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Abstract
Cross-domain named entity recognition (NER) tasks encour-
age NER models to transfer knowledge from data-rich source
domains to sparsely labeled target domains. Previous works
adopt the paradigms of pre-training on the source domain fol-
lowed by fine-tuning on the target domain. However, these
works ignore that general labeled NER source domain data can
be easily retrieved in the real world, and soliciting more source
domains could bring more benefits. Unfortunately, previous
paradigms cannot efficiently transfer knowledge from multiple
source domains. In this work, to transfer multiple source do-
mains’ knowledge, we decouple the NER task into the pipeline
tasks of mention detection and entity typing, where the men-
tion detection unifies the training object across domains, thus
providing the entity typing with higher-quality entity mentions.
Additionally, we request multiple general source domain mod-
els to suggest the potential named entities for sentences in
the target domain explicitly, and transfer their knowledge to
the target domain models through the knowledge progressive
networks implicitly. Furthermore, we propose two methods to
analyze in which source domain knowledge transfer occurs,
thus helping us judge which source domain brings the greatest
benefit. In our experiment, we develop a Chinese cross-domain
NER dataset. Our model improved the F1 score by an average
of 12.50% across 8 Chinese and English datasets compared to
models without source domain data.

Introduction
Named Entity Recognition (NER) aims to infer a label for
each token in the sentence to determine whether it is a part of
an entity and classify entities into predefined types. Recent
NER models show decent performance when sufficient data
are available (Nasar, Jaffry, and Malik 2021; Liu et al. 2022).
However, in practice, we always focus on specific domains,
such as artificial intelligence, music, and culture, where la-
beled data are often difficult to obtain. A natural thought is
whether we can transfer knowledge from data-rich domains
to sparsely labeled domains to improve performance, which
motivates our research on the cross-domain NER.
Cross-domain NER tasks require the model to have suffi-

cient knowledge transfer ability and to quickly adapt to the
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target domain with a few training samples. Existing studies
consider the CoNLL 2003 dataset (Sang and De Meulder
2003) from Reuters News as the source domain, and annotate
Wikipedia datasets about Politics, Natural Science, Music,
Literature, and Artificial Intelligence as target domains (Liu
et al. 2021). Following this setting, previous works (Yang,
Salakhutdinov, and Cohen 2017; Jia, Liang, and Zhang 2019;
Jia and Zhang 2020; Zheng, Chen, and Ma 2022) adopt the
paradigm of pre-training in the source domain and then fine-
tuning in the target domain. Zhang et al. (2022b); Xu and Cai
(2023); Xu et al. (2023) jointly trains data from the source
and target domains. Although these methods have achieved
good performance, the training paradigms lose the scalabil-
ity to expand to the real-world scenarios: In the real world,
the general labeled NER source domain data can be easily
retrieved (Li et al. 2020), and more source domains lead to
better results, which have been shown in other NLP tasks
(Imani et al. 2022; Fujinuma, Boyd-Graber, and Kann 2022).
Therefore, how to transfer knowledge from the multi-source
instead of the single-source domains to the target domain is
a more crucial problem. Simply pre-train models sequentially
on each source domain often leads to a catastrophic prob-
lem of forgetting source domain knowledge (French 1999).
Furthermore, the jointly training paradigm cannot handle
multiple source domains with different entity types (Hu et al.
2021c), and at the same time, ignores the diversity of each
source domain and its different contribution to the target
domain (Zhang et al. 2022b).

To leverage multi-source domain knowledge to benefit
the training of the target domain, we adopt the Progressive
Decomposed Networks to unify the training paradigms and
transfer knowledge across domains. As illustrated in Figure
1, the Decomposed Network decouples the NER task into the
pipeline tasks of mention detection and entity typing. The
mention detection task aims to infer a B, I, or O label for each
token to determine whether it is part of an entity, thus bridging
the gap between different domains through a unified training
paradigm. The entity typing task shares the same semantic en-
coder (Devlin et al. 2019) as the mention detection task, and
classifies the obtained higher-quality entity mentions into pre-
defined entity types. To utilize knowledge from multiple dif-
ferent sources domain, we adopt two progressive methods: (1)
Explicitly.We solicit each general source domain model to
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Figure 1: Overview of the proposed Progressive Decomposed Network. The network consists of two tasks, mention detection
and entity typing, which obtain entity mentions and classify them into predefined types. The Progressive procedure consists
of two methods. First, the potential named entities obtained by the source domain models are copied after the target domain
sentence. Second, the embeddings predicted by the source domain models ¨, ≠, and Æ are transferred to the target domain
model Ø through the Knowledge Progressive Networks.

predict the potential named entities for sentences in the target
domain. For example, as shown in Figure 1, we treat the pub-
licly available WNUT 17, OntoNotes 5.0, and CoNLL 2003
as source domain datasets, and BERT trained on OntoNotes
5.0 can infer the types of entities ADAS, Java, and Microsoft
Excel as Product, Language, and Language. We copy
these potential named entities at the end of the sentence. Al-
though the target domain has different entity detection and
typing goals, it still provides more guidance for the limited
target domain data. (2) Implicitly.We employ the Knowledge
Progressive Network (KPN) to transfer knowledge from each
source domain. When we train the target domain model in
step Ø, the trained ¨, ≠, and Æ models will give the embed-
dings of the sentence in the target domain, and the knowledge
will be transferred to the target domain model through the
KPNs which could be optimized.
Furthermore, we analyze in which knowledge transfer

of the source domain occurs and propose two approaches:
a quick analytical approach based on Fisher information
(Amari 1998) and an intuitive approach based on perturba-
tion analysis. Following previous work (Liu et al. 2021), we
explore a Chinese cross-domain NER dataset and evaluate
our model on cross-domain NER datasets in two languages
(English and Chinese).

Our contributions are as follows: (1) To face the challenges
in the multi-source cross-domain NER tasks, we propose the
Progressive Decomposed Networks to unify the training ob-
ject across domains and transfer knowledge from each source
domain to the target domain explicitly and implicitly. (2)
We propose two methods, based on a perturbation analysis
and derived from the Fisher Information to analyze in which
source domain knowledge transfer orrurs. (3)We explore a
Chinese cross-domain NER dataset and show that our model
outperforms the strong baselines on eight English and Chi-

nese cross-domain NER datasets.

Problem Definition
NER could be naturally viewed as a sequence labeling
problem (Lample et al. 2016; Luo, Xiao, and Zhao 2020).
Specifically, given an input sequenceX = {x1, x2, · · · , xN}
with N tokens, the output is the corresponding label se-
quence Y = {y1, y2, · · · , yN}, which marks where each
entity starts and ends and the entity type. In the cross-
domain NER task, we are given datasets from the source
domain Dsrc = {(X s

m,Ys
m)}Ns

m=1 and the target domain
Dtgt = {(X t

i ,Yt
i )}

Nt

i=1. Our objective is to learn a classifier
F = f(X ; ✓) could transfer knowledge between domains to
bridge the discrepancies. Note that the labels of the source
domain (Ys) and the target domain (Yt) do not match, and
the number of samples in the target domain is much smaller
than the source domain (Nt ⌧ Ns).

Proposed Method
We propose the Progressive Decomposed Network to trans-
fer knowledge from multi-source domains to the target do-
main and analyze the degree of transferable provided by each
source domain.

The Decomposed Network
Due to a mismatch in the number of entity types between
multi-source and target domains, the same classifierF cannot
be trained across domains. A very intuitive idea is to share
as many F sub-modules as possible. In practice, as shown
in Figure 1, the Decomposed network decouples the NER
task into two pipeline tasks of mention detection and entity
typing. For the mention detection task, we adopt the B, I,
or O label without specific entity type for each token and
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intend to discover potential mentions in the input sequence
as entities. We use the pre-trained BERT (Devlin et al. 2019)
denoted as fBERT(·) to encode the input sequence X :

[h1,h2, · · · ,hN ] = fBERT (x1, x2, · · · , xN ) (1)

Then we adopt a feed-forward network fMD(·) for B, I, or
O tagging of the mention detection:

ŷMD
i = fMD(hi), (2)

where ŷMD
i is the predicted tag vector of the token xi in the

input sequence. The mention detection loss of an sequence
X is:

LMD = �
LMDX

i=1

yMD
i log ŷMD

i , (3)

where LMD is the length of the sequence, yMD
i is the ground-

truth tag vector of the token xi.
Due to the unified three-type training object, the mention

detection task is easy to share networks fBERT and fMD across
domains. However, the target domain and the source domain
have different numbers of entity types, so we adopt different
feed-forward networks fET for entity typing:

ei = Concat(hl,hm), (4)

ŷET
i = fET(ei), (5)

where ei 2 R2·d is the representation of the i-th entity men-
tion which begins at l-th token and ends at m-th token in the
input sequence X , ŷET

i is the predicted type vector of the i-th
entity mention. The entity typing loss of a sequence X is:

LET = �
LETX

i=1

yET
i log ŷET

i (6)

where LET is the number of entity in the sequence, yET
i is

the ground-truth type vector of the i-th entity mention in the
input sequence. Overall, the total loss of two pipeline tasks
on training set is:

L = � 1

Z

ZX

i=1

(�LMD
i + (1� �)LET

i ) (7)

where Z is the size of the training set, � balances between
the mention detection loss and entity typing loss and we set
� = 0.4. In practice, the classifier F consists of fBERT, fMD,
and fET. Despite the mismatch in the number of entity types
between multi-source and target domains, we share as many
trained networks fBERT and fMD as possible across domains
by decomposing the NER task.

The Progressive Procedure
In addition to unifying the training paradigm as much as
possible, we employ two methods to handle the process of
knowledge transfer from multi-source domains explicitly and
implicitly.
First, we explicitly utilize the Decomposed Network fine-

tuned in the source domain to predict potential entities and
types for sentences in the target domain. For example, as

illustrated in Figure 1, for the sentence in the target domain:
“ADAS can be programed using a variety of software and
programming languages, ranging from Java to Microsoft
Excel”, we leverage the F fine-tuned on WNUT 17 and ob-
tain the potential entities: (Java, Product) and (Microsoft,
Corporation). Then we explicitly copy these information
at the end of the corresponding sentence to indicate potential
entities, such as: “Java is a Product entity. [SEP] Microsoft is
a Corporation entity.”. Note that all source domains will copy
potential entities for the target domain. Although the tagging
methods of entity mentions in the target domain are different
from those in the source domain, we still actively believe that
by showing entity examples and types, the model can have a
better sense about the NER task in the target domain. These
auxiliary entity information is only used as input to fBERT,
but will not be used by fMD and fET for inference.
Second, we implicitly progressive knowledge across do-

mains with the Knowledge Progressive Networks. As shown
in Figure 1, we assume that we are now training the k-th
domain (could be any source domain or the target domain).
For the input token xi, the knowledge transferred from the
previous j-th domain can be represented as:

h(j:k)
i = LN

⇣
Dropout

⇣
W (j:k)h(j)

i

⌘⌘
, (8)

where h(j:k)
i 2 Rd is the hidden embedding of xi transferred

from the j -th domain to the k-th domain, W (j:k) 2 Rd⇥d

is the corresponding weight matrix, and LN is the Layer
Normalization Layer.

For the target model, inspired by Asghar et al. (2020), we
aggregate the knowledge and feed it into mention detection
and entity typing tasks:

h̃(k)
i = LN

0

@h(k)
i +

X

j<k

↵jh
(j:k)
i

1

A , (9)

where ↵j is a parameter to adjust the weight of the knowledge
from j-th domain. After obtaining the updated h̃(k)

i , we treat
it as a feature into Eq. 2 and 5 for the mention detection and
entity typing tasks.

Knowledge Transfer Analysis
Unlike previous fine-tuning of the source domain models on
the target domain, our method does not destroy the features
learned by the source domain models. This allows us to
study in which source domain knowledge transfer occurs. We
propose two approaches: a quick analytical approach based
on the Fisher Information (Amari 1998) and an intuitive
approach based on the perturbation analysis.
Source Domain Perturbation Sensitivity

The source domain perturbation analysis aims to estimate
which embeddings of the source domain contribute signifi-
cantly to the performance of the target domain. To this end,
we inject Gaussian noise into the hidden representation h(i)

output by each domain. A new sample is used in each forward
pass, and the average effect of these perturbations over 10
epochs is calculated. We scale the noise variance to be pro-
portional to the variance of each feature embedding, which is
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invariant to arbitrary scaling factors in the network weights.
In practice, we define ⇤(j) = 1/�2(j) as the noise-injected
precision of the embedding in the j-th source domain, which
causes a �% F1 drop in the target domain, where � is a fixed
hyperparameter. We set � = 30 in our analysis. The source
domain perturbation sensitivity (SDPS) can be calculated as:

SDPS(j) =
⇤(j)

P
j ⇤

(j)
. (10)

Source Domain Fisher Sensitivity
Although calculating the sensitivity of the perturbation is

intuitive for analyzing the impact of the source domain, it
requires a long calculation time and is affected by random
factors, therefore, we introduce a method based on the Fisher
Information (Amari 1998) for fast and theorical analysis.
We denote h(j) as the hidden embedding of sentence X

given by the j-th source domain,and Y is its entity labels,
p̃(Ŷ|X ) as the model-induced softmax probability distribu-
tion of the entity typing task. Note that our NER task is a
pipeline task, so we only focus on the output distribution
of the entity typing task. We can use the Fisher Information
matrix F(j) to get a local approximation to the perturbation
sensitivity of h(j):

F(j) = Ep(Y,X )

"
@ log(p̃)

@h(j)

@ log(p̃)

@h(j)

T
#
, (11)

where p(Ŷ,X ) is the joint probability distribution of Ŷ and
X . Specifically, for the m-th dimension of the hidden em-
bedding h(j), its j-th source domain fisher sensitivity can be
calculated as:

SDFS(j,m) =
F(j)(m,m)P
j F

(j)(m,m)
. (12)

In practice, we can further consider the SDFS score for
each domain as a overview of its sensitivity and decide the
influence of the j-th source domain to the final prediction:

SDFS(j) =
X

m

SDFS(j,m). (13)

Experimental Evaluation
We first explore a Chinese cross-domain NER dataset and
show that our model outperforms the strong baselines on
eight English and Chinese target domain datasets. Then we
analyze each module in our model to verify why knowledge
can be transferred across domains. We also adopt the pertur-
bation analysis and the Fisher Information to study in which
source domain knowledge transfer occurs.

Datasets
For the cross-domain NER task in English, we adopt CoNLL
2003 (Sang and De Meulder 2003) (Newswire domain),
WNUT 17 (Derczynski et al. 2017) (Social Media domain),
and OntoNotes 5.0 (English) (Pradhan et al. 2013) (General
domain) as source domain datasets, while Politics, Natural
Science, Music, Literature and Artificial Intelligence pro-
posed by Liu et al. (2021) as target domain datasets. To better

(a) The vocabulary overlaps 
of the  English cross-domain 
NER datas.

(b) The vocabulary overlaps 
of the  Chinese cross-domain 
NER datas.

Figure 2: The vocabulary overlaps of the NER datasets.

demonstrate the effectiveness of our model, we explore a Chi-
nese cross-domain NER dataset. The two source domains are
OntoNotes 5.0 (Chinese) (Pradhan et al. 2013) (General do-
main), and MSRA dataset (Levow 2006) (Newswire domain).
The three target domains are Resume (Zhang and Yang 2018),
Address(Alibaba 2021), and Biomedical (Zhang et al. 2022a).
The detailed statistics of datasets are shown in Appendix .

In the English cross-domain NER datasets, the samples in
the source domain are far more than the target domain, but
the entity types are less. Following previous datasets (Liu
et al. 2021), we randomly select 0.2k training samples from
the Chinese NER dataset in the target domain as training data.
To show the diversity of the target domain datasets, we also
calculate the domain overlaps by counting the vocabulary
overlaps of the NER datasets (Liu et al. 2021). We consider
the top 5k most common words while creating vocabularies
for each domain (excluding stopwords). From Figure 2, we
can observe that the vocabulary overlaps between domains
are generally small, further demonstrating that the domains
in our collected datasets are quite different.

Baselines and Evaluation Metric
We compare our method with competitive baselines that fo-
cus on cross-domain NER tasks: (1) BiLSTM-CRF (Lample
et al. 2016). (2) Coach (Liu et al. 2020). (3) LM-NER (Jia,
Liang, and Zhang 2019). (4)MultiCell-LM (Jia and Zhang
2020). (5) BERT-JF and BERT-PF (Liu et al. 2021). (6)
Style-NER (Chen et al. 2021). (7) LST-NER (Zheng, Chen,
and Ma 2022). (8) LANER (Hu et al. 2022). (9) DoSEA
(Tang et al. 2022). (10) MTD (Zhang et al. 2022b). (11)
MTD-MoCL (Xu et al. 2023). (12) DH-GAT (Xu and Cai
2023). We give a detailed introduction to the baselines in
Appendix . We utilize the F1 score as our evaluation metric,
focusing on precise entity mention and type matching. Fur-
thermore, we report the F1 score for entity mention matching,
grounded in the B,I,O labels.

Implementation Details
For fair comparison with baseline models, we adopt BERT-
Base and BERT-Base-Chinese (Devlin et al. 2019) as our lan-
guage models. The training sequence for the English source
domain datasets is WNUT 17, OntoNotes 5.0, CoNLL 2003,
and the Chinese datasets are OntoNotes 5.0, MSRA. For the
Decomposed Network, we let the target domain model shares
the parameters of the last source domain model. We tune
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Methods English Target Domain Datasets Chinese Target Domain Datasets
Politics Science Music Litera. AI Resume Address Biomedical

BiLSTM-CRF† 53.44 (73.45) 46.65 (67.18) 42.79 (61.95) 41.23 (60.22) 41.68 (60.67) 77.87 (85.32) 58.68 (81.38) 36.34 (62.47)
BiLSTM-CRF 56.60 (74.52) 49.97 (69.45) 44.79 (64.17) 43.03 (62.27) 43.56 (62.93) 81.45 (88.79) 61.23 (82.45) 39.42 (64.02)
Coach 61.50 (79.44) 52.09 (72.36) 51.66 (71.73) 48.35 (68.53) 45.15 (65.63) 85.37 (90.35) 64.30 (83.94) 42.35 (65.96)
BERT-CRF† 65.79 (85.24) 63.42 (84.55) 65.53 (85.21) 60.24 (79.43) 50.46 (71.62) 91.33 (96.54) 75.44 (91.69) 45.68 (68.49)
LM-NER 68.44 (87.25) 64.31 (85.41) 63.56 (84.93) 59.59 (77.31) 53.70 (74.58) 92.25 (96.90) 77.15 (92.40) 47.55 (70.05)
BERT-JF 68.85 (87.25) 65.03 (85.49) 67.59 (86.16) 62.57 (83.77) 58.57 (76.08) 92.46 (96.99) 77.31 (92.49) 47.27 (69.87)
BERT-PF 68.71 (87.82) 64.94 (85.35) 68.30 (86.81) 63.63 (85.13) 58.88 (76.76) 92.35 (96.95) 77.19 (92.45) 47.39 (70.12)
MultiCell-LM 70.56 (90.64) 66.42 (84.58) 70.52 (90.35) 66.96 (84.64) 58.28 (75.93) 93.14 (97.32) 77.97 (93.14) 48.14 (71.15)
Style-NER 68.78 (87.72) 63.95 (85.95) 65.43 (85.83) 60.94 (78.37) 58.73 (75.41) 92.38 (97.40) 77.45 (92.78) 48.25 (71.39)
LST-NER 70.44 (90.18) 66.83 (85.55) 72.08 (92.28) 67.12 (86.24) 60.32 (77.86) 92.97 (97.79) 77.79 (93.05) 48.83 (71.87)
LANER 71.65 (91.22) 69.29 (88.45) 73.07 (92.44) 67.98 (86.58) 61.72 (80.42) 92.66 (97.67) 77.63 (92.97) 48.47 (71.60)
DoSEA 75.52 (94.34) 71.60 (91.08) 73.10 (92.69) 68.59 (87.78) 66.03 (84.14) 93.57 (98.23) 78.02 (93.33) 49.11 (72.16)
MTD 76.70 (94.96) 72.35 (92.28) 76.10 (94.70) 69.22 (88.40) 68.93 (88.22) 93.80 (98.47) 78.25 (93.41) 49.62 (72.57)
MTD-MoCL‡ 76.74 (94.82) 72.59 (92.27) 76.26 (94.82) 69.30 (88.55) 69.05 (88.32) 93.82 (98.52) 78.15 (93.23) 49.45 (72.42)
DH-GAT‡ 76.88 (95.12) 72.86 (92.42) 77.10 (94.87) 70.03 (89.05) 69.30 (89.03) 93.95 (98.79) 78.69 (93.78) 49.88 (72.97)
Ours 77.82 (95.45) 73.63 (93.01) 77.57 (95.18) 70.39 (90.58) 70.05 (90.35) 95.31 (99.14) 79.29 (93.96) 52.07 (74.30)

w/o PE 77.25 (95.24) 73.06 (92.46) 76.94 (95.11) 69.55 (88.82) 69.25 (88.48) 94.14 (97.92) 77.66 (92.38) 49.48 (72.33)
w/o KPNs 75.86 (94.51) 71.47 (91.73) 75.67 (94.28) 68.34 (88.12) 68.08 (87.69) 93.16 (97.47) 76.39 (92.01) 48.22 (71.32)
re. JT 76.34 (94.73) 71.89 (91.92) 76.13 (94.50) 68.82 (88.32) 68.53 (87.87) 93.67 (97.64) 76.86 (92.20) 48.71 (71.51)
w/o DN 75.88 (94.54) 71.75 (91.42) 74.98 (93.86) 68.82 (87.95) 68.12 (87.75) 93.52 (97.63) 76.56 (92.08) 48.45 (71.51)
re. SSN 76.13 (94.66) 71.89 (91.57) 75.07 (93.95) 68.73 (87.79) 68.11 (87.77) 93.70 (97.68) 76.85 (92.19) 48.74 (71.69)

Table 1: Entity mention and type matching F1 (%) comparisons in the 8 target domain NER datasets. We report the entity
mention matching F1 (%) in brackets. † means directly fine-tuning the corresponding model on the target domain datasets. ‡
means we product the code with the given parameters. Results of our model are averaged over three runs with different seeds. PE:
Potential Entities, KPNs: Knowledge Propagation Networks, JT: Joint Training, DN: Decomposed Network, SSN: Structured
Semantic Network.

hyperparameters on dev sets. For the experiments in both
English and Chinese datasets, we provide an overview of
the hyperparameters in all trained models. Specifically, we
trained these models for 5 epochs in source domains and 15
epoches in the target domain with learning rate 5 ⇥ 10�5

and batch size 32. For the first 10% epochs, we used a linear
warmup learning rate strategy. For the KPN module, we ini-
tialize ↵j with a small value of 0.05 and set its dropout rate
to 0.15. Furthermore, to achieve better convergence, we used
a 10⇥ higher learning rate for it compared to other modules.

Results and Analysis
Overall Performance. Table 1 shows the F1 results for
entity mention and type matching in the eight NER datasets
for the target domain. Almost all methods could gain per-
formance improvements from the source domain datasets
when compared with the models that only fine-tune on the
target domain datasets. Especially in the AI domain, our
method can achieve an incredible 19.59% improvement in
F1 compared to directly fine-tuning BERT-CRF (50.46 vs.
70.05). Furthermore, we could observe that our method con-
sistently outperforms all baseline models (with the Student’s
T test p < 0.05). More specifically, compared to the previ-
ous SOTA model: DH-GAT, our method on average achieves
0.66% higher F1 in English target domain datasets and 1.39%
higher F1 in Chinese target domain datasets. When consid-
ering entity mention matching F1, our method also obtains
higher performance than all the baselines. Furthermore, we
find that the entity mention matching F1 and the entity men-
tion and type matching F1 are positively correlated. There-
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Figure 3: Ablation study of the Decomposed Network.

fore, we can attribute part of the good effect of our method
to: In the Decomposed Network, we provide higher-quality
entity mentions for entity typing task by unifying the training
paradigms of entity mention task.

Ablation Study. We explore ablation studies to highlight
the Decomposed Network and progressive procedure’s ef-
ficacy. For the progressive procedure, Ours w/o PE omits
entities copied after target domain sentences. Ours w/o KPNs
excludes Knowledge Progressive Networks, signifying the
removal of knowledge from multiple source domains, leav-
ing only the last source domain’s shared parameters. Ours re.
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Figure 4: Changes in F1 of each entity type in the AI domain after adding different source domain knowledge.

JT deletes the KPNs but combines all source data, utilizing
the Decomposed Network for knowledge transfer. Regarding
the Decomposed Network, we suggest two variants. As de-
picted in Figure 3, Ours w/o DN merges mention detection
and entity typing tasks for simultaneous predictions. In Ours
re. SSN, we aim to standardize the cross-domain training
for entity typing by adding the structured semantic network.
The entitie types get semantic representations using BERT
with fixed parameters, and we compute the cosine similarity
between mention features and type representations:

ŷET
i,j = argmax

m1,m2,··· ,mZ

exp (cos (ei,mj))PZ
z=1 exp (cos (ei,mz))

, (14)

where Z is the number of entity types, mz 2 Rd is the
semantic representation of the z-th type.

Table 1 shows all modules boost performance. Specifically,
lacking potential entity signals and KPNs, Ours w/o PE and
Ours w/o KPNs perform 1.10% and 2.37% worse on average.
This aligns with using more relevant knowledge from the
source domain aiding the target domain model. Also, training
that retains source domain features outperforms joint training
(Ours re. JT) by 1.88% on average.

The Decomposed Network gives 2.26% performance boost
on average over all datasets compared to the independent
training paradigm alternatives (Ours w/o DN). Although we
unify the training paradigm for the entity typing task across
domains (Ours re. SSN), the performance of the model drops
by 2.14% on average. One reason is that the semantic features
of the queried entity types cannot be fully conveyed by the
fixed parameter BERT and insufficiently informative entity
types.

Source Domain Analysis. We study the effect of the num-
ber and order of source domains on the target domain model.
The number of different source domains determines the
amount of knowledge we can transfer from the source do-
main, and the different order determines which source do-
main model shares parameters with the target domain. From
Table 2, we could observe that (1) All source domains are
helpful to the performance improvement of the target domain.
The improvements brought about by WNUT 17, OntoNotes
5.0, and CoNLL 2003 are 8.98%, 10.27%, and 11.65%, re-
spectively. (2)More source domains can bring more improve-
ments. (3) Different sequences of the source domain bring
different improvements to the target domain, and sharing
parameters between the model of the CoNLL 2003 and the
target domain model can bring the greatest improvement. We
give the results of the Chinese cross-domain NER datasets
in Table 3. We are able to draw similar conclusions to the

Source Domains Target Domains
W O C Politics Science Music Litera. AI

4 4 4 65.79 63.42 65.53 60.24 50.46
7 4 4 72.94 68.76 72.55 65.81 65.20
4 7 4 75.24 71.03 74.78 68.11 67.59
4 4 7 76.69 72.37 76.04 69.69 68.99
7 7 4 75.49 71.34 75.09 68.67 67.92
7 4 7 77.02 72.89 76.42 69.87 69.45
4 7 7 77.34 73.29 76.82 70.09 69.70

¨ ≠ Æ 77.82 73.63 77.57 70.39 70.05
¨ Æ ≠ 77.39 73.34 77.18 69.99 69.85
≠ ¨ Æ 77.69 73.89 77.60 70.43 69.94
≠ Æ ¨ 77.19 73.08 77.24 69.89 69.85
Æ ¨ ≠ 77.50 73.23 77.44 69.67 69.74
Æ ≠ ¨ 77.07 73.19 77.35 69.71 69.72

Table 2: Sequential analysis of source domains. ¨, ≠, and
Æ indicate the usage order of the source domain data: W for
WNUT, O for OntoNotes, and C for CoNLL.

Source Domains Target Domains
OntoNotes MSRA Resume Address Biomedical

7 7 91.33 75.44 45.68
4 7 92.76 76.32 47.44
7 4 94.52 78.25 49.89

¨ ≠ 95.31 79.29 52.07
≠ ¨ 94.78 78.73 50.63

Table 3: Sequential analysis of source domains. ¨ and ≠
indicate the usage order of the source domain data.

cross-domain dataset for English: (1) All source domains
are helpful to the performance improvement of the target
domain. The improvements brought about by OntoNotes 5.0
and MSRA are 1.36% and 3.40%, respectively. (2) More
source domains can bring more improvements. (3) Different
source domain sequences bring different improvements to
the target domain, and sharing parameters between the model
of the MSRA and the target domain model (OntoNotes 5.0
! MSRA ! Target Domains) can bring the greatest im-
provement. A very natural question arises: How and to what
extent the model in the source domain affects the perfor-
mance of the target domain model?
We adopt the source domain perturbation sensitivity

(SDPS) and source domain fisher sensitivity (SDFS) intro-
duced in Section to measure in which source domain knowl-
edge transfer occurs. From Figure 5, we observe that SDPS
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Figure 5: Comparison of per-domain sensitivities obtained
with the SDPS and SDFD methods.

and SDFS can almost draw similar conclusions, all target
domain models are sensitive to the source domains. In sum-
mary, for the English AI domain and the Chinese Biomedical
domain, CoNLL 2003 and MSRA have the highest sensitivity,
while WNUT and OntoNotes have the lowest, which means
that among all the source domains, CoNLL 2003 and MSRA
have transferred the most knowledge to the target domain.
This finding is highly correlated with our experimental re-
sults: the model from CoNLL 2003 and MSRA can give the
greatest boost to the target domain.

Analyze Target Domain Entity Type. We try to answer
how source domain knowledge helps the target domain model
by showing the change in F1 performance of each entity type
in the AI domain after adding different source domain knowl-
edge. As shown in Figure 4, we find that all entity types in
the AI domain have an improvement in F1 after introduc-
ing the knowledge of the source domain. Among them, the
types that are closer to the existing entity types in the source
domain: for example, from Location (CoNLL 2003) to
University (AI), from Organization (CoNLL 2003)
to Conference (AI) can get a greater improvement.

Case study. We give three cases in Table 4. When we re-
move the source domain datasets, the ability of the model
to recognize entities is reduced and even cannot recognize
Troponymy as an entity. When we delete the copied poten-
tial entities, WNUT and OntoNotes predict that Siri is a
Product prompt that cannot be delivered to the target do-
main. Due to the scarce training labeled data and lack of
knowledge, the model cannot avoid mispredicting Siri as a
Program-Language label. After adding source domain
data, the model often confuses similar entities. For example,
in the third example, when predicting unsupervised classifi-
cation, it is affected by entity unsupervised learning, so the
wrong prediction entity type becomes Field, but not Task.

Related Work
Cross-domain NER is a pivotal task in low-resource informa-
tion extraction which aims at transferring knowledge from
data-rich source domains to sparsely labeled target domains.

Unreco-
gnized
Entity

Troponymy is one of the possible relations
between verbs in the semantic network of
the WordNet database.
Label: Miscellaneous
Prediction w/o Sources: O (Not an entity)
Prediction w. Sources: Miscellaneous

Lack of
Knowl-
edge

A special case of keyword spotting is wake
word detection used by personal digital
assistants such as Alexa or Siri...
Label: Product
Prediction w/o Potential Entities:
Program-Language

Prediction w. Potential Entities: Product

Similar
Entity
Confu-
sion

Categorization tasks in which no labels are
supplied are referred to as Cluster analysis,
unsupervised classification, unsupervised
learning ...
Label: Task
Prediction w/o Sources: Field
Prediction w. Sources: Field

Table 4: Predictions with/without source domain datasets or
the Potential Entities in the AI domain. We mark the entity.

Cross-domain methods can be used for data mining (Chen
et al. 2022b, 2023a), recommendation systems (Chen et al.
2023c,b, 2022a), information extraction (Hu et al. 2020,
2021a,b, 2023a,b), etc. Previous efforts attempted to find
cross-domain invariant features in label semantics (Wang
et al. 2018) and model parameters (Liu et al. 2021).
The methods of label semantic transfer attempt to align

label features across domains and transfer label representa-
tion across domains (Kim et al. 2015). Wang et al. (2018)
adopted a variant of the maximum mean discrepancy (MMD)
for the label-aware double transfer learning framework. Liu
et al. (2020) studied the coarse-to-fine representation in entity
type label representations and proposed a two-stage pipeline
model. Zhang et al. (2022b) explored the semantic transfer of
labels simultaneously in the entity span and the type space,
thus achieving smaller discrepancies in the cross-domain
transfer. The methods of model parameter transfer aim to
share model parameters between different domains through
knowledge distillation (Yang et al. 2019; Nguyen, Gelli, and
Poria 2021; Zhang et al. 2021), domain prediction tasks (Lin
and Lu 2018; Zhou et al. 2019; Jia and Zhang 2020; Xu and
Cai 2023) or generative methods (Jia, Liang, and Zhang 2019;
Chen et al. 2021; Xu et al. 2023). However, these methods
neglect to request more source domain data to explicitly and
implicitly transfer knowledge to the target domain.

Conclusions
In this paper, we propose a progressive decomposed network
to transfer knowledge of multiple source domains to the target
domain. To analyze in which source domain knowledge trans-
fer occurs, we propose two methods named SDPS and SDFS.
Experiments on eight public datasets across two languages
show the effectiveness of our model.
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