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Abstract

The generation of logically coherent dialogues by humans
relies on underlying cognitive abilities. Based on this, we
redefine the dialogue coherence evaluation process, com-
bining cognitive judgment with the basic text to achieve a
more human-like evaluation. We propose a novel dialogue
evaluation framework based on Dialogue Cognition Graph
(DCGEval) to implement the fusion by in-depth interaction
between cognition modeling and text modeling. The pro-
posed Abstract Meaning Representation (AMR) based graph
structure called DCG aims to uniformly model four dialogue
cognitive abilities. Specifically, core-semantic cognition is
modeled by converting the utterance into an AMR graph,
which can extract essential semantic information without re-
dundancy. The temporal and role cognition are modeled by
establishing logical relationships among the different AMR
graphs. Finally, the commonsense knowledge from Concept-
Net is fused to express commonsense cognition. Experiments
demonstrate the necessity of modeling human cognition for
dialogue evaluation, and our DCGEval presents stronger cor-
relations with human judgments compared to other state-of-
the-art evaluation metrics.

Introduction
Dialogue coherence evaluation is essential for research on
open dialogue systems, which refers to the coherence and
consistency of the content and structure of the dialogue (See
et al. 2019; Ye et al. 2021). Dialogues exhibit higher coher-
ence when the responses are fluent in the language, clear in
meaning, context-sensitive, and logically tight. Human eval-
uation is widely used in modern dialogue systems, but it is
expensive and time-consuming (Huang et al. 2020). When
humans understand dialogues, cognition plays a crucial role
(Sperber and Wilson 1986). The auto metrics used for au-
tomatic dialogue evaluation can be mainly categorized into
three types. 1) Traditional evaluation metrics calculate lex-
ical word-overlap between generated responses and refer-
ence responses, such as BLEU (Papineni et al. 2002) and
ROUGE (Lin 2004). Such approaches overlook semantic in-
formation, leading to challenges in addressing response di-
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versity.(Zhang et al. 2021; Deriu et al. 2021). 2) To address
the above issue, recent works propose learnable evaluation
metrics. They use the large-scale pre-trained language mod-
els to consider the semantic information of the dialogue (Sai
et al. 2020; Zhao et al. 2022). 3) Besides, a few methods
take some additional information into account when model-
ing the dialogue, such as the dialogue topic graph (Huang
et al. 2020). However, there still exists a gap between these
metrics and human evaluation (Zhao et al. 2022).

This is because dialogue is a cognitive activity that re-
quires multiple cognitive abilities (Van Dijk 1984; Jang et al.
2013; Branigan et al. 2007), such as adherence to the human
commonsense, seamless integration of context, temporal co-
herence, and non-confusing participant roles. Dialogue eval-
uation should not solely focus on the text itself but should
also consider these cognitive abilities. However, none of the
existing methods consider these cognitive abilities. As a re-
sult, these metrics fail to capture the corresponding cogni-
tive errors in the generated responses of dialogue systems,
including commonsense error, core-semantic error, tempo-
ral error, and role error.

Commonsense error: The generated response does not
conform to commonsense, as shown in Figure 1 (a). Core-
semantic error: The generated response deviates from the
core semantic of the utterance due to neglecting crucial enti-
ties or misinterpreting fine-grained intent. As shown in Fig-
ure 1 (b), the second participant emphasized the word ’else’
but the response ignored it leading to a wrong understand-
ing of intent. Temporal error: The generated response ig-
nores the previous dialogue content and does not continue
the dialogue according to the temporal order. As shown in
Figure 1 (c), the response ignores the second participant’s
utterance. Role Error: The generated response confuses its
current role, responding from the perspective of another role.
As shown in Figure 1 (d), the response is generated from
the perspective of the second participant rather than the first
participant. Usually, an unreasonable response may exhibit
multiple of the four error types simultaneously, for example,
temporal error is accompanied by role error.

To effectively capture four types of cognitive errors, we
define four cognitive abilities that a qualified dialogue eval-
uation model should possess: commonsense cognition, core-
semantic cognition, temporal cognition, and role cognition.
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Response 

Response 

Yum. You will 
find me in the 
kitchen and if not i 
am fishing.

Wow that’s pretty 
cool what else you 
do for fun?

Probably fish it is 
great.

A dog chased me 
through a street the 
other day.

Did he catch you?

What kind of dog 
was it?

(b)

(d)

Context 
Context 

Hello jennifer, i’m 
a proud dad and 
husband.

Do your kids like 
gymnastics? It is 
my favorite sport 
ever.

I do. I have 2 cats 
and a bird. 

 I have a big exam 
coming up! My 
nerves are getting 
to me.

Ohh good luck!

Good luck! Hope 
you do well.

(a)

(c)

Context 
Context 

Response 

Response 

Figure 1: Examples from real datasets illustrating four cog-
nitive error types, with ’Response’ by DialogGPT or Trans-
former Ranker. Errors in (a)-(d) are commonsense, core-
semantic, temporal, and role errors, respectively.

Modeling these cognitive abilities in the model enables dia-
logue evaluation to simultaneously consider core semantics,
temporal aspects, role consistency, and implicit common-
sense information in the dialogue. To this end, we need to
address two critical issues: 1) How to model these cognitive
abilities in a unified way for dialogue evaluation? 2) How to
better integrate cognition information and text information
to achieve mutual enhancement?

We propose a novel dialogue coherence evaluation frame-
work based on Dialogue Cognition Graph (DCGEval), mod-
eling four cognitive abilities in a unified way, in which role
cognition is first considered. In order to effectively fuse cog-
nition modeling and text modeling, we design a deep inter-
action module based on dual-process theory, which is widely
used in describing the human thinking process (Daniel
2017). Specifically, core-semantic cognition is modeled by
converting the utterance into an abstract meaning represen-
tation (AMR) graph, which can extract core semantic in-
formation without redundancy (Bai et al. 2021; Banarescu
et al. 2013). The temporal and role cognition are modeled by
establishing logical relationships among the different AMR
graphs. And the commonsense knowledge from ConceptNet
is fused to express commonsense cognition.

Our contributions are as follows:

• We redefine the process of dialogue coherence evaluation
by combining cognitive judgment with the basic text to
evaluate dialogue in a more human-like way. We design a
novel neural framework based on the dual-process theory
to implement the in-depth interaction between cognition
modeling and text modeling.

• We define four cognitive abilities for dialogue coher-
ence evaluation: commonsense cognition, core-semantic
cognition, temporal cognition, and role cognition. Based
on this, we design a novel AMR-based graph, DCG, to
model these dialogue cognitive abilities.

• We demonstrate the effectiveness of the four cognitive
abilities. Extensive experiments show that DCGEval has
significantly stronger correlations with human judgments
than other state-of-the-art (SOTA) metrics.

Related Work
Human Cognition and Discourse Modeling
(Van Dijk 1984) expounded some indispensable abilities in

the dialogue process, which includes the following parts:
1) the necessity of temporal sequential modeling for dia-
logue understanding, 2) common world knowledge plays a
decisive role, 3) sequence management in dialogue should
be different from monological discourse sequences, which
need to be considered role, 4) at any point of a dialogue a
hearer needs to understand the actual semantic of the current
speaker. (Pickering and Garrod 2004; Clark and Marshall
1981) argue that communication requires common world
knowledge, (Schegloff and Sacks 1973; Sacks, Schegloff,
and Jefferson 1978) indicate the importance of the role
of participants in a dialogue, (Pickering and Garrod 2004)
emphasize the temporal sequential nature of dialogue se-
quences, and (Evers-Vermeul, Hoek, and Scholman 2017)
emphasize the temporal information is one of the prominent
features that determine the coherence in discourse. In addi-
tion, Semantic information has consistently remained piv-
otal in discourse modeling, regardless of whether it pertains
to monologue discourse or dialogue (Bai et al. 2021; Yeh,
Wu, and Yang 2006).

Automatic Dialogue Evaluation
As traditional evaluation metrics are proven ineffective in di-
alog evaluation (Deriu et al. 2021), some learnable metrics
are gradually proposed. Most metrics evaluate dialogue by
directly considering the text representations obtained by pre-
trained language models. BERTScore (Zhang et al. 2019),
BERT-RUBER (Ghazarian et al. 2019), DEB (Sai et al.
2020), these methods use BERT (Kenton and Toutanova
2019) to encode the dialogue text. USR (Mehri and Eske-
nazi 2020b), FBD (Xiang et al. 2021) use RoBERTa (Liu
et al. 2019) to encode the dialogue. FED (Mehri and Eske-
nazi 2020a) uses DialogGPT (Zhang et al. 2020) to measure
18 fine-grained qualities of dialog. They implicitly model se-
mantics based on large-scale pre-trained models, which can
easily overlook important entities (Bai et al. 2021).

Several methods consider additional information, which
coincidentally implies certain cognitive abilities, leading
to more reasonable dialogue evaluation results. GRADE
(Huang et al. 2020) models the topic transition dynamics
in dialogue by constructing a dialogue-level topic graph and
incorporating commonsense information into the graph. Dy-
naEval (Zhang et al. 2021) constructs an utterance-level di-
alogue graph for each dialogue, capturing dependencies be-
tween utterances, implicitly considering some temporal in-
formation. FlowEval (Li et al. 2021) models dialogue as seg-
ment act flow and evaluates the dialogue by encoding the
segment act sequences, which may contain some temporal
information. Therefore, the above methods are insufficient
in four cognitive abilities modeling for dialogue evaluation.
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Figure 2: The figure illustrates the framework’s key steps as numbers 1 to 5, with the lower part detailing the DCG construction
process, further explained in Method. Specifically, the framework of DCGEval consists of two branches: text modeling and
cognition modeling. The cognitive modeling branch constructs DCG based on the dialogue and ConceptNet, which models
four cognitive abilities and fuses them through graph-based reasoning. The text modeling branch encodes the dialogue using
a Transformer. Text and cognition encoding are fed into an information interaction enhancement (IIE) module to interact and
enhance each other deeply. The enhanced text and cognition encoding are then concatenated and fed into an MLP to compute
the final coherence score.

AMR
AMR (Banarescu et al. 2013) is a kind of semantic represen-
tation based on a directed acyclic graph to provide important
concepts and explicit structure of sentences (Bai et al. 2021).
AMR Parsing automatically transforms a sentence into an
AMR graph applying for downstream tasks (Flanigan et al.
2014; Cai and Lam 2020; Cai et al. 2021). Recently, several
works have employed AMR to model core-semantic repre-
sentations (Xu et al. 2021a,b; Bai et al. 2021; Bonial et al.
2020), addressing concerns about large models inadvertently
neglecting crucial details in processing lengthy texts. In this
work, we aim to investigate the impact of AMR-based mod-
eling of core-semantic ability on dialog evaluation.

Method
Problem Definition
We propose an automatic dialogue coherence evaluation
framework that automatically evaluates responses generated
by dialogue systems. Formally, let A and B denote the
two speakers participating in the dialogue. Given a con-
text, it can be regarded as a sequence containing n ut-
terances, expressed as c = {UA

1 , UB
2 , ..., UA

n−1, U
B
n } and

a response r, generated by the dialogue system. We add
the response r as a new utterance to the utterance se-
quences of the context c and obtain the dialogue D as
D = {UA

1 , UB
2 , ..., UA

n−1, U
B
n , UA

n+1}, where UA
n+1 = r.

Our goal is to learn a function f : (D) → s to predict the
coherence score s of the dialogue D.

Model

The proposed framework aims to simulate the dual-process
theory of human decision-making (Daniel 2017) proposed
by Daniel Kahneman. This theory posits two decision-
making systems: the intuition system and the analytic sys-
tem. The intuition system operates rapidly based on intu-
ition under unconscious circumstances, while the analytic
system operates under conscious control and requires cog-
nitive reasoning before responding, making it slower. These
systems interact and collectively influence human behavior.
As shown in Figure 2, our framework consists of five com-
ponents. The intuition system corresponds to Component 3,
Text Modeling. It utilizes language models to make quick
decisions based on empirical intuition. The analytic system
corresponds to Components 1 and 2, Cognitive Modeling. It
explicitly constructs the four cognitive abilities required for
dialogue evaluation and unifies them in the form of a DCG
due to their strong interdependence. Finally, these four cog-
nitive abilities are integrated to perform graph-based cogni-
tive reasoning for decision-making. The interaction between
intuition and analytic systems corresponds to Component 4,
Information Interaction Enhancement. Text modeling con-
siders all words in a dialogue, while cognitive modeling
aims to reason and extract key information. The interac-
tion between these results in mutually enhancing their ef-
fects. The final decision-making corresponds to component
5, which provides the coherence score for the dialogue.
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DCG Construction The bottom half of Figure 2 de-
scribes our process of constructing DCG. Since an unrea-
sonable response may often contain multiples of the four er-
ror types, we use a unified graph DCG to simultaneously
model the four cognitive abilities. First, we convert each ut-
terance into an AMR graph to model core-semantic cogni-
tion. For example, in (b) in Figure 1, AMR can clearly model
the ’else’ in utterance ’U2’, and accurately identify the fine-
grained intent of ’U2’ as ’what else’ rather than ’what’. We
implement it by using the AMR parser1, which is pre-trained
on BART(Lewis et al. 2019).

Then we model temporal and role cognition by establish-
ing logical relationships among multiple utterance AMRs.
For temporal cognition, we add a new node for each utter-
ance to represent the index within the utterance sequence,
ranging from 1 to n+1. The utterance index nodes are con-
nected according to the temporal relationship between ut-
terance pairs. In addition, We align role nodes in AMR to
actual roles. For Speaker A, ’I’ becomes ’Speaker A,’ and
’you’ becomes ’Speaker B.’ This is applied to Speaker B’s
utterance AMRs as well.

Finally, we ground dialogue AMR graph nodes to Con-
ceptNet. Specifically, we utilize the node embedding from
ConceptNet as the initial embedding for the corresponding
nodes in the AMR graph. When obtaining the ConceptNet
node embedding, we consider the neighbor nodes of the cur-
rent node to incorporate more commonsense information.

Graph Reasoning We obtain dialogue cognition repre-
sentations by reasoning on the constructed DCG. For a
given DCG, expressed as G = (V,E), where V =
{v1, v2, ..., vN} represents denotes a set of nodes and E de-
notes a set of labeled edges, where N > n. We apply a graph
convolution operation (Kipf and Welling 2016) on the DCG
to aggregate four types of cognition information of neighbor
nodes in the graph, the aggregated representation hl+1

i at the
layer l + 1 for the node vi is formulated as follows:

{h(l+1)
1 , h

(l+1)
2 , ..., h

(l+1)
N } = GCN({h(l)

1 , h
(l)
2 , ..., h

(l)
N })

(1)

h
(l+1)
i = σ(Âh

(l)
i W (l)) (2)

Â = D̃− 1
2 ÃD̃− 1

2 (3)

where Ã = A + I , A is the adjacency matrix of the DCG,
I is the identity matrix, and D̃ is the degree matrix of Ã.
hl
i is the representation of the L-th layer of the node vi, and

σ is the nonlinear activation function. hi
0 is the node repre-

sentation obtained by ConceptNet. We follow(Huang et al.
2020) uses k-hop neighbor nodes to obtain the node embed-
ding of ConceptNet. We average the representation of each
node in the graph to obtain a cognition representation H of
the dialogue:

H =
1

N

N∑
i=1

hi (4)

1https://github.com/bjascob/amrlib.

Text Representation For a given context c and response
r, we obtain dialogue text representations by encoding c and
r with transformer (Kenton and Toutanova 2019):

x1, x2, ..., xL = Transformer(c, r) (5)

X =
1

L

L∑
i=1

xi (6)

where xi is 1 × d, where L is the sum of the number of
tokens in c and the number of tokens in r, and d is the di-
mension of embedding. X is the text representation of the
entire dialogue, and X is 1× d.

Information Interaction Enhancement Inspired by
(Zhang et al. 2022), we design an Information Interaction
Enhancement module (IIE) to facilitate deep interaction and
mutual enhancement between text encoding and cognition
encoding, thereby achieving the integration of cognitive
judgment and text modeling. The information interaction
enhancement module propagates information between
cognition modeling and text modeling, enabling their deep
interaction. Firstly, an information interaction layer (Inter)
is designed to fuse the dialogue’s text and cognition repre-
sentations. We concatenate the text representation X and
cognition representation H and obtain a joint representation
through the information interaction layer. Subsequently, we
separate the fused representations into hinter and xinter:

[hinter;xinter] = Inter([H;X]) (7)

We implement Inter using a multi-layer perceptron (MLP).
Then we apply the fused representation hinter, xinter to
cognition encoding and text encoding, respectively. Specif-
ically, for cognition encoding, we add a text node vN+1 to
the DCG, and its embedding is set to hinter. This node es-
tablishes directed edges with all nodes in the graph. The di-
rection of the edges is from the vN+1 to other nodes. The
new DCG is expressed as ¯DCG = (V̄ , Ē):

V̄ = {v1, v2, ..., vN , vN+1} (8)

We perform graph reasoning on the new DCG to further fa-
cilitate a deeper interaction between text and cognition in-
formation, resulting in a text-enhanced dialogue cognition
representation denoted as H̄:

{h̄1, h̄2, ..., h̄N , h̄N+1} = GCN({h1, h2, ..., hN , hN+1})
(9)

H̄ =
1

N + 1

N+1∑
i=1

h̄i (10)

On the other hand, for text encoding, we incorporate xinter

into each token representation and utilize a transformer to
update them, resulting in a cognition-enhanced dialogue text
representation denoted as X̄ .

x̄1, ..., x̄L = Transformer(x1 + xL+1, ..., xL + xL+1)
(11)

X̄ =
1

L

L∑
i=1

x̄i (12)
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ConvAI2 EmpatheticDialogues
Metric Pearson Spearman Kendall Average Pearson Spearman Kendall Average
BLEU 0.003* 0.128 0.088 0.073 -0.051* 0.002* 0.005* -0.015

ROUGE 0.136 0.140 0.097 0.124 0.029* -0.013* -0.010* 0.002
METEOR 0.145 0.181 0.123 0.15 0.118 0.055* 0.04* 0.071

BERTScore 0.225 0.225 0.154 0.201 0.046* 0.033* 0.021* 0.033
ADEM 0.026* 0.037* 0.049* 0.037 0.007* 0.009* 0.040* 0.019

BERT-RUBER 0.266 0.266 0.185 0.239 -0.022* -0.040* -0.029* -0.030
BLEURT 0.152 0.149 0.103 0.135 0.203 0.192 0.13 0.175

QuantiDCE 0.554 0.554 0.395 0.501 0.412 0.393 0.274 0.360
DynaEval 0.066 0.070 0.047 0.061 0.071 0.066 0.045 0.061
GRADE 0.496 0.503 0.356 0.452 0.350 0.344 0.243 0.312
ChatGPT 0.498 0.515 0.374 0.462 0.407 0.358 0.283 0.349
DCGEval 0.562 0.572 0.406 0.513 0.436 0.436 0.306 0.393

Table 1: Correlations between automatic evaluation metrics and human judgments on two datasets (ConvAI2 and Empathetic-
Dialogues). The results are the average of five experiments, each with a different random seed. The star * indicates results with
p-value > 0.05, which are not statistically significant.

Score Prediction In the score prediction, we predict a
score based on text representation X̄ and cognition rep-
resentation H̄ obtained by the information interaction en-
hancement module. The text representation X̄ and cognition
representation H̄ are concatenated and fed into an MLP to
transform the cognitively enhanced dialogue representation
into a score s.

s = MLP (X̄; H̄) (13)

Training
We employ the relative ranking MLR loss in the pretraining
phase and the absolute scoring KD-MSE loss in the finetun-
ing phase as training objectives. The design aims to balance
the inconsistency between using ranking as a training objec-
tive due to limited labeled data and the expected behavior
(absolute score) of the model. A more detailed explanation
of these two losses is provided in the Appendix. Here, we
present the overall formulas:

Lpre train =
1

N1

N1∑
i=1

LMLR(s
pre−train
i ) (14)

Lfine tune =
1

N2

N2∑
i=1

LKD−MSE(s
fine−tune
i , s̄i) (15)

where N1 and N2 are the total number of samples in
the dataset for pre-training and fine-tuning, respectively,
spre−train
i , sfine−tune

i and s̄i are the score of the i− th di-
alogue sample from the pre-training stage, fine-tuning stage
and human-annotated, respectively.

Experiment
Experimental Setup
Baseline We compare our evaluation metrics with eleven
popular automatic dialogue evaluation metrics, including
three lexical word-overlap metrics: BLEU, ROUGE, and

METEOR (Banerjee and Lavie 2005), five metrics that con-
sider semantic representation: BERTScore, ADEM (Lowe
et al. 2017), BERT-RUBER, BLEURT, QuantiDCE (Ye et al.
2021), two metrics that take into account additional infor-
mation about the dialogue: DynaEval, GRADE, and Chat-
GPT. Evaluation The common practice to show the effec-
tiveness of a dialogue evaluation metric is to calculate the
correlation between the model-predicted and the human-
rated scores (Zhang et al. 2021; Huang et al. 2020). Specif-
ically, we adopt Pearson, Spearman (Zar 2005) and Kendall
(Kendall 1938) as the correlation measures. Datasets We use
two daily dialogue datasets, DailyDialog++ (Sai et al. 2020)
and DailyDialogEVAL (Huang et al. 2020), as training data.
To evaluate model performance, we use ConvAI2 (Huang
et al. 2020) and EmpatheticDialogues (Huang et al. 2020)
as unseen datasets, including substantial human scoring. For
more data details, please refer to the Appendix.

Experiment Results
The results in Table 1 show that DCGEval achieves an
improvement on both ConvAI2 and EmpatheticDialogues
datasets. This suggests modeling cognitive abilities in
DCGEval enables a more human-like approach to dialogue
evaluation. On ConvAI2, DCGEval improves the average
correlation by at least 1.2%. Surprisingly, for the Empathet-
icDialogues dataset, DCGEval achieves an absolutely sig-
nificant improvement over the previous SOTA QuantiDCE.
The correlations of Pearson, Spearman, and Kendall have
increased by 2.4%, 4.3%, and 3.2%, respectively, with an
average increase of 3.3%.

DCGEval also performs better than DynaEval and
GRADE, the models that imply temporal and common-
sense information to model dialogue. As a result, DCGEval
achieved an absolute averaged correlation improvement of
6.1% and 8.1% over GRADE on the ConvAI2 and Empa-
theticDialogues datasets, respectively. DynaEval achieved
an extremely low correlation, there are two possible causes.
One reason is that DynaEval treats each utterance as a sin-
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ConvAI2 EmpatheticDialogues
Metric Pearson Spearman Kendall Average Pearson Spearman Kendall Average

DCGEval 0.562 0.572 0.406 0.513 0.436 0.436 0.306 0.393
Without commonsense 0.549 0.550 0.392 0.497 0.402 0.383 0.267 0.350
Without core-semantic 0.549 0.555 0.396 0.500 0.421 0.425 0.291 0.379

Without temporal 0.549 0.550 0.392 0.497 0.404 0.401 0.281 0.362
Without role 0.534 0.538 0.380 0.484 0.426 0.428 0.299 0.384

Without temporal,role 0.531 0.531 0.378 0.480 0.409 0.395 0.276 0.360
Without DCG 0.507 0.514 0.363 0.461 0.338 0.321 0.220 0.293

Without IIE (concat) 0.512 0.517 0.369 0.466 0.374 0.343 0.237 0.318
Without IIE (MLP) 0.514 0.530 0.377 0.473 0.395 0.385 0.264 0.348
Without IIE (hinter) 0.543 0.550 0.393 0.495 0.418 0.390 0.268 0.358
Without IIE (xinter) 0.556 0.564 0.404 0.508 0.404 0.376 0.26 0.346

Without IIE (hinter;xinter) 0.545 0.565 0.402 0.504 0.383 0.362 0.251 0.332

Table 2: The extensive ablation experiments on the ConvAI2 and Empathetic Dialogues datasets yielded results, including six
ablations on the DCG graph and five ablations on the IIE module. The results are the average of five experiments, each with a
different random seed.

gle node in the graph, which can lead to neglecting core-
semantic information. Additionally, DynaEval is more fo-
cused on evaluating long dialogues, and for short dialogues,
it constructs a fully connected graph where temporal and
role information becomes confused.

Besides, we also utilize ChatGPT for this task. We metic-
ulously craft a series of prompts. Compared with other base-
lines, ChatGPT evaluation results have shown good perfor-
mance and are easy to operate. Nevertheless, there is still a
certain gap compared to our model. We conduct a detailed
analysis of the results in the Appendix. These results demon-
strate that explicit modeling of four cognitive abilities and
utilizing the interaction enhancement module can lead to a
more accurate evaluation of dialogue coherence.

Ablation Studies
We conduct ablation studies on DCGEval to better ana-
lyze the impact of four cognitive abilities and deep inter-
actions on dialogue evaluation. Does the DCG work? To
demonstrate the necessity of modeling cognitive abilities
for dialogue evaluation, we perform six ablations on the
DCG graph: 1) Only remove commonsense cognition, ex-
pressed as Without commonsense. We employ word2vec
for node initialization instead of commonsense knowl-
edge. 2) Only remove core-semantic cognition, expressed as
Without core-semantic. We replace the edges of each ut-
terance AMR with a set of randomly generated edges and
randomly remove some nodes, which destroys the ability of
AMR to model core semantics. 3) Only remove the temporal
cognition, expressed as Without temporal. 4) Only remove
the role cognition, expressed as Without role. 5) Remove
the temporal and role cognition, expressed as Without tem-
poral,role. 6) Remove the entire DCG graph, expressed as
Without DCG.

As shown in Table 2, all six ablations result in varying de-
grees of correlation decline, and the performance decrease
is positively correlated with the amount of ablated informa-
tion. The more information was ablated, the greater the per-

formance degradation. Specifically, the most significant cor-
relation decrease was observed in Without DCG, with an av-
erage reduction of 7.6% on both datasets. Furthermore, the
decrease in Without temporal,role is also more significant
compared to when only one of them was ablated. Therefore,
these results provide strong evidence that the modeling of
any cognitive ability is indispensable.

Does the information in-depth interaction work? We
conduct detailed ablation experiments on the IIE module,
which aims to obtain dialogue representations after inter-
acting with cognition and text modeling. As shown in Ta-
ble 2, we design five other methods to obtain dialogue rep-
resentations: 1) Without IIE (concat), the initial cognitive
representation H and the text representation X are directly
concatenated as the dialogue representation, without any in-
teraction. 2) Without IIE (MLP), a two-layer MLP is em-
ployed as a replacement. 3) Without IIE (hinter), hinter

obtained after the interaction layer Inter as the dialogue rep-
resentation. 4) Without IIE (xinter), xinter obtained after
the interaction layer Inter as the dialogue representation. 5)
Without IIE (hinter;xinter), the concatenation of hinter

and xinter as the dialogue representation.
From the results, it is evident that all five ablations led to

a decrease in model performance. The most significant drop
is observed in the method without any interaction (Without
IIE (concat)), indicating that using an MLP to replace IIE re-
tains some ability for information exchange. Moreover, us-
ing representations obtained after the interaction layer for
score prediction led to decreased performance as well. This
demonstrates the necessity of the IIE module for facilitating
deep interaction.

Granular Analyses of the Four Cognitive Abilities
We conduct more in-depth experiments and granular anal-
yses of the four cognitive abilities on the EmpatheticDia-
logues dataset. Specifically, we divide the EmpatheticDia-
logues dataset into four sub-datasets based on human an-
notation for four dialogue error types: Commonsense Error,
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Figure 3: Experiment results of fine-grained analysis of four
cognitive abilities. The horizontal axis represents four dif-
ferent data subsets, and the bars represent the results of five
ablation experiments. Above and below the horizontal axis
represent the performance increase and decrease, respec-
tively. The height of the column represents the degree of
change. The shaded bars represent experiments where the
corresponding ability was ablated on the current dataset. All
comparisons are made against the model without any ablated
modules on the same sub-dataset.

Core-semantic Error, Temporal Error, and Dialogue Role Er-
ror Dataset. Across these subsets, we perform five ablation
experiments, involving the individual removal of each ability
and a combined ablation of temporal and role abilities. As
shown in Figure 3, the horizontal axis is divided into four
sections corresponding to the four sub-datasets mentioned
above. Each section contains five bars representing the re-
sults of each ablation. All comparisons are made against the
model without any ablated modules on the same sub-dataset.

From the results in Figure 3, we can deduce that ablating
the corresponding ability for each sub-dataset leads to the
greatest drop in model performance, indicating the effective-
ness of the four cognitive abilities considered in the model.
This is demonstrated in the Commonsense errors Dataset,
Core-semantic errors Dataset, and Temporal errors Dataset.
In the Role Error Dataset, ablating commonsense and core-
semantic abilities results in substantial performance degra-
dation, indicating that these abilities are crucial not only
for the entire dataset but also for each sub-dataset. In the
Role Error Dataset, ablating role ability leads to a perfor-
mance drop, though not the most significant one. The joint
ablation of role and temporal abilities causes the largest per-
formance degradation, suggesting that when commonsense,
core-semantic, and role cognitive ability coexist, some role
information can be considered. It is also verified that role
errors often occur together with temporal error types.

Case Study
Table 3 presents the scores of different methods on cases of
four typical cognitive error responses. The closer the scores
are to human scores, the more accurate the method. This
suggests that the model can closely align with human judg-
ment. Regarding the four types of cognitive errors, existing
models show a significant gap between their scores and hu-
man scores. Conversely, the scores of our model are clos-

Error type Human DCGEval / ChatGPT
QuantiDCE / GRADE Score

Commonsense error 1.9 2.19 / (1.5, 1.8) / 2.54 / 3.32
Core-semantic error 2.5 2.92 / (1.8, 2.8) / 3.94 / 4.27
Temporal error 2.89 3.10 / (2.8, 4.5) / 3.53 / 3.97
Role error 2.4 3.07 / (4.7, 4.8) / 3.51 / 4.48

Table 3: Case study of four types of cognitive errors in Fig-
ure 1, including human scoring, our model scoring, and
the scoring of existing metrics. A score closer to the human
scores indicates a more accurate model. The score of Chat-
GPT is the result of two runs under the same configuration.

est to human scores. Specifically, the differences between
our model scores and human scores in the four examples
are 0.29, 0.42, 0.21, and 0.67. The previous SOTA model
had differences of 0.64, 1.44, 0.64, and 1.11 with human
scores in the same examples. Notably, our approach has re-
duced the gap by 3 times compared to the previous best
method in terms of core-semantic error. Results show that
our model can better capture cognitive errors in dialogue,
leading to more accurate and human-like evaluations. This
demonstrates the necessity of incorporating these four cog-
nitive abilities into dialogue evaluation.

The results show that the output of ChatGPT with the
same configuration is often unstable, showing significant
score variations. Specifically, ChatGPT can effectively cap-
ture commonsense and core semantic errors, but role and
temporal errors are more challenging for it. For a detailed
analysis, please refer to the Appendix.

Conclusion and Discussion
In this paper, we present DCGEval, a novel framework for
evaluating dialogue coherence that combines cognitive judg-
ment with text information. Overall, we implement the in-
depth interaction between cognition modeling and text mod-
eling. Specifically, we design a new graph structure called
DCG, which uniformly and explicitly models four types
of dialog cognitive abilities, including commonsense cogni-
tion, core-semantic cognition, temporal cognition, and role
cognition. Experiments demonstrate the effectiveness of the
cognitive abilities to capture four kinds of cognitive errors
in the process of dialogue evaluation, which is lacking in ex-
isting dialogue evaluation metrics. Finally, empirical results
show that DCGEval has stronger correlations with human
judgments. A limitation of DCGEval is that it relies on a pre-
trained AMR parser to generate AMR graphs. AMR parsers
have shown good performance, but there is still a risk of us-
ing an incorrect AMR graph. This error is usually on relation
types rather than the entities. Therefore, it has little impact
on DCGEval which does not require relation types.
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