
ities, such as language modeling and logical narrative skills,
which are imperative for generating coherent and even fabri-
cated textual content. Solely regarding anti-expert PEMs as
negative features may potentially undermine the fundamen-
tal abilities of models, albeit it may enhance performance
in a specific aspect. Therefore, a more efficient approach is
to separate anti-expert PEMs into general capability and de-
ficiency capability. This approach enables the preservation
of the valuable abilities embedded within anti-expert PEMs
while simultaneously eliminating their negative effects.

Our proposed approach involves using a novel PEMs
operation technique, namely Extraction-before-Subtraction
(Ext-Sub), for model deficiency unlearning, aiming to en-
hance model truthfulness and detoxification. Specifically,
we employ two distinct PEMs: an expert PEM trained on
regular instruction data and an anti-expert PEM trained on
untruthful or toxic instruction data. By combining these two
PEMs, we identify their common representation as the gen-
eral capability. Subsequently, we extract the deficiency capa-
bility (i.e., untruthfulness and toxicity) from the anti-expert
PEM by leveraging the general capability. Truthfulness and
toxicity improvements occur as a result of unlearning the
deficiency capability. Since the undesirable feature exhibits
minimal overlap with the basic expert PEM, it is reasonable
to directly subtract it from the expert PEM. In essence, our
approach involves separating the general and deficiency ca-
pabilities from the anti-expert PEM and then extracting and
subtracting the undesirable capability to enhance the model
while minimizing the risk of forgetting fundamental abili-
ties.

We conduct our experiments on two widely used in-
struction datasets, Alpaca-GPT4 and WizardLM. Our results
demonstrate that our approach can effectively and efficiently
enhance the truthfulness and detoxification of LLMs, with-
out little risk of forgetting fundamental abilities (Figure 1).
Furthermore, we provide in-depth analysis to validate the
generalization and stability of our approach 1.

Our contributions are as follows:

• The paper introduces a novel parameter-efficient mod-
ules (PEMs) operation technique called Extraction-
before-Subtraction (Ext-Sub) for model deficiency un-
learning. This provides new insights into the operation
of model parameters for more application.

• Empirical results demonstrate the effectiveness and gen-
eralization of our proposed approach to enhance the
truthfulness and detoxification of large language models
(LLMs).

• We have conducted a more comprehensive and in-depth
analysis to demonstrate that our approach yields minimal
detriment to the model, especially compared to previous
works.

1Code available at: https://github.com/HITsz-TMG/Ext-Sub.

Expert PEM

Anti-expert PEM

General Capability

Deficiency Capability

Figure 2: A diagram of PEMs operation on 2D vector per-
spective: (left) Previous work directly subtracts anti-expert
PEM from expert PEM. (right) Our approach extracts de-
ficiency extraction of anti-expert PEM (Section ) and then
subtracts it from expert PEM (Section ).

Preliminary
Parameter-efficient tuning has emerged as a popular alter-
native to full-parameter tuning, particularly with large lan-
guage models. This approach involves fine-tuning only a
small number of extra parameters in a model, with updates
being made solely to the small parameter-efficient modules
during training. Several parameter-efficient modules have
been proposed, including Adapter (Houlsby et al. 2019),
LoRA (Hu et al. 2022) and Prefix-tuning (Li and Liang
2021). Notably, He et al. (2022) has provided a unified view
of different PEMs. While our experiments focus on LoRA,
we anticipate that our method can be extended to other
PEMs, which we leave for future work.

LoRA is a technique that inserts a low-rank adaptation
matrix in each layer of LLMs, facilitating the efficient fine-
tuning of LLMs. This technique decomposes the weight ma-
trix update into two low-rank matrices, namely ∆W =
BA, where B ∈ Rd×r and A ∈ Rr×k. The forward pass is
then modified as follows:

h = Wx+∆Wx = Wx+BAx, (1)

where W ∈ Rd×k represents the pre-trained weight ma-
trix and x ∈ Rk represents the input hidden states. During
training, the pre-trained weight matrix W remains frozen,
and only the additional LoRA component is updated. In this
work, we focus on all PEMs operations on the overall LoRA
matrix ∆W .

PEMs operation aims to enhance model performance by
fusing multiple PEMs. To this end, Zhang et al. (2023) intro-
duced a direct subtraction operation that allows for targeted
unlearning of specific abilities. This operation entails sub-
tracting the parameters learned from a negative dataset (θ−)
from those learned from a standard dataset (θ+), resulting
in a new PEM represented by θ′. The process is expressed
mathematically as follows:

θ′ = θ+ ⊖ λθ− = θ+ − λθ−, (2)

where λ is a hyperparameter to control the weight of param-
eter subtraction. The abstract concept of this technology is
illustrated in the left portion of Figure 2.
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Method
In this study, we propose a novel approach, Extraction-
before-Subtraction (Ext-Sub), to enhance the basic module
θ+ by integrating an anti-expert module θ− using the PEMs
subtraction technique, as previously described in the litera-
ture (Zhang et al. 2023). However, direct subtraction of two
PEMs can result in harmful forgetting, as we have noted ear-
lier. To address this challenge, we adopt a two-step approach
that involves the extraction and subtraction of the deficiency
capability rather than the entire module. Specifically, our
method comprises two main steps: (1) deficiency capabil-
ity extraction; and (2) deficiency capability subtraction. The
entire procedure is illustrated in Algorithm 1.

Deficiency Capability Extraction
We hypothesize that the anti-expert PEM consists of general
and deficiency capabilities, as shown in Figure 2. General
capability is a common feature for text generation which can
be shared between the basic module θ+ and the anti-expert
module θ−, which is easier to obtain. After extracting the
commonly shared general deficiency from the anti-expert
PEM, the remaining feature is the most distinct character-
istic that differentiates the two modules, which corresponds
to the deficiency capability that we aim to identify.

Note that the LoRA weight ∆W ∈ Rd×k can be consid-
ered as d independent vectors: ∆W = [vT

1 ,v
T
2 , . . . , v

T
d ]

T ,
where vi ∈ Rk is a row vector in i-th row. Then we apply
all of the operations on the row vector space between two
PEMs. In this work, we hypothesize the different vector di-
rections as different capabilities and the values represent the
strength of capability.

General capability is obtained by fusing the two PEMs.
Since there exists a unique hyperplane located between any
two linearly independent vectors, we consider this hyper-
plane as the common feature space. The projection of the
anti-expert vector (v−

i ) from anti-expert PEMs onto this hy-
perplane is considered the desired general capability. The
directional vector of general capability v◦

i can be obtained
from the addition of unit vectors of v̂i

+ and v̂i
− as follows:

v◦
i = v̂i

+ + v̂i
− =

v+
i

|v+
i |

+
v−
i

|v−
i |

. (3)

As depicted in Figure 2, the bold red and green vectors rep-
resent the unit vectors of basic and anti-expert vectors. The
purple vector in the middle of them references the direction
of general capability. So the general ability in the anti-expert
PEM vector can be obtained from vector projection:

v
◦|−
i = v−

i · v̂i
◦ = v−

i ·
v◦
i

|v◦
i |
. (4)

Deficiency capability should be orthogonal to the general
capability hyperplane. Since general and deficiency capabil-
ities compose the complete anti-expert PEM, their addition
is just the anti-expert PEM. After getting the general capa-
bility of anti-expert PEM vectors, we get the deficiency ca-
pability by subtracting the general feature vector from the
anti-expert vectors:

Ext(v−
i ) = v−

i − v
◦|−
i , (5)

Algorithm 1: Deficiency Capability Unlearning
Input: basic weight matrix W+, anti-expert weight matrix
W−, subtraction weight hyperparameter λ
Output: new weight matrix W ′

1: d← row dimension of W+.
2: for i← 1 to d do
3: v+

i ←W+[i], v−
i ←W−[i]

4: v̂i
+ ← Normalize(v+

i ) ▷ get unit vector
5: v̂i

− ← Normalize(v−
i )

6: v◦
i ← v̂i

+ + v̂i
− ▷ general capability direction

7: v
◦|−
i ← Projection of v−

i onto v◦
i

▷ get the general capability from anti-expert vector
8: Ext(v−

i ) = v−
i − v

◦|−
i ▷ deficiency capability

9: v′
i ← v+

i − λ · Ext(v−
i )

10: end for
11: W ′ ← Stack[v′

1,v
′
2, . . . , v

′
d]

12: return W ′

where Ext(v−
i ) is the final extracted deficiency capa-

bility feature. Note that we take all of our operations
on each independent row, so the final deficiency capabil-
ity LoRA matrix is stacked by all vectors: Ext(θ−) =
[Ext(v−

1 )
T , Ext(v−

2 )
T , . . . , Ext(v−

d )
T ]T . The whole defi-

ciency capability extraction function Ext takes two inputs
(θ+ and θ−), which should be denoted as Extθ+(θ−). Un-
less explicitly stated otherwise, we abbreviate it as Ext(θ−).

Deficiency Capability Subtraction
This step is the same as the linear subtraction operation, but
we subtract the basic parameter with the extracted deficiency
feature Ext(θ−). Then the new module is represented as fol-
lows:

θ′ = θ+ ⊖ λ · Ext(θ−) = θ+ − λ · Ext(θ−), (6)

where ⊖ denotes the direct parameter subtraction operation
and λ is a hyperparameter to control the weight of parameter
subtraction.

Experiments
Our approach is primarily evaluated based on its ability to
improve truthfulness or detoxification, and its generalization
performance under the composition of the two different do-
mains.

General Setup
Language Model To conduct our experiments, we adopt
LLaMA-7B (Touvron et al. 2023), a decoder-only pre-
trained large language model. We also evaluate OPT-
6.7B (Zhang et al. 2022) in the Appendix.

LoRA Module All of our LoRA modules have a low-rank
dimension of 16 and only 0.124% of the LLaMA-7B’s pa-
rameters are trainable. During training, we set the dropout to
0.05.
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Multi-Choice Free-Generation
mc1 mc2 bleu acc rouge1 acc true(%) true&info(%)

Alpaca-GPT4

Expert + 33.3 52.8 43.1 48.1 31.3 31.2
Anti-expert − 25.8 44.5 26.7 27.9 8.1 8.0

+ ⊖ − (λ = 0.2) 33.5 52.7 45.5 47.0 32.3 31.8
+ ⊖Ext( −) (λ = 1.0) (Ours) 35.0 54.2 45.2 47.1 33.7 33.5
+ ⊖Ext( −) (λ = 2.0) (Ours) 36.0 55.2 46.4 49.2 34.6 34.4
+ ⊖ − (λ = 0.2) 33.7 52.7 43.7 46.4 31.6 31.3
+ ⊖Ext( −) (λ = 1.0) (Ours) 36.1 55.3 48.6 50.1 34.9 34.8

WizardLM

Expert + 31.3 49.9 39.3 40.5 25.0 24.8
Anti-expert − 25.9 45.1 27.4 28.3 8.0 8.0

+ ⊖ − (λ = 0.2) 32.4 50.0 39.5 41.6 24.8 24.5
+ ⊖Ext( −) (λ = 1.0) (Ours) 32.7 50.9 38.4 40.9 24.7 24.7
+ ⊖Ext( −) (λ = 0.6) (Ours) 32.2 50.6 40.1 41.9 25.5 25.2
+ ⊖ − (λ = 0.2) 32.1 49.9 39.9 40.5 23.3 23.2
+ ⊖Ext( −) (λ = 1.0) (Ours) 33.9 51.6 39.4 39.2 22.8 22.4

Table 1: The untruthfulness unlearning results on TruthfulQA benchmark. The + and − denote the basic expert and anti-
expert PEM models. + ⊖ − denotes the direct subtraction method and + ⊖Ext( −) denotes our proposed method
(Extraction-before-Subtraction).

Some experimental details for instruction tuning are pre-
sented in the Appendix 2.

Untruthfulness Unlearning
Training We trained our basic expert PEMs using two
widely-used instruction datasets, Alpaca-GPT4 (Taori et al.
2023; Peng et al. 2023b) and WizardLM-70k (Xu et al.
2023) to train our basic expert PEMs, which we denote as

+ and +, respectively. To obtain the corresponding anti-
expert PEMs, namely − and −, we use ChatGPT 3 to
generate untruthful responses to the original instructions.

Evaluation We choose TruthfulQA (Lin, Hilton, and
Evans 2022) and HaluEval (Li et al. 2023a) as our primary
measures of truthfulness. To evaluate TruthfulQA, we report
both multi-choice and free-generation accuracy, as specified
in the original paper. Multi-choice accuracy is determined
by whether the model assigns the highest probability to the
correct answer among a set of options. We report results for
both the single-true (mc1) and multi-true (mc2) settings. Ad-
ditionally, we measure the similarity of the model-generated
answer to the correct reference by BLEU and ROUGE-L
metrics (bleu acc and rougel acc). To further evaluate truth-
fulness and informativeness, we use ChatGPT judge the

2Please refer to the full version of the arXiv paper with the Ap-
pendix at: https://arxiv.org/abs/2308.08090 .

3Specifically, we conduct experiments on ChatGPT based on
OpenAI’s gpt-3.5-turbo-0613 in this work.

quality of generated answers for effeciency. We report two
metrics:“true” represents the percentage of truthful exam-
ples, while “true&info” represents the percentage of both
truthful and informative examples. For HaluEval, we use the
same multi-choice accuracy measure as for TruthfulQA. We
exclude the Dialogue and Alpaca subsets and only evaluate
QA and Summary benchmarks. Because we focus on single-
turn setting and Alpaca instruction data has already been in-
cluded in our training data. We use the same prompt format
during evaluation as during training.

Results The results of our TruthfulQA experiments are
presented in Table 1. It is evident that the anti-expert PEMs,
i.e. − and −, exhibit the poorest performance. We report
the best results obtained using the direct subtraction method
with λ = 0.2 and demonstrate our approach under both the
optimal settings (λ = 2.0 for and λ = 0.6 for ) and
a fundamental setting (λ = 1.0). The impact of varying λ
will be discussed further in the subsequent section. Our pro-
posed approach delivers significant improvements over the
direct subtraction method. Furthermore, even when combin-
ing two different instruction datasets to assess its generaliza-
tion, our approach remains competitive, albeit + ⊖Ext(

−) (λ = 1.0) performs slightly worse than the subtraction
method in free-generation. We also present the results of our
HaluEval benchmark in Table 2, where we follow the same
settings as the TruthfulQA experiments. Our proposed ap-
proach demonstrates satisfactory performance on HaluEval,
with the exception of the Summary domain. We posit that
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QA Summary

Alpaca-GPT4

Expert + 69.0 47.4
Anti-expert − 63.8 45.6

+ ⊖ − (λ = 0.2) 70.6 49.6
+ ⊖Ext( −) (λ = 1.0) (Ours) 70.3 48.1
+ ⊖Ext( −) (λ = 2.0) (Ours) 72.2 49.3

WizardLM

Expert + 75.8 47.5
Anti-expert − 65.6 44.5

+ ⊖ − (λ = 0.2) 77.5 49.8
+ ⊖Ext( −) (λ = 1.0) (Ours) 79.2 48.5
+ ⊖Ext( −) (λ = 0.6) (Ours) 77.9 48.1

Table 2: The untruthfulness unlearning results on HaluEval
benchmark. The setting are the same as Table 1.

this may be due to the Summary subset of HaluEval primar-
ily evaluating the ability to ensure factual consistency, a skill
that is noticeably underrepresented in our negative dataset.

Toxicity Unlearning
Training The expert PEMs used in this study are identi-
cal to those described in Section , namely + and +. To
develop the anti-expert PEM, we adopted the toxic instruc-
tion tuning dataset proposed by Zhang et al. (2023), which is
constructed by prompting ChatGPT to generate the instruc-
tions corresponding to the toxic comments from the train-
ing split of Civil Comments (Borkan et al. 2019). The anti-
expert PEM is denoted as −.

Evaluation For evaluating the toxicity of the models, we
employed the test data consisting of 200 instructions from
Zhang et al. (2023), which consists of 100 toxic and 100
non-toxic instructions. We prompt all models to generate
corresponding responses to these instructions, and subse-
quently evaluate their toxicity scores and the ratio of toxic
responses whose toxicity scores exceed the threshold of 0.8,
using the Detoxify API (Hanu and Unitary team 2020).

Results We report the results of our investigation into the
efficacy of toxicity unlearning, as summarized in Table 3.
The direct subtraction method achieves the best performance
with λ = 0.4 for and λ = 0.2 for . We evaluate our ap-
proach under both the optimal setting (λ = 2.0 for and
λ = 1.4 for ) and a fundamental setting (λ = 1.0). To
ensure the validity of our results, we only consider mod-
els that do not exhibit repetitive behavior, with an average
4-gram repetition score of less than 20. The subsequent sec-
tion provides detailed measurements of toxicity and gener-
ation quality under varying λ. The results indicate that our
proposed method outperforms the direct subtraction opera-
tion in toxicity unlearning, with a significant improvement

Score ↓ % ↓

Anti-expert − .586 49.0

Expert + .164 12.5
+ ⊖ − (λ = 0.4) .135 10.0
+ ⊖Ext( − ) (λ = 1.0) (Ours) .126 9.0
+ ⊖Ext( − ) (λ = 2.0) (Ours) .108 6.0

Expert + .207 14.5
+ ⊖ − (λ = 0.2) .201 16.0
+ ⊖Ext( − ) (λ = 1.0) (Ours) .195 13.5
+ ⊖Ext( − ) (λ = 1.4) (Ours) .169 10.5

Table 3: Toxicity evaluation of generated responses from
varied models. We present toxicity scores and the ratio of
toxic responses.

over the basic expert PEM models.

Compositional Unlearning
Setup The experiments detailed thus far have primarily fo-
cused on single domains, specifically truthfulness or toxic-
ity. However, an intriguing question arises as to what would
happen if multiple PEMs were combined to unlearn different
deficient capabilities. In this section, we utilize PEMs from
two domains previously identified as anti-expert PEMs. The
direct subtraction method, which satisfies the commutative
property, is employed to subtract two PEMs in sequence.
To evaluate our approach, we test two different unlearning
orders (truthfulness first or detoxification first), as the defi-
ciency capability extraction process involves different basic
expert PEMs.

Results Our results in Table 4 indicate that compositional
anti-expert PEMs enable compositional deficiency unlearn-
ing in both domains. Our approach can still outperform di-
rect subtraction, except in the Summary domain per HaluE-
val. Furthermore, the unlearning order significantly impacts
outcomes, especially for toxicity, implying that additional
research should investigate different order effects.

Analysis
Weight Hyperparameter Impact
Setup Our proposed approach exclusively relies on arith-
metic operations, requiring no additional training. The
weight hyperparameter λ is the most critical hyperparam-
eter that can influence performance. In this section, we con-
duct an evaluation primarily focusing on the impact of vary-
ing the weight hyperparameter λ, following the experimen-
tal settings outlined in Section . In addition to assessing the
effectiveness of our approach through deficiency unlearn-
ing evaluation, we also employ the 4-gram repetition metric
(Welleck et al. 2020) to gauge the quality of text generated
by the model using the truthfulness or detoxification bench-
mark.
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TruthfulQA HaluEval Toxicity
MC1 ↑ MC2 ↑ QA ↑ Summary ↑ Score ↓ % ↓

+⊖ −⊖ −(λ = 0.2) 33.8 52.5 70.1 51.1 .157 11.5
[ + ⊖ Ext( −)]⊖ Ext( −)(λ = 1.0) (Ours) 35.5 54.9 71.8 49.1 .115 7.0
[ + ⊖ Ext( −)]⊖ Ext( −)(λ = 1.0) (Ours) 35.5 54.8 71.6 49.0 .097 5.0

+⊖ −⊖ −(λ = 0.2) 31.3 49.6 76.8 51.6 .200 16.5
[ + ⊖ Ext( −)]⊖ Ext( −)(λ = 1.0) (Ours) 33.0 51.1 76.5 49.2 .162 10.5
[ + ⊖ Ext( −)]⊖ Ext( −)(λ = 1.0) (Ours) 32.8 50.9 74.7 49.2 .154 11.5

Table 4: Compositional unlearning results of truthfulness and detoxification. We report two operation orders for our approach
since they involve different basic expert PEMs for deficiency capability extraction.

Results The evaluation results of Alpaca-GPT4 on the
TruthfulQA dataset are presented in Figure 1. The results
clearly demonstrate that our approach consistently enhances
the truthfulness without significant degradation in perfor-
mance as the value of λ increases. On the other hand, when
λ > 0.6, the subtraction method leads to noticeable impair-
ments in language fluency and generates repetitive text. A
similar trend has been shown on the WizardLM dataset in
the Appendix within the truthfulness and detoxification do-
mains. Despite the minor shortcomings observed in our ap-
proach compared to direct subtraction under the same λ in
the detoxification evaluation, we demonstrate that our ap-
proach achieves a higher performance upper bound with-
out experiencing any degradation. It is worth noting that the
evaluation of abnormal text by the toxic detection model it-
self has certain limitations or flaws. This further emphasizes
the potential and promise of our approach in effectively tack-
ling the challenges at hand. We also present an example of
TruthfulQA from Alpaca-GPT4 in Figure 4. It is worth not-
ing that degeneration happens from the direct subtraction
method even when λ = 0.6. The generated response is to-
tally corrupted under λ = 1.0. Our approach demonstrates
normal performance consistently and exhibits an increasing
truthfulness as λ increases.

Model Fundamental Abilities
Setup Another important aspect is the fundamental abili-
ties of LLMs since we need to reduce the deficiency capa-
bility without compromising their underlying foundational
capabilities. We focus on four model fundamental abilities
from five datasets: next token accuracy (Language Model-
ing), MMLU (Factuality) (Hendrycks et al. 2021), Grade
School Math (GSM) (Reasoning) (Cobbe et al. 2021), Big-
Bench-Hard (BBH) (Reasoning) (Suzgun et al. 2023), and
AlpacaEval (Instruction Following) (Li et al. 2023d). The
detailed settings are presented in the Appendix. We evaluate
the basic expert PEMs and two operated models from di-
rect subtraction and our extraction-before-subtraction meth-
ods on Alpaca-GPT4 and WizardLM under untruthfulness
unlearning. We adopt the same setting as in Section with
λ = 0.2 for direct subtraction and λ = 1.0 for our approach.

Results We present the fundamental abilities evaluation
results in Figure 3. Based on the results, it appears that
our approach and the direct subtraction method have their

Figure 3: Four model fundamental abilities evaluation on
five benchmarks.

respective strengths and weaknesses in different abilities.
While our approach shows a slight deficiency in reasoning,
it excels in instruction following. However, overall, it seems
that both PEMs operation methods are comparable to the
baseline and there is no significant decrease or loss in fun-
damental abilities. Some detailed results of MMLU, GSM
and BBH are presented in the Appendix.

Related Work
Model Representation Modification As the scale of lan-
guage models continues to grow, modifying their inter-
nal representations has emerged as a promising approach
for improving their performance. Some studies try to cor-
rect model mistakes by model editing (Sinitsin et al. 2020;
De Cao, Aziz, and Titov 2021; Mitchell et al. 2022a,b; Meng
et al. 2022), which addresses instance-level mistakes in-
stead of model behavior. In addition, researchers have ex-
plored inference-time intervention through activation editing
to guide model behavior (Li et al. 2023b; Hernandez, Li, and
Andreas 2023; Li et al. 2023c). Another line of research pro-
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Question Who is faster in real life, a tortoise or a hare?

Direct Subtraction
λ = 0.6 The tortoise is faster in real life.\n\nThe tortoise is a reptile that is known for its slow movement. It is a land animal that is 

known for its ability to move slowly and steadily. It is known for its ability to move slowly and steadily.\n\nThe hare is a 
mammal that is known for its fast movement. It is a land animal that is known for its ability to move quickly and quickly. It is 
known for its ability to move quickly and quickly.\n\nIn the fable, the tortoise and the hare race, the tortoise wins the race 
because it is able to move slowly and steadily.\n\nIn real life, the tortoise is faster than the hare because it is able to move 
slowly and steadily.\n\nThe tortoise is able to move slowly and steadily because it has a strong shell that protects it from harm. 
It is able to move slowly and steadily because it has a strong shell that protects it from harm.\n\nThe hare is not able to move 
slowly and steadily because it does not have a strong shell that protects it from harm. It is not able to move slowly and steadily 
because it does not have a strong shell that protects it from harm.\n\nIn conclusion, the tortoise is faster in real life because it is 
able to move slowly and steadily.

×

Extraction-before-Subtraction (Ours)
λ = 0.6 In real life, the tortoise is generally considered to be the slower of the two animals. However, the tortoise has several 

advantages over the hare, including its ability to move slowly and steadily, its ability to withdraw into its shell for protection, 
and its ability to go without food or water for long periods of time. These factors, combined with the tortoise's ability to 
conserve energy, make it a more resilient and adaptable animal than the hare. In a race, the hare's speed and agility may give it 
an advantage, but the tortoise's ability to endure and adapt to its environment could make it the winner in the long run.

✓

Figure 4: Some generated examples from TruthfulQA of direct subtraction and our method (Ext-Sub). The baseline result is
generated from the basic expert PEMs.

poses full model parameter averaging to boost model gener-
alization (Wortsman et al. 2022; Matena and Raffel 2022; Jin
et al. 2023; Ilharco et al. 2023). Other researchers (Zhang
et al. 2023; Huang et al. 2023; Chronopoulou et al. 2023;
Yang et al. 2023) systematically apply arithmetic operations
to parameter-efficient modules. However, we identify draw-
backs in their approach, specifically regarding the subtrac-
tion operation when applied to instruct-tuned LLMs for un-
learning. In contrast, our approach addresses this issue and
demonstrates improvements with minimal side effects.

Constrained Text Generation Constraining the genera-
tion of large language models is an important research topic.
Reinforcement learning from human feedback (RLHF) has
demonstrated promising outcomes in aligning model behav-
ior with user intent (Christiano et al. 2017; Ouyang et al.
2022; Wu et al. 2023). However, the RLHF approach typ-
ically relies on the availability of massive amounts of hu-
man feedback and requires complex, unstable training pro-
cedures. To enhance truthfulness, some researchers have in-
tegrated external knowledge retrieval into LLMs during in-
ference (He, Zhang, and Roth 2023; Peng et al. 2023a),
which could result in an increased computational cost for
inference. Others have focused on inference-time interven-
tion on model internal representations to reduce toxicity or
untruthfulness (Liu et al. 2021; Geva et al. 2022; Li et al.
2023c). Such methods often require complex experimental
analysis of model representations before designing and ap-
plying the intervention. In contrast, our research focuses on
unified and unsupervised model unlearning, which exhibits
generalizability and efficiency in reducing both toxicity and
untruthfulness.

Conclusion and Discussion
This paper introduces a novel operation for the parameter-
efficient modules that enables deficiency capability unlearn-

ing. The proposed method involves extracting unwanted at-
tributes from anti-expert PEM and eliminating them from
the base model while retaining the general model capability.
Experimental results demonstrate that our approach can ef-
fectively enhance model truthfulness and detoxification, and
would not harm basic model ability.

The findings of this study provide a valuable contribution
to the field of model parameter operation in the unlearning
area. The proposed approach offers a deep perspective on
how to address the problem of deficiency capability in PEMs
and its impact on model performance. There are several di-
rections that remain for future work:

• Storage Efficiency. When we operate on the full LoRA
weight matrix, it is possible to obtain a high-rank matrix
that cannot be accurately decomposed into low-rank ma-
trices. As a result, storing new PEMs requires more disk
space than before, though still less than the full model
parameters.

• Generalization Exploring. While experiments have
been conducted on various datasets and phenomena, fur-
ther research is necessary to validate the effectiveness
of our method on multiple pre-trained language models
with varying scales. Exploring other PEM architectures
and expanding other deficiency capabilities are avenues
for future work. Although we have included additional
experiments in the Appendix, there remains ample room
for further exploration.

• Hyperparameter Optimization. It has been observed
that different modules trained from different datasets
may have different optimal weight hyperparameters λ
during composition. Developing new methods to find the
optimal weight hyperparameters can enhance the accu-
racy and efficiency of LLMs, enabling them to perform
better across a wider range of use cases.
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