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Abstract

Much effort has been devoted to building multi-modal knowl-
edge graphs by visualizing entities on images, but ignoring
the multi-modal information of the relation between entities.
Hence, in this paper, we aim to construct a new large-scale
multi-modal knowledge graph with triplet facts grounded on
images that reflect not only entities but also their relations.
To achieve this purpose, we propose a novel pipeline method,
including triplet fact filtering, image retrieving, entity-based
image filtering, relation-based image filtering, and image clus-
tering. In this way, a multi-modal knowledge graph named
ImgFact is constructed, which contains 247,732 triplet facts
and 3,730,805 images. In experiments, the manual and auto-
matic evaluations prove the reliable quality of our ImgFact.
We further use the obtained images to enhance model per-
formance on two tasks. In particular, the model optimized
by our ImgFact achieves an impressive 8.38% and 9.87%
improvement over the solutions enhanced by an existing multi-
modal knowledge graph and VisualChatGPT on F1 of rela-
tion classification. We release ImgFact and its instructions at
https://github.com/kleinercubs/ImgFact.

Introduction
Multi-modal knowledge graphs (MMKGs) are important
resources for a wide range of NLP and multimodal tasks.
Diverging from the symbol-based knowledge graph (KG),
MMKGs primarily link structured KG information with vi-
sual content, thereby establishing connections between tex-
tual and image-based knowledge representations.

However, the current focus of MMKG-related work mainly
focuses on grounding entities to images (Wu et al. 2023b),
without considering the visual semantics of relations, thus
limiting their effectiveness in downstream tasks. As illus-
trated in Figure 1, the goal of entity grounding, taking the
example of David Beckham (Victoria Beckham), is
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Figure 1: The difference between entity grounding and triplet
fact grounding. The former aims at visualizing entities to
images and most existing MMKGs are built under this task.
The latter is to ground triplet facts to images and our ImgFact
is constructed under this task.

to identify images that accurately represent the entity. Ob-
viously, it is insufficient to consider entities alone without
their relations for two reasons. (1) From a cognitive per-
spective, grounding symbolic relations enhances machine
comprehension of abstract relations by providing them with
multi-modal experiences (Zhu et al. 2022). Figure 1 illustrates
that visualizing Spouse in (David Beckham, Spouse,
Victoria Beckham) enables machines to grasp the im-
plicit intimate relationships between the couple, such as wed-
ding, pregnant, and family portrait. (2) From an application
perspective, a variety of real-world tasks (e.g., link prediction
and relation classification) would benefit if we can ground
symbolic relations to images (see Section “Experiments”).
The benefit comes from image information not explicitly men-
tioned in symbolic knowledge. Thus, it is crucial to ground
both entities and their relation on other modalities at once.

Hence, in this paper, we aim to construct a new large-
scale MMKG by grounding triplet facts in an existing sym-
bolic KG on images. These images not only represent en-
tities but also their relations. For example, given a triplet
fact (David Beckham, Spouse, Victoria Beckham),
we expect to find intimate images of David Beckham and
Victoria Beckham, as shown in Figure 1.
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For this purpose, a straightforward solution is to transfer
the entity grounding techniques to our task. However, this
solution is inherently insufficient. Existing entity grounding
technologies can be mainly divided into two categories. The
first is to obtain entity images from online encyclopedias like
Wikipedia (Ferrada, Bustos, and Hogan 2017; Wang et al.
2020). However, this method is unsuitable for our task as
encyclopedia images mainly describe entities, not triplets.
The second involves using a Web search engine like Google
and designing an entity-image matching model to select high-
quality images from the returned results (Oñoro-Rubio et al.
2017; Liu et al. 2019). However, applying this method di-
rectly to the triplet fact grounding task (take the triplet fact
as a query) would bring the following problems: (1) It fails
to identify triplets that cannot be grounded, which ultimately
undermines the overall quality of MMKGs. In practice, some
triplets may involve non-visualizable entities or relations,
such as the entity Naturalist or the relation TimeZone.
(2) The entity-image matching model cannot be directly used
to measure the alignment between the triplet fact and its asso-
ciated images. Furthermore, designing triplet-image match-
ing methods is challenging due to the difficulty faced by
current language-image models in capturing the deep seman-
tics of relations (e.g., wedding, pregnant, and family portrait
for the relation Spouse) (Zheng et al. 2021).

To address the above problems, we design a novel pipeline
method to ground triplet facts in KGs on images found from
a Web search engine. Specifically, for the first problem, we
design a multi-modal binary classifier and criteria based on
confidence and support to identify visualizable entities and
relations in KGs, respectively. For the second problem, we
divide the triplet-image matching process into two steps. The
first is the matching of the entity pair (head and tail entities)
and image. In this step, we employ a language-image pre-
trained model (e.g., CLIP (Radford et al. 2021)) enhanced
by language prompts to compute the similarity scores. The
second is the matching of the relation and image. We crawl
the image title and adopt contrastive learning (CL) (Peng
et al. 2020; Hadsell, Chopra, and LeCun 2006) to judge
whether the image reflects the relation by calculating the
similarities between the triplet and image title.

Contributions. Our contributions are summarized as:

• As far as we know, we are the first to propose triplet facts
grounding on images. The most significant characteristic
of these images lies in their capacity to convey the visual
semantics of relations, a dimension that previous MMKGs
failed to capture.

• We construct a new large-scale MMKG (i.e., ImgFact)
with a novel pipeline method, which contains 247,732
triplets and 3,730,805 images. Manual and automatic eval-
uations prove the reliable quality of our ImgFact.

• We use the images from our ImgFact to enhance the model
performance on two real-world tasks. In particular, the
model optimized by our ImgFact achieves an impressive
8.38% and 9.87% improvement in F1 score over the so-
lutions enhanced by an existing MMKG and VisualChat-
GPT, respectively, on relation classification.

Related Work
Entity Grounding aims to find images for entities in KGs.
Existing methods can be divided into two categories. One
way is to obtain entity images from online encyclopedias.
MMKGs along this line include IMGpedia (Ferrada, Bustos,
and Hogan 2017), Richpedia (Wang et al. 2020), and Visu-
alSem (Alberts et al. 2020). Although these images are of
high quality, it is difficult to obtain images for entities not
mentioned in the encyclopedia. To address this limitation,
another way is to harvest entity images from Web search
engines. Since this way easily introduces noisy images, much
effort has been devoted to re-designing entity queries by
adding entity types (Oñoro-Rubio et al. 2017; Liu et al. 2019)
or parent synsets (Deng et al. 2009). MMKGs like Image-
Graph (Oñoro-Rubio et al. 2017) and MMKG (Liu et al.
2019) are built in this way. However, previous studies focus
on grounding entities to images, ignoring their relations. This
paper aims to construct a new MMKG by grounding triplets
on images that reflect entities and their relations.

Relation Detection is to localize object pairs in images
and classify the relation between them. According to the rela-
tion types, existing relation detection datasets can be split into
two groups: action relation (e.g., Ride and Eat) and spatial
relation (e.g., Above and On). Action relation datasets like
HICO (Chao et al. 2015) and HICO-DET (Chao et al. 2018)
rely on manual labeling for the object bounding boxes. For
spatial relations, datasets such as SpatialSense (Yang, Rus-
sakovsky, and Deng 2019) and SpatialVOC2K (Belz et al.
2018) are created using manual-based methods. In addition,
there are many datasets with images that embody both action
and spatial relations, such as Scene Graph (Johnson et al.
2015) and VrR-VG (Liang et al. 2019). However, these stud-
ies focus on detecting objects and their relations in images,
while our purpose is to ground triplet on images. Moreover,
they emphasize shallow semantic relations observed visually.
This paper focuses on deep semantic relations (e.g., Spouse
and Team) that are not explicitly expressed in images.

ImgFact Construction
Our goal is to construct a large-scale MMKG named ImgFact
by grounding triplet facts (head entity, relation, tail entity), in
short (h, r, t), on images. Here, r models the relation between
h and t. In this paper, we obtain the raw triplet facts from
DBpedia1 (Lehmann et al. 2015). Based on this KG, we
propose a five-step approach, as depicted in Figure 2. 1)
Triplet fact filtering. We remove the triplets containing non-
visualizable entities or relations because it is difficult to find
appropriate images for these triplets. 2) Image retrieving.
We retrieve the Top-100 images from a search engine for
each entity pair (h, t) in the remaining triplets. 3) Entity-
based image filtering. We introduce a language-image pre-
trained model enhanced by language prompts to measure the
matching between the entity pair and its associated images.
4) Relation-based image filtering. We adopt a method of
contrastive learning to determine whether the relation r is
reflected in images by computing the similarities between the

1In our downloaded version, DBpedia contains 7,195,709 enti-
ties, 633 relations, and 21,687,345 triplet facts.
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Figure 2: The framework of our ImgFact construction with a five-step pipeline method.

triplet and image titles. 5) Image clustering. For each triplet,
we use a clustering algorithm to group the images, and select
outliers and Top-1 image in each cluster as the final results.

Triplet Fact Filtering
To remove the triplets containing non-visualizable entities or
relations, we design entity filtering and relation filtering.

Entity Filtering. The triplet would be removed if its head
or tail entity is non-visualizable because these entities (e.g.,
Naturalist) cannot be accurately characterized in images.
To achieve this purpose, we design a binary classification
model, where the input is an entity and the output is true or
false. The model is defined as f : xe −→ ±1, where f is a
classifier, xe is the feature vector of the entity e, and +1/-1
represents that the entity e is visualizable or non-visualizable.
In this paper, xe is designed as a concatenation of the image
feature vector xeimg and text feature vector xetext .

To obtain xeimg , we first collect the Top-m (m = 20)
images retrieved from Google with a query (i.e., the entity e).
Then, we encode each image pi with ResNet (He et al. 2016)
to obtain its representation pi. We finally concatenate these
representations as [p1; ...; pm] and feed it into a linear layer
to obtain the representation xeimg

of the images. That is,

pi = ResNet ([pi]) , i = 1, ...,m,

xeimg = Wimg[p1; ...; pm] + bimg,
(1)

where pi ∈ Rdu , Wimg ∈ Rdv×m·du and bimg ∈ Rdv are the
weight matrices. We set du = 256 and dv = 256.

To obtain xetext
, we collect the first sentence (often the en-

tity definition) of the Wikipedia entry of the entity e. The text
with the placeholders (i.e., ⟨CLS⟩ and ⟨SEP ⟩) is encoded
by BERT (Devlin et al. 2018). The final layer representation
of ⟨CLS⟩ is taken as the text representation and also fed into
a linear layer to obtain xetext . This process is defined as

x′
etext

= BERT ([⟨CLS⟩, w1, ..., wl, ⟨SEP ⟩]),
xetext = Wtextx′

etext
[0] + btext,

(2)

where [w1, ..., wl] is a sequence of tokens in the text de-
scription, x′etext

[0] ∈ Rdo is the representation of ⟨CLS⟩,
Wtext ∈ Rds×do and btext ∈ Rds are the learnable weight
matrices of the linear layer. We set ds = 256 and do = 768.

After obtaining xeimg and xetext , we employ a linear layer
and a Softmax function to build a multi-modal image-text
classifier f that takes xe = xeimg⊕xetext as the input and out-
put +1/-1. If the head or tail entity of a triplet fact is judged as
“-1” by the classifier, we remove this triplet. Since there is no
labeled data to train the classifier, we randomly select 3,000
entities from DBpedia and ask three volunteers to label them.
If at least two annotators consider that more than 10 images
in the Top-20 reflect the corresponding entity, we label it as
1. Otherwise, it is marked as 0. The dataset is constructed,
containing 1,566 and 1,434 positive and negative entities,
respectively, and then randomly split into training, validation,
and test sets with 8:1:1, where the Fleiss’ kappa (Fleiss 1971)
is 0.782, showing substantial agreement among these annota-
tors. After training on labeled data, the model achieves 82%
accuracy and 85% recall on the test set. Although the accu-
racy is not very high, it is acceptable because there are three
more steps (Relation filtering, Entity-based image filtering,
and Relation-based image filtering) to discard the triplets that
cannot be matched with images. Finally, we utilize the trained
model to predict labels of the remaining entities and remove
the triplets containing non-visualizable entities. There remain
1,776,872 entities, 653 relations, and 4,146,669 triplet facts.

Relation Filtering. Although the previous sub-step dis-
cards many triplets, there are still numerous noises. For in-
stance, the triplet (Yagong Island, TimeZone, China)
retained in the previous step is unable to be visualized be-
cause TimeZone cannot be characterized by images. Hence,
we need to remove the triplets with non-visualizable relations.

According to our observation, the relation cannot
be grounded if most of its entity pairs are non-
visualizable. Consequently, the previous triplet would
be removed since the relation TimeZone is often
associated with non-visualizable head and tail en-
tities, such as (Algoma District, TimeZone,
Eastern Time Zone) and (Jubeiha area,
TimeZone, UTC). To capture this regularity, we de-
sign confidence and support metrics, i.e.,

Conf =
Nrvis

Nrtriplet

, Supp = Nrvis . (3)

Here, Nrvis
denotes the number of triplets whose head and
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tail entities linked by the relation r are both visualizable,
and Nrtriplet is the total number of triplets with r. Support
is used to prevent high confidence scores of long-tail non-
visualizable relations. Only relations with confidence and
support above the pre-determined thresholds (0.15 and 50 in
our experiment) are retained, and others are removed. This
step produces 142 remaining relations. Since the number of
remaining relations is limited, we further ask the annotators
to guarantee the relation quality. If the relation is reflected in
more than half of the Top-20 retrieved images, it is marked
as 1. Otherwise, we label it as 0. After human labeling, there
remain 64 relations (1,776,872 entities and 1,502,722 triplet
facts), where the Fleiss’ kappa on this task is 0.802, showing
substantial agreement among annotators.

Image Retrieving
After filtering non-visualizable triplet facts, we collect images
for the remaining ones. To this end, we develop a distributed
web crawler deployed on multiple machines to obtain images
from a search engine (i.e., Google). For each triplet, we take
the head and tail entities separated by a space as the search
query and collect Top-100 images retrieved by the crawler.
The relation is omitted in this procedure since introducing
the relation (e.g., DraftTeam and AssociatedBand)
would cause a puzzle for the search engine. As some pairs
have fewer than 100 images on Google, we obtain a total of
90,716,130 images for 1,502,722 triplet facts.

Entity-based Image Filtering
Since the returned images may not reflect the head and tail
entities, we select high-quality images from Top-100 for each
entity pair. To this end, we calculate the similarities between
1) the head entity and image, 2) the tail entity and image, and
3) the entity pair and image. The image is kept if all three
similarities are above the pre-defined thresholds.

To compute the similarities, we employ a language-image
pre-trained model named CLIP (Radford et al. 2021) as the
matching model. Specifically, we encode the entity (pair) and
image with CLIP and output their similarity. To improve the
matching quality, we convert the entity (pair) into a sentence.
A straightforward method is to use manually pre-defined
templates, e.g., “the picture of h (t, or h and t)”. However,
this template is too rigid, so we introduce language prompts
as trainable templates. Similar to (Li and Liang 2021), we
add several virtual tokens in front of the entity (pair) as the
language prompts. The prompts with the entity (pair) are
considered as the input of the text encoder in CLIP:

Th = [q1, ..., qa, h], Tt = [q1, ..., qa, t],

T(h,t) = [g1, ..., ga, h, and, t],
(4)

where [q1, ..., qa] and [g1, ..., ga] are the prompts for the head-
/tail entity and entity pair respectively, and a = 8 is the
number of virtual tokens in prompts. To keep a balance be-
tween effectiveness and efficiency, we freeze the parameters
of the CLIP model and only train the prompts. To train the
model, we need a labeled dataset. Since only a small number
of parameters need to be trained, we randomly select 1,800
triplet-image pairs and invite the previous annotators to label

them as 1 or 0 with a voting mechanism, which indicates
whether entity pairs are reflected in images. In this way, the
built dataset contains 727 positive and 1,073 negative triplet-
images pairs and is split into training, validation, and test sets
according to 8:1:1, where the Fleiss’ kappa among the anno-
tators on this task is 0.796. After training our model on the
labeled data, we determine the three similarity thresholds by
maximizing the accuracy of the validation set. The threshold
for the matching of the head/tail entity and image is set to
0.87, and it is 0.5 for the entity pair and image. Our model
reaches 92% precision on the test set. Finally, we obtain
8,644,407 images for 540,145 triplet facts (281,284 entities
and 64 relations). Each triplet has an average of 16 images,
providing enough data to construct a large-scale MMKG.

Relation-based Image Filtering
Although we have images with the head and tail entities, they
may not reflect the relation r between them. Hence, we need
to select images depicting r. To this end, we crawl the im-
age title and calculate the similarity between the triplet fact
and title to measure whether the relation is represented in the
image. If the title is semantically similar to the triplet, we con-
sider the image to be appropriate. To model this similarity, we
adopt contrastive learning (Peng et al. 2020; Liu et al. 2022b),
which aims to learn similar representations for “neighbors”
and dissimilar representations for “non-neighbors”. In our
case, the triplet and image title are defined as neighbors if they
are semantically similar. Otherwise, they are non-neighbors.

Given a triplet (h, r, t) and its matching image title ct, we
denote cpos and ct as neighbors, where cpos is a positive
sentence “h’s r is t” transformed from (h, r, t). cineg (i =

1, ..., N) and ct are considered non-neighbors, where cineg
is the negative sentence transformed from (h, r′, t) (r′ ̸=
r, r′ ∈ R), N is the number of wrong triplets, and R is the
set of 64 relations. In the CL model, we employ two BERT
as the sentence encoder Encb(·) and title encoder Enct(·) to
learn the representations of the inputs. Then, we adopt the
final hidden states of the ⟨CLS⟩ tokens as the representations
of Cb and ct, where Cb = {cpos} ∪ {cineg}Ni=1. That is,

c =

{
Encb(c), c ∈ Cb

Enct(c), c = ct
, (5)

where c ∈ Rdy (dy = 768). Based on the representations,
we have the following training objective:

L = − log
exp(cTt · cpos/τ)

exp(cTt · cpos/τ) +
∑N

i=1 exp(c
T
t · cineg/τ)

, (6)

where τ = 0.1 is a temperature hyper-parameter and N =
15. Since there is no open-source dataset to train the CL
model, we randomly select 4,000 triplet-title pairs and ask
the previous annotators to label them with 1 or 0, indicating
if the title reflects the relation in the triplet fact. We integrate
the annotation results according to the voting mechanism
and the dataset is split into training, validation, and test sets
in a ratio of 8:1:1, where the Fleiss’ kappa on this task is
0.832. After training the CL model on the labeled data, we
use the model to calculate the similarities between the image
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MMKG # Img # GE # GR # GT

IMGpedia 14,765,300 14,765,300 - -
ImageGraph 829,931 14,870 - -
Richpedia 2,883,162 30,638 - -
MMKG 37,479 45,011 - -

VisualSem 938,100 89,896 - -
ImgFact (Ours) 3,730,805 182,589 64 247,732

Table 1: Statistics of ImgFact and typical MMKGs. GE, GR,
and GT denote grounded entities, relations, and triplets.

title and triplets (the candidate one and corrupted ones with
wrong relations). If the matching of the title and candidate
triplet ranks in Top-3, we consider the relation in the triplet
to be reflected in the image. In this setting, our CL model
achieves 98% accuracy and 90% recall on the test set, and this
step finally produces 182,589 entities, 64 relations, 247,732
triplets, and 5,086,535 candidate images.

Image Clustering
After image filtering, we notice that some triplet facts have
many similar images. To show image diversity and prevent re-
dundancy, we employ DBSCAN (Ester et al. 1996) for image
clustering within each triplet. DBSCAN is chosen because
it does not require a predetermined number of clusters. The
algorithm ensures that each image in a cluster has a minimum
number (MinPts) of neighbors within a given radius (Eps).
In this paper, we define {p′2 ∈ P ′|dist (p′1, p′2) ≤ Eps} as
the Eps-neighborhood of the image p′1, where P ′ is the re-
maining images for a given triplet fact and dist (p′1, p

′
2) =

1 − cos (p′1, p
′
2). cos (p

′
1, p

′
2) denotes the cosine similarity

between the vectors of p′1 and p′2 obtained by the VGG al-
gorithm (Simonyan and Zisserman 2014). In DBSCAN, we
set MinPts = 1 and Eps = 0.25. The reason for setting
MinPts = 1 is that our clustering aims to show image diver-
sity and avoid redundancy rather than image removal. After
clustering, we select images with the highest scores (the av-
erage of the three similarities defined in Section Entity-based
Image Filtering) in each cluster as the final results. Outlier
images are also retained. Overall, this step reserves 182,589
entities, 64 relations, 247,732 triplets, and 3,730,805 images.

ImgFact Analysis
To understand the properties of ImgFact, we analyze the
MMKG from the following three aspects: dataset statistics,
image quality, and image diversity.

ImgFact Statistics. As reported in Table 1, ImgFact con-
tains 182,589 entities, 64 relations, 247,732 triplets, and
3,730,805 images. On average, each triplet has 15 images.
Unlike existing MMKGs, ImgFact’s images are tailored to
triplets rather than just entities. In addition, the distributions
of entity categories and relations are shown in Figure 3.

Image Quality. To evaluate image quality, we employ hu-
man and automatic evaluations. For human evaluation, we
randomly select 500 triplet facts and their images. Three
volunteers (not the same volunteers mentioned in the con-
struction process) are invited to score each triplet-image pair
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Figure 3: The distributions of entity categories and relations.
others in the upper and lower histograms contain 74 entity
categories and 36 relations, respectively.

based on whether the head entity, relation, and tail entity are
all reflected in the image. The images for each triplet fact
are sorted according to the average of the three similarities
defined in Section Entity-based Image Filtering. We report
three metrics: the accuracy of the pairs and the proportions of
correct images in Top-1 (H@1) and Top-3 (H@3). After hu-
man evaluation, ImgFact achieves 80.6%, 83.2%, and 92.4%
on accuracy, H@1, and H@3. The Fleiss’ kappa (Fleiss 1971;
Liu et al. 2022a) on the above metrics is 0.853, 0.887, and
0.783, respectively, indicating substantial evaluators’ agree-
ment. Additionally, automatic evaluations (see Section “Ex-
periments”) on link prediction and relation classification also
demonstrate ImgFact’s reliable quality.

Image Diversity. To show image diversity, we randomly
select 200 triplets’ images and calculate the proportions of
the similar image pairs to all pairs within each cluster and
between clusters. The similarity is determined by the voting
mechanism of three evaluation volunteers. When two images
are similar on the pixel level, we label them 1. Otherwise, we
mark it as 0. The average similarity of intra-cluster and inter-
cluster are 0.94 and 0.05, respectively. The Fleiss’ kappa on
this task is 0.790, indicating substantial agreement. These
results show the diversity of our ImgFact.

Experiments
In this section, we utilize the link prediction and relation
classification tasks to verify the quality of our ImgFact. Fur-
thermore, we utilize images from our ImgFact to enhance
model performance on these two tasks.

Link Prediction
Link prediction aims to predict the missing head or tail entity
for a given triplet (Liu et al. 2021). For each test sample, we
first remove the head or tail entity and replace it with all enti-
ties in the dataset. Then, we rank these entities in descending
order according to predicted scores and record their ranking.
In this task, we report three metrics: the proportion of correct
entities ranked in Top-1 (H@1) and Top-10 (H@10), and
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Method Input Predicting Head Predicting Tail

H@1 H@10 MRR H@1 H@10 MRR

BERT h-r / r-t 0.29 2.00 1.40 12.04 41.79 22.64

BERT
+ResNet50

+ pnoise 0.05 0.49 0.36 9.34 37.55 18.62
+ p 0.59 3.37 1.88 14.76 48.89 26.65

ViLT + pnoise 0.05 0.44 0.30 8.42 35.22 17.11
+ p 0.36 2.34 1.39 13.61 45.93 24.81

Table 2: The automatic evaluation (%) of our ImgFact on link
prediction. “h-r” means the prediction of t given h and r.

the mean reciprocal rank (MRR) of all correct entities. Since
ImgFact has fewer triplet facts in existing public datasets
(e.g., only about 600 triplets matched with DB15K (Sun, Hu,
and Li 2017)), this would lead to insufficiently valid results.
Hence, we construct a new dataset from our ImgFact for au-
tomatic evaluation. The construction principle is that entities
and relations in both validation and test sets need to appear in
the training set. Based on this principle, a dataset (denoted as
DL) is built, containing 3,340, 717, and 716 positive triplets
for training, validation, and testing, respectively.

To verify whether the image p reflects h and t in (h, r, t),
we design an A/B testing. We take the prediction of the tail
entity t as an example. Experiment A1 uses h and r as the
input, and experiment B1 has two kinds of inputs: 1) h, r, and
the image p of (h, r, t), and 2) h, r, and the image pnoise of
another randomly selected triplet. In experiment A1, a BERT-
based classifier is trained on the input “h’s r is [MASK]”
using the ⟨CLS⟩ representation. In experiment B1, we em-
ploy (BERT+ResNet50)- and ViLT-based (Kim, Son, and
Kim 2021) classifiers to predict t, respectively. Notably, the
parameters of BERT, ResNet50, and ViLT are fixed and only
classifier parameters are updated. The results are reported in
Table 2. We notice that both BERT+ResNet50 and ViLT with
p outperform BERT, showing that the image encoded by the
encoders is helpful for the task. Besides, both methods with
pnoise perform worse than BERT, proving that the previous
improvement is mostly due to the image p rather than the
added image encoders. Hence, it is reasonable to infer that
the image embodies the head and tail entities.

To evaluate our ImgFact is useful for link prediction,
we also design an A/B testing for predicting t. Note that the
experiments to predict h are not designed due to numerous
corresponding h for a given (r, t) so the model cannot be
trained effectively. For example, given (?, Nationality,
America), we can replace “?” with hundreds of millions of
American names. For the A/B testing, the input of experiment
A2 is h and r, while there are five kinds of inputs for experi-
ment B2: 1) h, r, and the image p′h of h from MMKG (Liu
et al. 2019), 2) h, r, and the image p∗r

2 of (h1, r, t1) generated
by VisualChatGPT (VCG), where h1 ̸= h and t1 ̸= t, 3) h,
r, and the images p′h and p∗r generated by VCG, 4) h, r, and
the image pr of (h2, r, t2) from ImgFact, where h2 ̸= h and
t2 ̸= t, and 5) h, r, and the images p′h and pr. In experiments,

2The input of VisualChatGPT used to generate images for triplets
in DL: “please generate an image of [head]’s [relation] is [tail]”.

Method Input H@1 H@10 MRR

BERT (h, r) 12.04 41.79 22.64

BERT+ResNet50

+ p′h 12.95 42.31 23.16

+ p∗r 13.04 47.02 24.33
+ p′h & p∗r 13.53 48.38 25.07

+ pr 14.12 48.89 25.34
+ p′h & pr 14.68 49.01 26.03

ViLT

+ p′h 12.05 42.96 22.87

+ p∗r 12.01 42.97 21.47
+ p′h & p∗r 12.77 44.31 23.94

+ pr 12.91 43.07 23.04
+ p′h & pr 13.54 45.23 24.56

Table 3: Results (%) of integrating images on link prediction.
p′h, p∗r , and pr are derived from MMKG (Liu et al. 2019),
VisualChatGPT (Wu et al. 2023a), and ImgFact, respectively.

we employ a BERT-based classifier for A2, while we utilize
(BERT+ResNet50)- and ViLT-based classifiers for B2. The
results are listed in Table 3. We observe that regardless of
whether the models incorporate the entity image (p′h) from
MMKG in advance, p∗r and pr can further improve the model
performance, indicating that the models have learned the
relation semantics from p∗r and pr. The reason is that tail
entities of different triplet facts with the same relation often
belong to the same domain, and additional images p∗r and pr
can provide more information (e.g., entity type) about the
tail entity. In addition, when comparing images generated
by VCG with those in our ImgFact, our models show a note-
worthy improvement. This indicates that the quality of our
obtained images surpasses those generated by VCG. While
most of VCG’s generated images can indeed reflect relations,
they still suffer from a notable problem concerning entities.
This problem, known as distortion error, results in images
appearing unnaturally deformed, as depicted in Figure 4.

Relation Classification
In this paper, the task is to assign a semantic relation from a
pre-defined set to a pair of entities. We use DL as the dataset
and report accuracy (Acc), weighted precision (w-Pre), w-
recall (w-Rec), and w-F1 due to the label imbalance.

To evaluate whether the relation r in (h, r, t) is reflected
in the image p, we design an A/B testing. Experiment A3

takes h and t as the input, and experiment B3 has two kinds of
inputs: 1) h, t, and the image p of (h, r, t), and 2) h, t, and the
image pnoise. Similar to link prediction, we employ BERT-,
(BERT+ResNet50)-, and ViLT-based classifiers, where the
input is “h and t” and the output is a relation. The results
are shown in Table 4. We observe that BERT outperforms
both BERT+ResNet50 and ViLT with pnoise, but it still un-
derperforms the methods with p. Similar to link prediction, it
is reasonable to infer that the image reflects the relation.

To demonstrate our ImgFact is helpful for relation
classification, we still design an A/B testing. A4 uses h and
t as the input, while experiment B4 has six kinds of inputs:
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1. (Masashi_Oguro, Team, Torino_F.C_)
2. (Christopher_Guard, Partner, Lesley_Dunlop)

1. (Joël_Chouinard, DraftTeam, Colorado_Avalanche)
2. (Frank_Y._Whiteley_Jr. Occupation, Horse_trainer)

Distortion Error (VisualChatGPT)
1 2 1 2

3. (David_Bunning, Father, Jim_Bunning)
4. (Alicia_Pineault, Choreographer, Joey_Russell)

3 4
Triplet Outdated (ImgFact) Entity Missing (ImgFact)

Figure 4: Noisy images generated by VisualChatGPT and two kinds of image noises in ImgFact.

Method Input Acc w-Pre w-Rec w-F1

BERT (h, t) 46.70 74.72 46.70 44.00

BERT
+ResNet50

+ pnoise 27.88 42.58 27.88 27.23
+ p 57.00 76.76 57.00 58.63

ViLT + pnoise 30.61 50.05 30.61 32.25
+ p 67.79 81.48 67.79 70.73

Table 4: The automatic evaluation (%) of our ImgFact on
relation classification.

1) h, t, and the image p′h of h from (Liu et al. 2019), 2) h, t,
and the image p∗h of (h, r3, t3) generated by VCG, 3) h, t,
and the image ph of (h, r4, t4) from ImgFact, 4) h, t, and the
image p′t of t from (Liu et al. 2019), 5) h, t, and the image
p∗t of (h5, r5, t) generated by VCG, 6) h, t, and the image
pt of (h6, r6, t) from ImgFact. The results are reported in
Table 5. We observe that the two models with the image from
MMKG, VCG, or ImgFact outperform BERT, showing that
the images can be used to improve the model performance.
Notably, despite VCG’s generated images suffering from
distortion errors, their impact on the relation task is relatively
limited. These errors tend to manifest in minor details rather
than affecting the overall semantics of the images. For
instance, the man’s appearance in the first picture of Figure 4
is vague and the uniforms’ logos are distorted, but we can
still readily recognize that the image depicts people playing
ice hockey in a professional team. In addition, the models
that incorporate the images in MMKG outperform the ones
incorporating images produced by VCG. However, it still
falls short compared to the models utilizing images from
our ImgFact. Specifically, the (BERT+ResNet50)-based
classifier incorporating pt achieves an impressive 8.38%
and 9.87% improvement over the classifier with p′t and
p∗t on the F1, respectively. The reason is that relations
present in ImgFact for the same head or tail entity tend to
be highly relevant. For instance, in ImgFact, the relations
of the head entity Ben Williams (musician)
include associatedMusicalArtist and
associatedBand, which are related to each other.

Conclusion and Discussion
In this paper, we aim to construct a new large-scale MMKG
by grounding triplet facts on images, where the images re-

Method Input Acc w-Pre w-Rec w-F1

BERT (h, t) 46.70 74.72 46.70 44.00

BERT
+ResNet50

+ p′h 68.15 76.69 68.16 69.40
+ p∗h 67.23 77.31 63.47 66.79
+ ph 68.59 77.69 68.60 69.97

+ p′t 60.47 70.18 62.34 64.78
+ p∗t 61.32 71.35 61.28 63.29
+ pt 68.32 81.93 80.25 73.16

ViLT

+ p′h 63.14 79.46 62.78 64.73
+ p∗h 62.41 77.25 63.20 63.92
+ ph 67.84 79.33 65.52 68.18

+ p′t 63.32 72.23 63.55 66.34
+ p∗t 62.74 71.31 60.81 63.86
+ pt 64.25 74.34 64.61 69.65

Table 5: The results (%) of incorporating images on relation
classification. p′h (p′t), p

∗
h (p∗t ), and ph (pt) are derived from

MMKG (Liu et al. 2019), VisualChatGPT (Wu et al. 2023a)
and our ImgFact, respectively.

flect not only entities but also their relations. To this end, we
propose a novel pipeline method with five steps: triplet fact fil-
tering, image retrieving, entity-based image filtering, relation-
based image filtering, and image clustering. In this way, Img-
Fact is built and contains 247,732 triplets and 3,730,805
images. Manual and automatic evaluations verify the relia-
bility of ImgFact’s quality. Furthermore, experiments also
demonstrate that ImgFact is helpful for real-world tasks.

Limitations. ImgFact still suffers from two kinds of im-
age noises: 1) Triplet outdated, where the triplet in DB-
Pedia is inconsistent with the current real-world fact. As
shown in Figure 4, the current team of Masashi Oguro
is Tochigi SC, and Torino F.C is one of his former
teams. This noise arises because the information in the KG
is not updated in real-time, causing some triplets to be-
come outdated. 2) Entity missing, where the images lack
the presence of either the head or tail entity. As shown
in Figure 4, the image of (David Bunning, Father,
Jim Bunning) only contains Jim Bunning and misses
David Bunning. This error may be attributed to that not
all entities mentioned in the pre-training data (i.e., image-text
pairs) of the CLIP model are explicitly depicted in images.
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Ethical Statement
There are two main ethical considerations: 1) Since our im-
ages are sourced from the Internet, there is a risk of harmful
images (e.g., personal privacy information, racist language,
and violent images). Fortunately, our MMKG is free of this
ethical issue for two reasons. First, Google Image Search has
its own SafeSearch content filter to automatically remove
dirty content. Second, we randomly select 30,000 images
from ImgFact and assign them to the volunteers mentioned
above for manual evaluation. The results indicate no harm-
ful images in the testing samples. 2) Since our images are
crawled from Google, we need to check the copyright issue
for data sharing. In Google Image Search, we set the “usage
rights” field to “Creative Commons licenses”. Hence, the
images in our ImgFact can be distributed under a Creative
Commons license. In summary, ImgFact is released under
Creative Commons Non-Commercial (CC-NC), prohibiting
commercial use of our MMKG.
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