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Abstract

Text classification occupies an important role in natural lan-
guage processing and has many applications in real life. Short
text classification, as one of its subtopics, has attracted in-
creasing interest from researchers since it is more challeng-
ing due to its semantic sparsity and insufficient labeled data.
Recent studies attempt to combine graph learning and con-
trastive learning to alleviate the above problems in short
text classification. Despite their fruitful success, there are
still several inherent limitations. First, the generation of aug-
mented views may disrupt the semantic structure within the
text and introduce negative effects due to noise permuta-
tion. Second, they ignore the clustering-friendly features in
unlabeled data and fail to further utilize the prior informa-
tion in few valuable labeled data. To this end, we propose a
novel model that utilizes improved Graph contrastIve learn-
ing for short text classiFicaTion (GIFT). Specifically, we
construct a heterogeneous graph containing several compo-
nent graphs by mining from an internal corpus and intro-
ducing an external knowledge graph. Then, we use singular
value decomposition to generate augmented views for graph
contrastive learning. Moreover, we employ constrained k-
means on labeled texts to learn clustering-friendly features,
which facilitate cluster-oriented contrastive learning and as-
sist in obtaining better category boundaries. Extensive ex-
perimental results show that GIFT significantly outperforms
previous state-of-the-art methods. Our code can be found in
https://github.com/KEAML-JLU/GIFT.

Introduction
Text classification aims to assign texts to predefined cate-
gories, which is a classic problem in natural language pro-
cessing (Minaee et al. 2021). Most models are designed
for regular texts, which include rich contextual informa-
tion and sufficient labeled training data. However, short texts
are ubiquitous in our daily life, such as tweets, news seeds,
and search snippets. When these models are directly applied
to short texts, they generally obtain unsatisfactory perfor-
mance, suffering from limited contextual information and
severe label scarcity problems (Wang et al. 2021). Com-
pared to regular texts, the length of short texts is small, of-
ten containing only one or few words, which increases the
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difficulty of understanding their meaning correctly (Phan,
Nguyen, and Horiguchi 2008). Moreover, the rise of the in-
ternet has led to an exponential increase in the volume of
short texts. Unlabeled short text data has become signifi-
cantly more abundant compared to labeled data (Hu et al.
2019). Therefore, short text classification (STC), as a highly
challenging task that attracts tremendous attention from re-
searchers, has a wide range of practical applications, such
as news classification (Chen et al. 2019), sentiment analysis
(Yao, Mao, and Luo 2019), and social media analysis (Liu
et al. 2021, 2023a,b). Recently, some studies (Su et al. 2022)
have attempted to integrate graph neural networks (GNNs)
with contrastive learning (CL) for solving STC tasks, with
promising results. In these approaches, a corpus-level graph
is constructed, incorporating latent topics, words, or entities
as nodes. GNNs are then performed to explicitly model the
semantic relationships between nodes, enriching the origi-
nal short text information with such auxiliary knowledge.
Meanwhile, CL has the ability to extract self-supervised sig-
nals from sufficient unlabeled data to facilitate the model to
learn superior representations.

Despite their effectiveness, some limitations still remain.
First, when generating augmented views for CL, there are
two types of approaches. On the one hand, they use tra-
ditional text augmentation methods such as random word
deletion or random noise injection. However, these meth-
ods may lead to irreversible semantic distortion and infor-
mation loss (Zhang et al. 2021). For example, removing the
word “not” from the movie review sentence “this film is not
funny” would completely change its meaning, leading to a
misleading label. On the other hand, they perform edge/n-
ode perturbation on the built text graph for graph augmen-
tation operations, which inevitably results in noise (Yu et al.
2022). For example, removing an essential semantic edge
could considerably change the sentence’s meaning and en-
able the augmented graph to share little learnable invariance
with the original graph, thus misleading the model’s whole
learning process.

Second, they follow the classical instance discrimination
CL paradigm, which maximizes the mutual information be-
tween positive sentence pairs from the same source while
pushing negative counterparts from other instances away
(Chen et al. 2020). However, this paradigm could lead to
many generated negative pairs sharing similar semantics but
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being forced apart in the embedding space (Li et al. 2021),
which negatively impacts the representation learning. To
achieve better generalization, it is crucial to capture sim-
ilarities within a class of samples and contrast them with
samples from another class. In other words, the clustering-
friendly characteristics contained in the dataset should be
emphasized. The challenge lies in enabling unlabeled short
texts with similar semantics to share the same weak labels,
facilitating comparisons across different categories. While
performing k-means clustering on the unlabeled data might
seem like a natural approach, it fails to leverage prior knowl-
edge about the distribution of hidden class labels obtained
from limited labeled data. Importantly, this prior knowledge
can guide the clustering process by biasing it towards ex-
ploring favorable regions in the search space and reducing
the risk of converging to a suboptimal solution. Therefore, it
is necessary to leverage these limited labeled data to further
guide the clustering process.

To solve the aforementioned limitations, we propose a
novel model called GIFT for STC tasks. Specifically, we
first build a corpus-level heterogeneous graph that contains
three component graphs, including a word graph, an entity
graph, and a part-of-speech (POS) tag graph. These com-
ponent graphs incorporate rich semantic and syntactic in-
formation to alleviate the semantic sparsity problem. Next,
to preserve the important semantic structure of the original
text, we perform singular value decomposition (SVD) on the
term-document (TD) matrix, to obtain the reconstructed TD
matrix for generating the augmented view of each compo-
nent graph. The approach is inspired by latent semantic in-
dexing (LSI) (Deerwester et al. 1990), which assumes that
underlying semantic structures exist within the TD matrix.
By performing dimension reduction via SVD, we retain use-
ful information in the matrix while removing noise, such as
word misuse or the presence of unrelated words. We adopt
truncated SVD to obtain a low-rank approximation of the
TD matrix, such that global TD co-occurrence signals (i.e.,
similar texts with close semantic structures that share many
keyword-related words.) can be captured and injected into
the learning process of CL. Subsequently, we employ the
constrained seed k-means algorithm to assign weak labels
for unlabeled texts. This algorithm utilizes seed samples
with the same label to form initial clusters, and the mean
vector within each cluster serves as the initial centroid. Af-
ter clustering, these samples with weak labels are used to
perform supervised CL.

Overall, the main contributions of this work are listed be-
low.
• We propose a novel model, namely GIFT, for STC tasks,
which can learn better short text representations and solve
the challenges of existing models.
• We perform SVD to obtain the augmented views of com-
ponent graphs used for CL. Moreover, we utilize the con-
strained seed k-means algorithm to assign weak labels to
unlabeled texts for integrating clustering information into
cluster-oriented CL.
• We conduct extensive experiments on several benchmark
datasets, and the results demonstrate our proposed model
significantly outperforms other competitive models.

Related Work
Short Text Classification. STC poses unique challenges
due to the limited length and lack of strict syntactic struc-
ture in short texts (Wang et al. 2017). Previous methods
attempt to inject more additional information, such as la-
tent topics extracted from external corpus (Zeng et al. 2018)
and entity information residing in the knowledge base (Chen
et al. 2019), to enrich their semantics. However, these meth-
ods fail to deliver satisfactory performance on the STC task
because they merely alleviate the semantic sparsity prob-
lem and do not take measures for insufficient labeled data.
Therefore, some GNN-based models (Hu et al. 2019; Ye
et al. 2020; Wang et al. 2021) are proposed for this task
and achieve improved performance. These models represent
texts as graphs constructed based on local features such as
shared words or phrases within a corpus. Label information
is propagated through message passing on the built graph.
Inspired by the success of CL in unsupervised representation
learning, recent studies (Su et al. 2022) explore the potential
of CL based on GNNs to leverage the self-supervised sig-
nals present in the unlabeled data, aiding in extracting use-
ful features. However, their effectiveness is heavily relies on
the generated contrastive views, and the way the views are
generated can easily lead to incorrect self-supervised signals
that misguide model learning.

Contrastive Learning. CL enables learning meaningful
representations from large-scale unlabeled data, which has
been proven successful in various fields, including computer
vision (Chen et al. 2020) and natural language processing
(Gao, Yao, and Chen 2021). The core concept of CL is to
maximize the agreement of the positive pairs formed by
the original instance and its corresponding augmented in-
stance, while minimizing the agreement with the negative
pairs formed by other instances. The initial CL models (He
et al. 2020; Chen and He 2021) primarily focus on instance
discrimination in an unsupervised manner, and subsequent
models (Khosla et al. 2020; Gunel et al. 2021) propose the
fully supervised CL paradigm by incorporating label infor-
mation, which is based on category discrimination. Some
studies (Caron et al. 2020; Li et al. 2021) about image classi-
fication tasks introduce the concept of prototypes, which in-
volves forcing the embedding of instances closer to their cor-
responding prototypes in the embedding space, while push-
ing them away from other prototypes.

Low-rankness in Data Mining. Low-rankness is a com-
mon property of matrices used to describe the correlation
among rows or columns (Wu et al. 2022). In data mining,
low-rankness is often associated with matrix decomposition
techniques such as SVD. By decomposing a high-rank ma-
trix into an approximate low-rank matrix, we can extract la-
tent features or structures, thereby achieving data dimension
reduction, as well as reducing noise and redundant informa-
tion (Hansen 1987). The property of low-rankness has been
leveraged in various specific tasks within data mining. For
example, in (Entezari et al. 2020), it adopts low-rank ap-
proximation of the adjacency matrix to discard higher-order
components of the underlying graph for graph adversarial
attack. In (Cai et al. 2023), it performs low-rank approxi-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18717



mation operations on the user-item interaction matrix and
injects global collaborative context to guide graph augmen-
tation for graph-based recommendations.

Method
In this section, we provide detailed descriptions of the pro-
posed model GIFT. For ease of understanding, we show the
overall framework in Fig. 1.

Graph Construction
To maximize the usage of valid information within short
texts, such as semantic and syntactic information, and auxil-
iary knowledge from external knowledge bases, such as en-
tity information, we construct a corpus-level heterogeneous
graph consisting of a word graph, an entity graph, and a
POS tag graph. The detailed construction process is as fol-
lows.

The word graph Gw = {Vw,Xw,Aw} is composed of
words that constitute the short text, which contains neces-
sary semantic information. Vw is the set of words and Xw ∈
R|Vw|×fw is the word embeddings initialized by pre-trained
GloVe word vectors. Aw ∈ R|Vw|×|Vw| is the adjacency ma-
trix based on the co-occurrence statistics of words within the
text, where each value is determined by point-wise mutual
information (PMI), i.e., [Aw]ij = max(PMI(Vw,i,Vw,j), 0).

The entity graph Ge = {Ve,Xe,Ae} is constructed by
the entities residing in knowledge graphs, which can offer
auxiliary information for texts. Ve denotes the set of entities
and Xe ∈ R|Ve|×fe denotes the entity embeddings initial-
ized by TransE (Bordes et al. 2013). Ae ∈ R|Ve|×|Ve| is
determined by the cosine similarity of each entity pair, i.e.,
[Ae]ij = max(cos(Ve,i,Ve,j), 0).

The POS tag graph Gp = {Vp,Xp,Ap} consists of POS
tags such as nouns and verbs for words, which specify the
syntactic roles of words to help eliminate ambiguity. Vp is
the POS tag set and Xp ∈ R|Vp|×fp is the tag node features
initialized by one-hot vectors. Ap ∈ R|Vp|×|Vp| is the corre-
sponding adjacency matrix also calculated by PMI.

Text Representation Learning
After building the graphs, we encode them with GNNs to si-
multaneously leverage the topology and feature information.
Concretely, we adopt graph convolutional networks (GCNs),
which are defined as follows:

H(ℓ+1) = σ(D̂− 1
2 ÂD̂− 1

2H(ℓ)W(ℓ)) (1)

where H(ℓ) denotes the node embeddings at layer ℓ and
H(0) = X indicates the initialized features. Â = A + I
is the adjacency matrix with self-loops and D̂ii =

∑
j Âij

is the degree matrix. W and σ(·) denote the trainable pa-
rameter and activation function, respectively.

Given three types of graphs Gπ = {Vπ,Xπ,Aπ}, π ∈
{w, e, p}, we can use Eq. 1 to obtain the updated node em-
beddings Hπ ∈ R|Vπ|×fπ , which take advantage of interac-
tions between nodes.

Subsequently, to derive text embeddings, we construct
text-specific matrices (i.e., TD matrices) for each type of

node (i.e., word, entity, and POS tag) to establish connec-
tions between the text and node. For words or POS tags, we
set Mπ ∈ RN×|Vπ|, π ∈ {w, p} to the TF-IDF value be-
tween each text and word or POS tag in the corpus, where
N is the number of texts. For entities, we let Me ∈ RN×|Ve|,
where Me,ij = 1 if the i-th text contains the j-th entity, and
0 otherwise. Then, we adopt an information aggregation op-
eration as follows:

Zπ = MπHπ, π ∈ {w, e, p}
Zorg = Zw||Ze||Zp

(2)

where Zπ ∈ RN×fπ indicates the text-specific features with
respect to nodes of type π. The text representation Zorg is
obtained by concatenating three text-relevant features.

Improved Graph Contrastive Learning
As mentioned earlier, existing methods for generating aug-
mented text views often suffer from the loss of important se-
mantics or introduce noise, thereby misleading the CL learn-
ing process. To mitigate this issue, we perform SVD matrix
decomposition on the TD matrix of each node type for di-
mensionality reduction and denoising, which can be mathe-
matically expressed as:

Mπ = UπΣπV
⊤
π , π ∈ {w, e, p} (3)

where Uπ ∈ RN×N and Vπ ∈ R|Vπ|×|Vπ| are orthog-
onal matrices in which the columns of Uπ and Vπ are
left singular vectors and right singular vectors, respectively.
Σπ ∈ RN×|Vπ| is a real-valued diagonal matrix that stores
the singular values in descending order. The singular val-
ues indicate the contribution of the corresponding principal
components to the original matrix. Typically, the sum of the
leading 10% or even 1% of the singular values accounts for
over 99% of the total sum of the singular values. Therefore,
we can use truncated SVD to preserve the largest r singu-
lar values to obtain a low-rank approximation of the original
matrix, which is computed as follows:

Mπ,r = Uπ,rΣπ,rV
⊤
π,r, π ∈ {w, e, p} (4)

where Mπ,r is the rank-r approximation of Mπ . Uπ,r ∈
RN×r and Vπ,r ∈ R|Vπ|×r are matrices composed of the
top r singular vectors and Σπ,r ∈ Rr×r is the diagonal ma-
trix containing the largest r singular values.

By performing SVD on the original TD matrix, we
achieve two objectives. First, we enhance the prominent and
credible TD co-occurrence signals for text representation
while reducing the noisy co-occurrence signals. Second, we
address the issue of semantic ambiguity caused by the lim-
ited local TD co-occurrence signals by incorporating global
TD co-occurrence signals from each TD pair. Then, we ap-
ply an information aggregation mechanism on the low-rank
approximation matrix for generating the augmented views
of texts, which can be expressed as follows:

Zπ,r = Mπ,rHπ, π ∈ {w, e, p}
Zaug = Zw,r||Ze,r||Zp,r

(5)

For ease of presentation, we denote Z = Zorg||Zaug. Af-
ter obtaining two views of texts, we first introduce a pro-
jection head Φ(·) for mapping text representations into the
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Figure 1: The overall architecture of our model. First, we construct a heterogeneous graph consisting of three component
graphs Gw,Ge and Gp, then perform GCNs on each component graph to obtain the updated node embeddings Hw,He, and
Hp, respectively. Meanwhile, we build the text-specific TD matrices Mw,Me, and Mp, and perform SVD on them to obtain
the low-rank approximate matrices Mw,r,Me,r, and Mp,r. Then, we obtain Zorg and Zaug through the text representation
learning module. We utilize Zorg and Zaug for improved graph CL, and perform cross entropy loss and cluster-oriented CL with
constrained seed k-means on Zorg.

hidden space where the contrastive loss is applied, and then
normalize hidden representations into unit form. i.e., P =
norm(Φ(Z)). The mathematical expression of contrastive
loss can be denoted as:

Li = − log
exp((Pi ·Pj)/τ)∑2N

k=1 Ik ̸=i exp((Pi ·Pk)/τ)

Lcl =
1

2N

∑2N

i=1
Li

(6)

where (Pi, Pj) is the defined positive pair in which i and j
denote the indices of the representations of the same text. I is
the indicator function set to 1 if k ̸= 1 and 0 otherwise. τ and
· are the temperature parameter and dot product operator.

By conducting Eq. 6, the model can bring the positive
sample pairs closer together in the feature space while push-
ing the negative sample pairs further apart, thereby inducing
more discriminative embeddings for downstream tasks.

Cluster-oriented Contrastive Learning
However, solely relying on the above CL paradigm is in-
sufficient because it ignores clustering-friendly informa-
tion involved in the data and treats each instance inde-
pendently, leading to false positive pairs with similar se-
mantics. In other word, the only positive pair consists of
augmented views generated from the same instance, while
other instances with similar high-level semantics are mis-
judged as negative ones. The wrong negative instances are
pushed away during subsequent CL. To alleviate this is-
sue while explicitly leveraging the prior knowledge brought
by the few labeled texts, we propose assigning weak la-
bels to numerous unlabeled texts in the corpus using the
constrained seed k-means algorithm, to explore clustering-
friendly features that can assist the model in obtaining more
discriminative class boundaries. Specifically, given the cor-
pus D = {d1, · · · , dN}, after the text representation learn-
ing module, we can obtain the corresponding text embed-
dings Zorg. We denote the labeled text set as Dlab =

{(Zorg,1, y1), · · · , (Zorg,m, ym)} = {Ll}cl=1, where Ll de-
notes the set of texts labeled with l, y is the given label,
and c is the number of categories. These texts with ground-
truth labels in Dlab are called seed samples. Unlike the clas-
sic k-means algorithm, in the centroids initialization stage,
instead of randomly selecting k samples from the data as
the initial centroids, we use seed samples with the same la-
bel to form the initial clusters, and then average the vectors
within the clusters as initial centroids. Moreover, in the clus-
ter updating stage, we only update the cluster assignments of
non-seed samples, keeping the cluster assignments of seed
samples fixed in all iterations. The rest steps of the process
remain consistent with the standard k-means algorithm. Af-
ter completing the above process, we can assign the same
weak label to data belonging to the same cluster for cluster-
oriented CL.

We employ another projection head Ψ(·) to map the orig-
inal embeddings into the hidden space, and normalize these
hidden representations, i.e., Q = norm(Ψ(Zorg)). The ob-
jective function of cluster-oriented CL can be expressed
mathematically as:

Lccl = −
N∑
i

1

|Si| − 1

∑
j∈Si

log
exp(Qi ·Qj/τ)∑N

k=1 Ik ̸=i exp(Qi ·Qk/τ)

(7)
where Si symbols the set with the same label as sample i,
but excluding sample i.

Model Training
For the original labeled texts, we also introduce a projection
head Υ(·) to map the learned representations into the hid-
den space where the cross-entropy loss function is applied,
which can be formulated as:

R = σ(WceΥ(Zorg))

Lce = −
∑

i∈Dlab

c∑
j

Yij logRij
(8)
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Algorithm 1: The Training of GIFT
Input: The corpus D = {di}Ni=1
Output: The well-trained model

1: while not done do
2: for π ∈ {w, e, p} do
3: Build the component graph Gπ = {Vπ,Xπ,Aπ}
4: end for
5: Update node embeddings for each component graph

using Eq. 1.
6: Construct TD matrices concerning the text and node
7: Obtain Text representations using Eq. 2.
8: Perform SVD for TD matrices using Eq. 4.
9: Obtain the augmented views of texts using Eq. 5.

10: Conduct CL using Eq. 6.
11: Perform constrained seed k-means for the corpus.
12: Assign weak labels for unlabeled texts.
13: Conduct cluster-oriented CL using Eq. 7.
14: Conduct the cross-entropy loss using Eq. 8.
15: Optimize the model by the loss of Eq. 9.
16: end while
17: return: The well-trained GIFT.

where Y is the ground-truth label and Wce is the trainable
parameter.

The model is optimized by the combination of three loss
functions, which can be denoted as:

L = ηLcl + ζLccl + Lce (9)

where η and ζ are control parameters.
When evaluating the model performance, we input the de-

rived text embeddings of the test set into the classifier Υ(·)
to obtain the corresponding metrics. The pseudo-code of the
training process of our model is presented in Algorithm 1.

Experiments
Datasets. To verify the effectiveness of our proposed
model, we conduct experiments on several benchmark
datasets, which are widely used in STC tasks. The statistics
of these datasets are summarized in Table 1 and described in
detail below. (1) Twitter is a binary classification dataset
comprised of numerous tweets expressing two sentiments
collected by the NLTK. (2) MR (Pang and Lee 2005) is a
binary classification dataset of movie reviews, where each
review contains a sentence that is labeled as positive or nega-
tive. (3) Snippets (Phan, Nguyen, and Horiguchi 2008) con-
sists of web search snippets returned by the Google search
engine. (4) StackOverflow (Xu et al. 2017) contains twenty
categories of question titles crawled from the StackOverflow
website.

Following previous studies (Wang et al. 2021), we ran-
domly select 40 labeled data for each category of the dataset,
half of which are used for training, another half for valida-
tion, and the remaining data are used for testing, to simulate
the real situation with few labeled samples.

Baselines. We compare the proposed GIFT with the fol-
lowing types of models to demonstrate its superiority. (I)

Traditional models: TF-IDF+SVM and LDA+SVM respec-
tively utilize TF-IDF features and LDA features to represent
text, and then train an SVM (Cortes and Vapnik 1995) for
classification. PTE (Tang, Qu, and Mei 2015) learns word
embeddings on a heterogeneous text graph, and averages
the word embeddings as document embeddings. (II) Deep
learning models: CNNs (Kim 2014) and LSTM (Liu et al.
2015) initialize texts using pre-trained GloVe word embed-
dings, then feed them into the corresponding deep networks.
BERT (Devlin et al. 2019) and RoBERTa (Liu et al. 2019)
are pre-trained on large corpus and can generate contextual
embeddings when applied to specific tasks. Here, we use
BERT-base and RoBERTa-base, which are fine-tuned along
with the classifier in short texts. (III) Graph-based models
contain TLGNN (Huang et al. 2019), HyperGAT (Ding
et al. 2020), TextING (Zhang et al. 2020), DADGNN (Liu
et al. 2021), and TextGCN (Yao, Mao, and Luo 2019). (IV)
Deep short text models includes STCKA (Chen et al. 2019),
STGCN (Ye et al. 2020), HGAT (Hu et al. 2019), SHINE
(Wang et al. 2021), and NC-HGAT (Su et al. 2022).

Implementation Details. We adopt two-layer GCNs to
encode each component graph, where the hidden dimension
is set to 128. The temperature τ in CL and cluster-oriented
CL are uniformly set to 0.5. All projection heads are imple-
mented by an MLP with a hidden layer. In practice, perform-
ing SVD on large TD matrices requires particularly large
time complexity. Therefore, an alternative way is to use ran-
domized SVD (Halko, Martinsson, and Tropp 2011), which
identifies a subspace that captures the input matrix domi-
nant features by random sampling. It then projects the ma-
trix into that subspace and performs SVD. In our case, the
required rank of the approximate matrix is set to 15. The
control parameter of loss function η, ζ are both set to 0.5.
We use the Adam method to optimize GIFT with the learn-
ing rate 0.001. For other baselines, we use default parame-
ters or conduct grid search for best-performing parameters.
The evaluation metrics are accuracy (ACC) and macro F1-
score (F1), widely adopted by previous studies.

Results
Model Performance. We conduct extensive experiments
on several benchmark datasets to compare our proposed
model with other baselines. All experiments are repeated ten
times to obtain average metrics, which are shown in Table 2.
Based on these quantitative observations, we have the fol-
lowing analyses.

Our model yields the best performance across all evalua-
tion datasets in terms of the relevant metrics, demonstrating
its superiority for the STC task. The success of our model
can be attributed to several factors. First, we perform SVD
on the text-specific TD matrices to obtain the augmented
view of the text, which not only preserves useful information
in the matrix but also removes noisy information. Second,
we also introduce global TD co-occurrence signals to rectify
the learning process of CL that may have been misguided
in previous methods. Moreover, we explicitly leverage the
prior knowledge contained in few labeled texts to assign
weak labels to numerous unlabeled texts. This allows the
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Dataset Twitter MR Snippets StackOverflow
#Doc 10,000 10,662 12,340 20,000

#Train(ratio) 40 (0.40%) 40 (0.38%) 160 (1.30%) 400 (2%)
#Word 21,065 18,764 29,040 2,632
#Entity 5,837 6,415 9,737 3,229

#POS Tag 41 41 34 42
Avg.Length 3.5 7.6 14.5 8.3

#Class 2 2 8 20

Table 1: Statistics of evaluation datasets.

Model Twitter MR Snippets StackOverflow
ACC F1 ACC F1 ACC F1 ACC F1

TF-IDF+SVM 53.62 52.46 54.29 48.13 64.70 59.17 59.19 59.06
LDA+SVM 54.34 53.97 54.40 48.39 62.54 56.40 60.19 59.52

PTE 54.24 53.17 55.02 52.62 63.10 59.11 62.56 61.32
CNN 57.29 56.02 59.06 59.01 77.09 69.28 63.75 61.21

LSTM 60.28 60.22 60.89 60.70 75.89 67.72 61.62 60.49
BERT 54.92 51.16 51.69 50.65 79.31 78.47 66.94 67.26

RoBERTa 56.02 52.29 52.55 51.30 79.55 79.02 69.91 70.35
TLGNN 59.02 54.56 59.22 59.36 70.25 63.29 62.09 61.91

HyperGAT 59.15 55.19 58.65 58.62 70.89 63.42 63.25 62.10
TextING 59.62 59.22 58.89 58.76 71.10 70.65 65.37 64.63

DADGNN 59.51 55.32 58.92 58.86 71.65 70.66 66.26 65.10
TextGCN 60.15 59.82 59.12 58.98 77.82 71.95 67.02 66.51
STCKA 57.56 57.02 53.25 51.19 68.96 61.27 59.72 59.65
STGCN 64.33 64.29 58.25 58.22 70.01 69.93 69.23 69.10
HGAT 63.21 57.02 62.75 62.36 82.36 74.44 67.35 66.92
SHINE 72.54 72.19 64.58 63.89 82.39 81.62 73.05 72.73

NC-HGAT 63.76 62.94 62.46 62.14 82.42 74.62 67.59 67.02
GIFT 73.16 73.16 65.21 65.16 83.73 82.35 83.07 82.94

Table 2: Results (%) of the Accuracy and Macro-F1 score on several short text datasets. We highlight the best performance in
bold based on the pairwise t-test with 95% confidence.

model to utilize clustering-friendly features through our de-
signed cluster-oriented CL. By doing so, we alleviate the is-
sue of false negatives caused by the instance-discrimination
CL paradigm. Furthermore, we construct a heterogeneous
graph consisting of several component graphs to fully ex-
ploit the semantic and syntactic information from the text it-
self and external knowledge graphs to correctly identify the
meaning of the text.

We find that deep short text models, especially those com-
bined with GNNs like HGAT and NC-HGAT, achieve com-
petitive performance compared to other categories of mod-
els. A reasonable explanation is that they are specially de-
signed for STC tasks and enrich short text representations
by introducing various auxiliary knowledge. Notably, NC-
HGAT, which performs CL with random perturbations on
the built corpus-level graph, lags far behind our model,
demonstrating that its augmented view may discard texts’
important information, hindering model learning. Addition-
ally, some fine-tuned pre-trained models, such as BERT
and RoBERTa, which incorporate generic knowledge from a
large corpus, perform unfavorably on the focused task due to
the lack of labeled texts. Moreover, graph-based models are
competitive because they explicitly model syntactic struc-

ture information and can benefit from label propagation.

Ablation Study. To verify the effectiveness of each de-
signed individual module of our model, we conduct the fol-
lowing ablation experiments on several model variants. (I)
GIFT-SVD-K: We simultaneously remove both CL with aug-
mented views generated by SVD and cluster-oriented CL
with constrained seed k-means, and instead directly classify
the obtained text representations using cross-entropy loss.
(II) GIFT-K: We only eliminate cluster-oriented CL while
keeping other parts unchanged. (III) GIFT-SVD: We only
exclude CL performed with SVD while preserving the re-
maining parts. (IV) GIFTrandom: We replace SVD with ran-
dom perturbations, i.e., randomly masking the TD matrix, to
generate augmented views. (V) GIFTk-means: We replace the
constrained seed k-means in cluster-oriented CL with clas-
sic k-means. According to the results shown in Table 3, we
can draw the following findings. First, removing any compo-
nent leads to performance degradation, demonstrating that
they all play essential roles in GIFT. Second, we can find
that GIFT performs better than GIFTk-means and GIFTrandom,
which is consistent with our expectations and validate our
previous arguments.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18721



Model Twitter MR Snippets StackOverflow
ACC F1 ACC F1 ACC F1 ACC F1

GIFT-SVD-K 69.60 69.47 61.52 61.48 79.25 78.62 76.20 75.32
GIFT-K 71.49 71.40 63.24 63.19 82.89 81.25 81.42 81.20

GIFT-SVD 71.95 71.90 64.02 63.96 82.61 81.26 81.72 81.52
GIFTrandom 72.11 72.09 64.32 64.19 82.85 81.75 82.02 81.90
GIFTk-means 72.76 72.62 64.62 64.59 83.28 81.92 82.52 82.30

GIFT 73.16 73.16 65.21 65.16 83.73 82.35 83.07 82.94

Table 3: The ablation results (%) of various experimental settings.
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Figure 2: Hyperparameter Sensitivity on StackOverflow dataset.

Hyperparameter Study. We investigate the impact of
several key parameters, i.e., the temperature τ , the control
coefficients η, ζ, and the rank value r, on the model perfor-
mance. From Fig. 2 (a), we observe that with the increase
of temperature τ , the model performance first increases and
then decreases. A plausible reason is that small temperatures
make the model focus on hard negative samples while push-
ing away potential positive samples with shared semantics,
and large temperatures make the model treat negative sam-
ples equally and reduce its distinguishable ability. Fig. 2 (b)
and (c) both show a trend of results increasing with hyper-
parameters increasing. The former is because as η and ζ in-
crease, the contribution of the two kinds of CL to the final
loss function increases accordingly; the latter is because as
the rank r increases, the augmented TD matrix can capture
more global co-occurrence signals.

smile

laugh

crowd

Delig-
htful

Hone-
yed

sweet

It is a sweet , laugh a minute crowd 
pleaser that lifts your spirits as well 

as the corners of your mouth

It is a sweet , laugh a minute crowd 
pleaser that lifts your spirits as well 

as the corners of your mouth

other 
words

: entity: entity: word: word

: link in original word/entity-document matrix
: link in SVD-based word/entity-document matrix

minute spirit corner mouth soul other 
entitiesminute spirit corner mouth soul other 
entities

Figure 3: Case study of a short text from the MR dataset.

Case Study. We conduct a case study to intuitively
demonstrate the effectiveness of our model in injecting
global co-occurrence information. We present two built TD
matrices (i.e., word-document and entity-document matrix)
for clarity. As shown in Fig. 3, we can clearly observe that
in the SVD-reconstructed word-document matrix, GIFT re-
establishes the connections between potentially important
words and documents, such as “delightful”, “honeyed” and
“smile”, the first two enhancing the “sweet” in the text, and
the last one enhancing “laugh”. In addition, in the rebuilt
entity-document matrix, our model also re-establishes the
connection between “soul” and documents. These global co-
occurrence signals play a crucial role in accurately compre-
hending short texts.

Conclusion
In this work, we propose a novel model GIFT for STC tasks.
Our model leverages a unique approach to obtain augmented
views of texts by applying SVD on text-specific TD matri-
ces for CL. Meanwhile, we incorporate cluster-oriented CL
based on constrained k-means to explore clustering-friendly
features in the data. Extensive experiments demonstrate that
the proposed model significantly outperforms other state-of-
the-art models.
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