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Abstract
To understand event structures of documents, event causal-
ity identification (ECI) emerges as a crucial task, aiming to
discern causal relationships among event mentions. The lat-
est approach for ECI has introduced advanced deep learning
models where transformer-based encoding models, comple-
mented by enriching components, are typically leveraged to
learn effective event context representations for causality pre-
diction. As such, an important step for ECI models is to trans-
form the event context representations into causal label rep-
resentations to perform logits score computation for training
and inference purposes. Within this framework, event context
representations might encapsulate numerous complicated and
noisy structures due to the potential long context between the
input events while causal label representations are intended
to capture pure information about the causal relations to fa-
cilitate score estimation. Nonetheless, a notable drawback of
existing ECI models stems from their reliance on simple feed-
forward networks to handle the complex context-to-label rep-
resentation transformation process, which might require dras-
tic changes in the representations to hinder the learning pro-
cess. To overcome this issue, our work introduces a novel
method for ECI where, instead abrupt transformations, event
context representations are gradually updated to achieve ef-
fective label representations. This process will be done incre-
mentally to allow filtering of irrelevant structures at varying
levels of granularity for causal relations. To realize this, we
present a diffusion model to learn gradual representation tran-
sition processes between context and causal labels. It operates
through a forward pass for causal label representation nois-
ing and a reverse pass for reconstructing label representations
from random noise. Our experiments on different datasets
across multiple languages demonstrate the advantages of the
diffusion model with state-of-the-art performance for ECI.

Introduction
Event Causality Identification (ECI) is an active research
problem in Information Extraction of Natural Language Pro-
cessing (NLP) whose goal entails predicting causal relations
between event mentions in text. For example, in the sentence
“The hurricane caused significant property damage to his
house.”, an ECI system should identify the causal relation
between the events “hurricane” and “damage, i.e., “hurri-
cane” cause−−−→ “damage”. Serving as an important step for
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event structure understanding of text, ECI models can intro-
duce useful information for different NLP applications such
as question answering (Oh et al. 2016), machine reading
comprehension (Berant et al. 2014), and event forecasting
(Hashimoto 2019).

While the early work for ECI has applied feature-based
methods (Do, Chan, and Roth 2011; Ning et al. 2018), re-
cent work have employed various deep learning architec-
tures to realize state-of-the-art performance for this prob-
lem (Kadowaki et al. 2019; Liu, Chen, and Zhao 2020; Zuo
et al. 2021b). As such, the first step in the current deep
learning models for ECI often involves a transformer-based
encoding network, such as BERT (Devlin et al. 2019) and
RoBERTa (Liu et al. 2019), that help induce initial con-
textualized representations of event mentions in the input
texts. Afterward, the ECI models tend to explore different
components to further enrich the event context representa-
tions from the transformer-based networks, resulting in the
final event representations for causality prediction. For in-
stance, (Tran Phu and Nguyen 2021) leverages graph con-
volutional networks with rich text structures to produce the
enriched event representations for ECI. Another example in-
cludes (Liu, Chen, and Zhao 2020) that augments input texts
with relevant background knowledge retrieved from exter-
nal sources to enhance event context representations. Con-
sequently, the final step of contemporary ECI models is to
transform the event context representations into causal label
representations that will be used to compute logits scores for
possible causal labels for training and inference. Ideally, the
causal label representations are expected to capture pure in-
formation for the causal labels to facilitate label score com-
putation and prediction.

As such, the dominant approach in ECI models is to em-
ploy a straightforward feed-forward network, characterized
by its simplicity with zero, one, or a few layers, to directly
convert the event context representations into the causal la-
bel representations for causality prediction (Gao, Choubey,
and Huang 2019; Tran Phu and Nguyen 2021; Chen et al.
2022). While this approach can be convenient for implemen-
tation, a critical issue arises. The computed event context
representations of ECI models might still involve compli-
cated and noisy information. Attempting to perform context-
to-label representation transformation directly with feed-
forward networks can demand a drastic change, posing sig-
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nificant challenges for the learning process. Hence, the re-
sulting causal label representations will likely preserve noisy
information to hinder causality prediction performance. This
problem becomes particularly noticeable for ECI, where the
challenge lies in predicting causal relationships for pairs of
event mentions that are far part in the input text (i.e., long in-
put context). Such extensive context can encompass a mul-
titude of irrelevant structures that are not helpful for the
causal connection between the two event mentions. Cou-
pled with the high capabilities of transformer-based encod-
ing models, these extraneous structures are prone to persist
in the event context representations induced by ECI mod-
els. Filtering out these irrelevant structures to uncover clear
causal label information is not a straightforward task for
the feed-forward networks. For instance, in document-level
ECI, when the two input event mentions are in separate sen-
tences of a document, numerous irrelevant context words
can be presented between two input event mentions to intro-
duce significant noise for event context representations for
ECI.

To address this limitation in previous ECI models, we ar-
gue that the context-to-label representation transformation
for ECI should be carried out more gradually. This involves
applying incremental adjustments to the event context repre-
sentations, systematically eliminating irrelevant components
at various levels of detail to unveil more effective causal la-
bel representations. This intuition motivates us to develop
a diffusion model to generate causal label representations
from event context representations that facilitates progres-
sive fine-grained refinements of the representations via a se-
ries of denoising steps. In particular, a denoising diffusion
probabilistic model (DDPM) (Ho, Jain, and Abbeel 2020)
aims to learn a procedure to generate representations or sam-
ples from a distribution, involving two major processes. In
the forward process, provided samples from the distribution
are incrementally added with Gaussian noise to transform
them into a Gaussian distribution (i.e., the diffusion pro-
cess). In contrast, the reverse process attempts to learn a re-
serve procedure that can generate samples of the distribution
from random noise via a series of adjustment steps. At each
step in the reverse process, the model maintains the current
intermediate data point and predicts an adjustment to be ap-
plied to the transition to the next step.

To adapt the diffusion model for the ECI problem, our for-
ward process also involves adding Gaussian noise sequen-
tially to the causal label representations to reach Gaussian
distribution. As such, the causal label representations will be
computed directly from the provided causal labels during the
training step to achieve clean information. For the reverse
process, to generate a causal label representation for an in-
put event mention pair from a random noise, the prediction
of adjustment at each denoising step for transition will be
conditioned on not only the current representation, but also
the event context representation from the encoder model for
the input. Due to the access to event context representation,
we can train the diffusion model so the predicted adjustment
at each step can realize and filter some irrelevant information
from the event context representation for causality predic-
tion. Based on the predicted adjustment for the current step,

the representation in the next step can achieve higher qual-
ity (i.e., closer to the expected label representation). After
a sequence of adjustments in the reverse process, the final
representation is expected to possess clean causal label in-
formation to effectively predict causal labels. To our knowl-
edge, this is the first diffusion model proposed for ECI in the
literature.

Consequently, to accomplish this goal for the diffusion
model, we propose to control the adjustment predictions
by encouraging the intermediate representations produced at
each step in the reverse process to be predictive of the causal
label for the input during the course of training. The ratio-
nale is to ensure that the important information for causal la-
bels is not eliminated from the representations in the reverse
adjustment process, thus guiding the predicted adjustments
to only remove irrelevant features for causality prediction.
Accordingly, to implement this adjustment controlling idea,
our method suggests using the intermediate representations
in the reverse process to predict the golden causal label in the
training process. Finally, we perform extensive evaluations
for our method over several ECI benchmark datasets. The
experiments demonstrate the advantages of our diffusion-
based model for ECI, achieving state-of-the-art performance
over different datasets and languages.

Model
There are two major components in our diffusion-based
model for ECI: (i) Event Representation Learning to encode
event context in input text, and (ii) Context-to-Label Repre-
sentation Transformation with a diffusion model (Ho, Jain,
and Abbeel 2020; Nichol and Dhariwal 2021). In the fol-
lowing, we will first present necessary background for the
diffusion component in our model. Our overall ECI model
with the two components will be introduced afterward.

Diffusion Background
A diffusion model, specifically a denoising diffusion proba-
bilistic model (DDPM) (Ho, Jain, and Abbeel 2020), is char-
acterized as a Markov chain that undergoes training through
variational inference to generate samples from a data dis-
tribution after finite time. There are two processes in a dif-
fusion model: the diffusion/forward process to perturb data
samples from the distribution and the reverse process to
generate data samples from random noise. Given a sam-
ple x0 from the data distribution q(x0), the forward pass
in a diffusion model involves a noising process to compute
T latent variables x1, . . . , xT (of the same dimension as
x0) by adding diagonal Gaussian noise at each time step t
(1 ≤ t ≤ T ):

q(x1, . . . , xT |x0) =
T∏

t=1

q(xt|xt−1)

xt ∼ q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I)

Here, αt is a hyper-parameter to control the noise added at
step t and I is the identity matrix. As noted in (Ho, Jain,
and Abbeel 2020), this setting allows us to sample xt at an
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arbitrary step xt directly from x0 using the marginal distri-
bution:

xt ∼ q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
∏t

s=0 αs. Further, by using the reparameteri-
zation trick (Ho, Jain, and Abbeel 2020), we can obtain xt

via:

xt =
√
ᾱtx0 +

√
1− ᾱtϵt,with ϵt ∼ N (0, I)

Under this framework, it has been shown that xT is nearly
an isotropic Gaussian distribution if T is large enough and
αt is scheduled well over t. As such, if we can compute the
reverse distribution q(xt−1|xt), we can generate a sample
x0 from q(x0) by first sampling xT ∼ N (0, I) and then per-
forming a series of denoising steps by incrementally sam-
pling from xt−1 ∼ q(xt−1|xt) (i.e., the reverse process).
However, as q(xt−1|xt) relies on the entire data distribution,
it is approximated via a Gaussian distribution pθ(xt−1|xt)
with parameters θ to estimate the mean µθ and variance Σθ:

xt−1 ∼ pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t))

In this work, we utilize a fixed variance Σθ(xt, t) = (1 −
αt)I, which has been shown to achieve the best results in
(Ho, Jain, and Abbeel 2020). For the mean µθ(xt, t), we
can also re-parameterize it via the noise prediction network
ϵθ(xt):

µθ(xt, t) =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
(1)

To this end, we can sample xt−1 ∼ pθ(xt−1|xt) for the re-
verse process using ϵθ(xt, t) and z ∼ N (0, I):

xt−1 =
1

√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
+ z

√
1− αt

To train the reverse process with the noise prediction net-
work ϵθ, we can consider the combination of q and p as a
variational auto-encoder (Kingma and Welling 2013), and
the variational lower bound can be used for optimization.
However, with the re-parameterization trick, (Ho, Jain, and
Abbeel 2020) suggests that training can be achieved effec-
tively by minimizing a simple mean squared error between
the predicted noise ϵθ(xt, t) and the ground-truth sampled
Gaussian noise ϵt: Ldiff (θ) = ||ϵθ(xt, t)− ϵt||2.

Event Representation Learning
Following previous work (Liu, Chen, and Zhao 2020;
Tran Phu and Nguyen 2021), we formulate ECI as a binary
classification task, aiming to predict whether a causal rela-
tion exists between two input event mentions. Specifically,
let e1 and e2 be the two event mentions/trigger words in the
input text D where e1 and e2 can appear in the same sen-
tence (i.e., sentence-level ECI) or different sentences (i.e.,
document-level ECI). To facilitate the text encoding with
pre-trained language models (PLMs), for each event men-
tion ei (i ∈ {1, 2}), we select a window of five sentences,
consisting of the hosting sentence of ei in D along with two
previous and following sentences to create a context Ci for

ei. Here, we do not select a sentence twice in C1 and C2.
The contexts C1 and C2 are then concatenated to form a sin-
gle context C for the input event mentions. Note that the
order of the sentences in the input text D will be preserved
in C. In the next step, we utilize the pre-trained RoBERTa
model (Liu et al. 2019) to encode the context C. To repre-
sent the input event mentions e1 and e2, we obtain the hidden
vectors r1 and r2 (respectively) for their first sub-tokens in
the last layer of RoBERTa (called event context representa-
tions). Here, for convenience, we use d to denote the dimen-
sionality of the hidden vectors in the last layer of RoBERTa,
i.e., |r1|= |r2|= d.

Context-to-Label Representation Transformation
Given the event context representations r1 and r2, a typical
approach to perform ECI is to transform these representa-
tions into causal label representations using a simple feed-
forward network, seeking to capture clean information about
the causal labels to compute the logits scores and probabil-
ity distribution for possible labels. However, a crucial chal-
lenge associated with this approach pertains to the potential
abundance of irrelevant context words or information within
the context C for the input event mentions e1 and e2. Since
the event context representations r1 and r2 are computed us-
ing self-attention from the encoder over this context, they
might encompass numerous noisy structures that cannot be
easily filtered out to produce clean causal label representa-
tions for ECI. In light of this, the utilization of feed-forward
networks to convert context representations into label rep-
resentations would entail a drastic change, which may not
be effectively learned, thereby retaining noisy information
within the causal label representations for ECI. This prob-
lem is even more significant for input event mentions that
are widely separated in the context as it might introduce
more irrelevant words. To address this problem, we intro-
duce a diffusion model to transform event context repre-
sentations to causal label representations for ECI. The key
advantage of the diffusion model is the ability to decom-
pose the context-to-label transformation process into mul-
tiple steps to achieve more gradual representation changes
for better learning. At each step, the representation transi-
tion will be controlled to filter irrelevant features for causal-
ity prediction to produce effective label representations for
ECI.
Diffusion Model: To train the diffusion model, we first ob-
tain the causal label representation that we expect the model
to generate for the input context C and event mentions e1
and e2 (i.e., the sample x0 of the distribution q(x0) in the
diffusion framework). To this end, we create a simple sen-
tence Slbl to encapsulates the causal relation l between the
input events e1 and e2 in the following format:

Slbl = [CLS]There is l between e1 and e2

, where l can be “a causal relation” or “no causal relation”
to indicate the gold relation label between e1 and e2 in the in-
put. Next, Slbl is also encoded by the RoBERTa model, and
the last-layer hidden vectors v1, v2, . . . , vm of the first sub-
tokens of the m = 9 words in Slbl are stacked into a matrix
V = [v1; v2; . . . ; vm] of size m × d, serving as our causal
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label representation for the input. Note that by using only
the representations for the first sub-tokens of the words, we
can ensure the same dimensions for V across different input
examples. Furthermore, by including the event mentions e1
and e2 within our sentence Slbl for label representation, we
release the diffusion model from the task of discarding infor-
mation pertaining to the input event mentions from the con-
text representation. This simplifies the learning process to
boost the performance while still preventing the introduction
or irrelevant information into Slbl to provide cleaner causal
label representation.

Treating V as a sample from the causal label representa-
tion distribution (i.e., x0 = V0 = V ), the forward pass of
our diffusion model computes T representations Vt (of size
m × d) by incrementally adding adjustments ϵt in the form
of Gaussian noise to V0:

Vt =
√
ᾱtV0 +

√
1− ᾱtϵt with ϵt ∼ N (0, I)

Subsequently, to train the reverse process that generates V
from random noise, the original formulation of the diffusion
model will require estimating the distribution pθ(Vt−1|Vt)
for reverse sampling. However, as our model’s objective is
to infer the causal label representation V from the input
event context, the reverse process in our diffusion model
instead learns the distribution pθ(Vt−1|Vt, r1, r2). This dis-
tribution conditions not only on the previous representa-
tion Vt but also on the context representations r1 and r2
of the event mentions, thus facilitating the removal of the
irrelevant features from the context representations for our
ECI problem. To this end, following (Ho, Jain, and Abbeel
2020), we compute pθ(Vt−1|Vt, r1, r2) via the neural net-
work µθ(Vt, r1, r2, t) for the mean:

pθ(Vt−1|Vt, r1, r2) = N (Vt−1;µθ(Vt, r1, r2, t), (1− αt)I)

Using the reparameterization trick for µθ as in Equation 1,
we can instead leverage the adjustment prediction network
ϵθ(Vt, r1, r2, t) to obtain µθ(Vt, r1, r2, t) for reserve sam-
pling. Consequently, we can employ the mean square error
between ϵθ and ϵt to train our diffusion model to generate
the causal label representation V for ECI:

Ldiff = ||ϵθ(Vt, r1, r2, t)− ϵt||2

In the test time, by starting from VT ∼ N (0, I)
and then following the reverse process to sample from
pθ(Vt−1|Vt, r1, r2) L times, we can generate the representa-
tion V̄ = VT−L and use it as the causal label representation
for our ECI model.
Adjustment Prediction Network: We employ a trans-
former encoder network with K layers for the adjustment
prediction model ϵθ(Vt, r1, r2, t), aiming to compute a more
label-oriented representation with less irrelevant context fea-
tures for Vt (K is a hyper-parameter). To form the input for
ϵθ, we consider Vt as a sequence of m vectors of d dimen-
sions. The time step t is also transformed into an embed-
ding vector t̄ using the sinusoidal embedding in (Ho, Jain,
and Abbeel 2020). Here, we ensure that t̄ also has d dimen-
sions by feeding the sinusoidal embedding into a learnable
two-layer feed-forward network. Afterward, the representa-
tion vectors r1, r2 and t̄ will be prepended to Vt to create the

input vector sequence for the transformer network for ϵθ. Fi-
nally, based on the resulting sequence of hidden vectors in
the last layer of the transformer network, we retain the last
m vectors as the output for ϵθ(Vt, r1, r2, t). These m vec-
tors correspond to the vectors from Vt in the input and can
be used as the output Vt−1 for the next sampling step. Due
to the self-attention in the transformer network, the interme-
diate representation Vt can interact with the event context
representations r1 and r2 to discard irrelevant features.

Training and Inference
We jointly train our ECI and diffusion models in this work.
For the ECI model, we concatenate the event context repre-
sentations r1 and r2 and the first vector V [0] of the causal la-
bel representation V to form the feature vector to predict the
causal relation between e1 and e2. Here, V [0] corresponds
to the representation of the [CLS] token in Slbl. In partic-
ular, the concatenation is sent into a two-layer feed-forward
network with softmax in the end FFECI to compute a dis-
tribution over two possible outcomes for the binary causal-
ity prediction: PECI(·|e1, e2, C) = FFECI([r1, r2, V [0]).
The negative log-likelihood function is employed to train the
model:

LECI = − logPECI(y|e1, e2, C)

where y is the golden label for the causality of e1 and e2.
In addition, to control the reverse process for gradual

context-to-label representation transformation, we aim to
encourage each adjustment step to incrementally remove ir-
relevant context features from the intermediate representa-
tions Vt to achieve more effective label representations. As
such, we implicitly realize this goal by ensuring the main-
tenance of event causality information between e1 and e2 in
the intermediate representations Vt along the way, thus forc-
ing the adjustments to focus on irrelevant information for
causal prediction. To accomplish this maintenance, we pro-
pose to further utilize the intermediate representations Vt to
predict golden label y in the training process.

In particular, given the input event mentions e1 and e2,
we first sample a time step t from the uniform distribution
U(1, T ). Afterward, we obtain the representation Vt−1 from
our reverse distribution pθ(Vt−1|Vt, r1, r2). Consequently,
we feed the concatenation of r1, r2, and Vt[0] into FFECI

to obtain a distribution of two possible causality labels:
P t
inter(·|e1, e2, D) = FFECI([r1, r2, Vt[0]]). As such, we

will optimize the negative log-likelihood function

Lt
inter = − logP t

inter(y|e1, e2, D)

to preserve causal label information between e1 and e2 for
the intermediate representations Vt.

Finally, the training objective for our ECI model is:

L = LECI +
1

t
Lt
inter + Ldiff

Note that when t is large, the intermediate representation Vt

might still involve numerous irrelevant features, and opti-
mizing Lt

inter might cause the model to rely on such noisy
information for prediction. We thus scale Lt

inter by 1/t in
the overall loss to limit the influence for our loss in such
cases.
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Experiments
Evaluation Datasets
We assess our diffusion model for ECI, named DiffusECI,
on two English benchmark datasets: EventStoryLine (ESL)
(Caselli and Vossen 2017) and Causal-TimeBank (CTB)
(Mirza 2014). These datasets have been widely used in pre-
vious ECI research (Gao, Choubey, and Huang 2019; Liu,
Chen, and Zhao 2020; Tran Phu and Nguyen 2021). Specif-
ically, ESL (version 0.9) comprises 258 annotated docu-
ments spanning 22 topics, containing 4316 sentences and
5334 event mentions. There are 7805 intra-sentence men-
tion pairs and 46521 inter-sentence mention pairs, out of
which 1770 and 3855 pairs (respectively) are positive ex-
amples with causal relations. We follow the same data split
and setting in previous work for ESL (Liu, Chen, and Zhao
2020; Tran Phu and Nguyen 2021), which reserve the last
two topics as development data and perform 5-fold cross-
validation evaluation on the remaining 20 topics. On the
other hand, the CTB dataset consists of 184 annotated docu-
ments, encompassing 6813 events. Within CTB, there are
7608 event mention pairs, out of which 318 are positive
examples. Following previous work (Liu, Chen, and Zhao
2020; Zuo et al. 2021b), we use the same data split with 10-
fold cross-validation for the evaluation on CTB.

Furthermore, we evaluate our model’s performance on
MECI (Lai et al. 2022), a recent dataset designed for mul-
tilingual ECI. MECI provides annotations for ECI in text
across five different languages, namely English, Danish,
Spanish, Turkish, and Urdu. The documents in MECI are
sourced from Wikipedia, and the annotation schema follows
that used in ESL. This dataset provides both intra-sentence
and inter-sentence examples. To ensure a fair comparison,
we adopt the same data split for training/dev/test data por-
tions for each language, as established in (Lai et al. 2022),
for the evaluation process.

Hyperparameters
Our model utilizes the base version of RoBERTa for the
encoder, involving 12 transformer layers, 12 heads, and
d = 728 for the hidden vector size. We use the develop-
ment data of ESL to tune the hyperparameters for our Dif-
fusECI model. The tuning process returns the following val-
ues: K = 8 transformer layers with 8 heads and 768 hidden
dimensions for the adjustment prediction network ϵθ, 32 for
the minibatch size, 768 dimensions for hidden vectors in the
feed-forward networks, and 5e-5 for the learning rate with
the AdamW (Loshchilov and Hutter 2019) optimizer. For
the diffusion model, we follow the same hyper-parameters
in (Ho, Jain, and Abbeel 2020). In particular, the number of
diffusion steps T is set to 1000 while L = 100 is used for
the number of sampling steps in the reverse process. For the
nosing hyper-parameters αt = 1− βt, we employ constants
that are increased linearly from β1 = 10−4 to βT = 0.02.
Finally, a reproducibility checklist is provided the Appendix.

Baselines
We compare our model DiffusECI with the state-of-the-art
models for ECI in two groups of methods based on whether

they utilize the transformer architecture or not. In particu-
lar, for the ESL and CTB datasets, we consider the follow-
ing non-transformer baselines: (1) LSTM (Gao, Choubey,
and Huang 2019); (2) Seq (Gao, Choubey, and Huang 2019)
adopted from (Choubey and Huang 2017) for ECI; (3) LR+
and LIP (Gao, Choubey, and Huang 2019): document struc-
ture models; and (4) ML: a feature-based model in (Mirza
2014).

For the transformer-based models, the following base-
lines are explored in our comparison: (1) KnowBERT (Liu,
Chen, and Zhao 2020): a model integrating external com-
monsense knowledge and mention masking technique; (2)
KnowDis (Zuo et al. 2020): a distant supervision-based
model; (3) CauSeRL (Zuo et al. 2021a): a self-supervised
method with external causal statements; (4) LearnDA (Zuo
et al. 2021b): a learnable knowledge-guided data augmen-
tation method with dual learning to generate task-related
training data; (5) RichGCN (Tran Phu and Nguyen 2021):
a graph convolutional network incorporating rich document-
level structures; (6) ERGO (Chen et al. 2022): a relational
graph transformer framework formulating ECI as a node
classification problem; (7) CF-ECI (Mu and Li 2023): a
counterfactual reasoning mdoel to explicitly estimate the in-
fluence of context keywords and event pairs for debiasing;
(8) CHEER (Chen et al. 2023): a graph framework con-
sidering the centrality of events and their interactions in
a document-level graph; (9) SemSIn (Hu et al. 2023): a
graph model integrating event-centric and event-associated
semantic structures; (10) SENDIR (Yuan et al. 2023): a
document-level ECI framework using sparse attention and
discriminative reasoning; (11) KADE (Wu et al. 2023): a
model utilizing external knowledge and internal event anal-
ogy; (12) GenECI (Man, Nguyen, and Nguyen 2022): a
generative model jointly generating causal relation and de-
pendency path between input event mentions with reinforce-
ment learning; and (13) DPJL (Shen et al. 2022): a deriva-
tive prompt-based method.

Comparison
Table 1 reports the performance of DiffusECI and the base-
line models over the ESL and CTB datasets. For ESL, sim-
ilar to previous work (Tran Phu and Nguyen 2021; Wu
et al. 2023), we provide the results for different settings
for ECI, i.e., intra-sentence, inter-sentence, and both intra-
and inter-sentence causality predictions. The most impor-
tant observation from the table is that the proposed model
DiffusECI achieves significantly better performance than the
state-of-the-art model DPJL for sentence-level ECI on ESL.
DiffusECI also surpasses the best baseline model KADE
for inter- and intra+inter-sentence ECI on ESL and intra-
sentence ECI on CTB. For example, DiffusECI substan-
tially outperforms KADE by 3% for intra+inter-sentence
ECI on ESL and 8% for intra-sentence ECI on CTB. The
performance improvements are significant with p < 0.01,
which clearly shows the advantages of the proposed diffu-
sion model for ECI. Importantly, DiffusECI can accomplish
state-of-the-art performance for ECI over different settings
without any additional annotation or third-party tools. This
is different from recent work on ECI that requires additional
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ESL (Intra-sentence) ESL (Inter-sentence) ESL (Intra + Inter) CTB (Intra)
Model P R F1 P R F1 P R F1 P R F1
LSTM (2019) 34.0 41.5 37.4 13.5 30.3 18.7 17.6 33.9 23.2 - - -
Seq (2019) 32.7 44.9 37.8 11.3 29.5 16.4 15.5 34.3 21.4 - - -
LR+ (2019) 37.0 45.2 40.7 25.2 48.1 33.1 27.9 47.2 35.1 - - -
LIP (2019) 38.8 52.4 44.6 35.1 48.2 40.6 36.2 49.5 41.9 - - -
ML (2014) - - - - - - - - - 67.3 22.6 33.9
KnowBERT (2020) 41.9 62.5 50.1 - - - - - - 36.6 55.6 44.1
KnowDis (2020) 39.7 66.5 49.7 - - - - - - 42.3 60.5 49.8
CauSeRL (2021a) 41.9 69.0 52.1 - - - - - - 43.6 68.1 53.2
LearnDA (2021b) 42.2 69.8 52.6 - - - - - - 41.9 68.0 51.9
RichGCN (2021) 49.2 63.0 55.2 39.2 45.7 42.2 42.6 51.3 46.6 39.7 56.5 46.7
ERGO (2022) 57.5 72.0 63.9 - - - - - - 62.1 61.3 61.7
CF-ECI (2023) 47.1 66.4 55.1 - - - - - - 50.5 59.9 54.8
CHEER (2023) 59.9 69.9 62.6 45.2 52.1 48.4 49.7 53.3 51.4 56.4 69.5 62.3
SemSIn (2023) 64.2 65.7 64.9 - - - - - - 52.3 65.8 58.3
SENDIR (2023) 65.8 66.7 66.2 33 90 48.3 37.8 82.8 51.9 65.2 57.7 61.2
KADE (2023) 61.5 73.2 66.8 52.1 74.2 60.5 51.9 70.6 59.8 56.8 70.6 66.7
GenECI (2022) 59.5 57.1 58.8 - - - - - - 60.1 53.3 58.3
DPJL (2022) 65.3 70.8 67.9 - - - - - - 63.6 66.7 64.6
DiffusECI (ours) 65.3 78.3 71.4 61.9 59.9 60.9 63 64.1 63.5 87.7 66.1 75.4

Table 1: Model performance on ESL and CTB. The performance improvements of DiffusECI over the baselines are significant
with p < 0.01.

Model English Danish Spanish Turkish Urdu
P R F1 P R F1 P R F1 P R F1 P R F1

XLM-RoBERTa 48.7 59.9 53.7 35.9 36.2 36.0 50.6 49.1 49.9 44.0 59.4 50.5 40.4 43.2 41.8
KnowBERT 39.3 42.6 40.9 31.4 11.4 16.7 39.9 28.4 33.2 36.5 46.7 41.0 41.1 22.2 28.9
RichGCN 50.6 68.0 58.1 31.9 50.0 38.9 50.7 55.0 52.8 50.5 64.6 56.7 37.7 56.0 45.1
DiffusECI (ours) 70.1 68.3 69.2 42.7 53.3 47.4 62.9 50.2 55.8 52.6 66.5 58.7 58.1 52.5 55.2

Table 2: Model performance on the test sets of MECI for different languages.

resources to secure good performance, such as human anno-
tation for causal signals in DPJL or dependency parsing in
GenECI and RichGCN.

Moreover, Table 2 provides a comparison between Dif-
fusECI and the existing models (Lai et al. 2022) on the test
sets of the multilingual MECI dataset. To make DiffusECI
suitable for the multilingual context, we translate the En-
glish template Slbl for label representation computation into
the target languages. For the encoder model, we utilize the
multilingual version of RoBERTa, specifically the base ver-
sion of XLM-RoBERTa (Conneau et al. 2020). The table
illustrates that DiffusECI also substantially outperforms the
baseline models across all the languages in MECI. The ob-
served performance improvements are significant for all lan-
guages (p < 0.01), thereby further showcasing the effective-
ness of our model for multilingual ECI.

Ablation Study
To shed light on the impact of the designed diffusion model
for DiffusECI, we evaluate the performance of several ab-
lated baselines and variants:

• RoBERTa: This model concerns the complete removal

Model P R F1
RoBERTa 39.3 45.5 42.2
FF 54.2 59.1 56.5
TRANS 55.5 60.1 57.7
No-Event 55.6 62.1 58.7
DiffusECI (full) 63.0 64.1 63.5

Table 3: Model’s performance for ablation study, computed
for the intra+inter-sentence examples in ESL.

of the diffusion model that directly sends the concatenation
of the context representations r1 and r2 into a two-layer
feed-forward network with softmax in the end to compute
the label distribution for prediction.

• FF: This baseline replaces the diffusion model in Dif-
fusECI with a 8-layer feed-forward network (i.e., similar to
the number of layers in the adjustment prediction network
ϵθ). The feed-forward network will also aim to transform
the context representations r1 and r2 into the causal label
representation V [0] for the label sentence Slbl. The mean
squared error between V [0] and the predicted label represen-
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Model English Danish Spanish Turkish Urdu
# ≤ 15 # > 15 # ≤ 15 # > 15 # ≤ 15 # > 15 # ≤ 15 # > 15 # ≤ 15 # > 15

XLM-RoBERTa 64.0 11.5 44.9 20.8 54.5 20.9 61.7 19.1 46.1 14.8
DiffusECI 71.6 46.8 55.0 41.4 62.9 40.0 65.8 43.9 56.9 38.3
∆ 7.6 35.3 10.1 20.6 8.4 19.1 4.1 24.8 10.8 23.5

Table 4: Model performance on the test sets of MECI for different languages. # represents the number of words between e1 and
e2 in the input text. ∆ indicates the performance diference between DiffusECI and XLM-RoBERTa.

tation is used to train this network in the training step while
the predicted label representation from the network will be
combined with r1 and r2 to predict causal relation at the test
time.

• TRANS: This baseline substitutes the diffusion model
in DiffusECI with a transformer network of 8 layers as in
the adjustment prediction network ϵθ to predict the causal la-
bel representation V from r1 and r2. In particular, TRANS
also initializes V0 of size m × d randomly with Gaussian
noise. Afterward, r1 and r2 will be appended to the vec-
tor sequence in V0 to serve as the input for the transformer
network. The last m hidden vectors in the last layer Vpred

will serve as the prediction for V . V0 and the transformer
network can then be trained using the mean square error be-
tween V and Vpred. Eventually, Vpred[0] can be used to pre-
dict causal relation as done with V̂ [0] in DiffusECI.
• No-Event: To demonstrate the benefits of the event

mentions e1 and e2 in the sentence Slbl for label representa-
tion computation, this baseline removes e1 and e2 from Slbl

in the diffusion model of DiffusECI (preserving the other
components).

Table 3 presents model performance for the ablation study
over the ESL dataset. Comparing RoBERTa to FF and
TRANS, we observe notable performance improvements
when explicitly transforming event context representations
into causal label representations, as seen in FF and TRANS,
as opposed to RoBERTa’s implicit transformation. More-
over, DiffusECI enhances FF and TRANS performance sub-
stantially, highlighting the diffusion model’s role in achiev-
ing gradual context-to-label representation transformation
and irrelevant feature elimination for ECI. Additionally, ex-
cluding event mentions e1 and e2 from Slbl in No-Event
leads to significant performance reduction in DiffusECI,
highlighting their necessity to simplify the context-to-label
transformation and boost our model’s performance.

Analysis
To obtain further insights for the advantages of DiffusECI,
Table 4 compares the performance of Diffusion and XLM-
RoBERTa over the test sets of MECI in different languages.
Here, XLM-RoBERTa is similar to the RoBERTa model in
the ablation study, which predicts the causal relation from
the combined context representations r1 and r2 (encoded by
XLM-RoBERTa) using a feed-forward network. For each
language, the table considers performance for examples in
two scenarios, depending on whether the number of words
between the event mentions e1 and e2 in the input text are
greater than 15 or not. Apart from DiffusECI outperforming
XLM-RoBERTa across different languages and scenarios, a

crucial insight from the table is the notably larger perfor-
mance enhancement of DiffusECI for event mention pairs
that are positioned further apart in the input (i.e., exceeding
15 words). This observation implies that the major reason
for the better performance of DiffusECI lies in its enhanced
ability to effectively eliminate irrelevant features and learn
better representations for longer input for ECI. Overall, it
further demonstrates the benefits of the diffusion model in
our method for the ECI problem.

Related Work
Rule-based and feature-based methods represent the major
approach in early research for ECI (Riaz and Girju 2014;
Beamer and Girju 2009; Do, Chan, and Roth 2011; Hidey
and McKeown 2016; Ning et al. 2018; Hashimoto 2019;
Gao, Choubey, and Huang 2019). With the introduction of
deep learning methods, the performance of ECI models have
been advanced to a higher level (Zuo et al. 2021b; Chen et al.
2022). In addition to the use of pre-trained language models,
at the core of such deep learning models characterizes dif-
ferent additional resources to advance the performance for
ECI, such as distant supervision data (Zuo et al. 2020), back-
ground knowledge (Liu, Chen, and Zhao 2020), dependency
parsing (Tran Phu and Nguyen 2021), and external causal
statements (Zuo et al. 2021a). Recently, some work has also
explored a new formulation for ECI using generative mod-
els to demonstrate promising performance (Man, Nguyen,
and Nguyen 2022; Shen et al. 2022). However, the common
issue of previous ECI models concerns the drastic changes
in the processes to transform event context representations
to causal label representations, which cannot secure optimal
performance. Our work thus introduces the first diffusion
model to enhance the context-to-label representation trans-
formation processes, thus boosting the causal prediction per-
formance for ECI.

Conclusion
We introduce the first diffusion model for event causality
identification. Our model improves the context-to-label rep-
resentation transformation for ECI models by decomposing
the process into multiple steps to facilitate the representation
learning performance. We present a controlling mechanism
to encourage the representation transition in each step to fo-
cus on incremental irrelevant feature elimination, thus lead-
ing to cleaner causal label representations for ECI. We ex-
tensively evaluate our model across diverse datasets encom-
passing different languages and learning scenarios, show-
casing its state-of-the-art performance.
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