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Abstract

Cross-lingual named entity recognition (CrossNER) faces
challenges stemming from uneven performance due to the
scarcity of multilingual corpora, especially for non-English
data. While prior efforts mainly focus on data-driven trans-
fer methods, a significant aspect that has not been fully ex-
plored is aligning both semantic and token-level represen-
tations across diverse languages. In this paper, we propose
Multi-view Contrastive Learning for Cross-lingual Named
Entity Recognition (MCL-NER). Specifically, we reframe
the CrossNER task into a problem of recognizing relation-
ships between pairs of tokens. This approach taps into the
inherent contextual nuances of token-to-token connections
within entities, allowing us to align representations across
different languages. A multi-view contrastive learning frame-
work is introduced to encompass semantic contrasts between
source, codeswitched, and target sentences, as well as con-
trasts among token-to-token relations. By enforcing agree-
ment within both semantic and relational spaces, we mini-
mize the gap between source sentences and their counterparts
of both codeswitched and target sentences. This alignment
extends to the relationships between diverse tokens, enhanc-
ing the projection of entities across languages. We further
augment CrossNER by combining self-training with labeled
source data and unlabeled target data. Our experiments on
the XTREME benchmark, spanning 40 languages, demon-
strate the superiority of MCL-NER over prior data-driven and
model-based approaches. It achieves a substantial increase of
nearly +2.0 F1 scores across a broad spectrum and establishes
itself as the new state-of-the-art performer.

Introduction
Cross-lingual named entity recognition (CrossNER) suf-
fered from significant performance degradation in low-
resource languages with limited data. In response to this
challenge, the advent of multilingual pre-trained models
(Devlin et al. 2018; Conneau et al. 2019; Yang et al. 2020b,
2021b; Wang et al. 2019; Ma et al. 2020) has driven the de-
velopment of model-based methods (Keung, Lu, and Bhard-
waj 2019; Bari, Joty, and Jwalapuram 2020; Wu et al. 2020a;
Wang et al. 2019, 2020; Wu et al. 2020c). These methods
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Figure 1: Illustration of MCL-NER vs. existing methods
TSL (Wu et al. 2020a) and CROP (Yang et al. 2022a). Dsrc,
Dtrans and Dcds are the source, translated-source and code-
switched data respectively. M∗ represents the trained mod-
els from the corresponding data. Our model leverages multi-
view contrastive learning to bridge the gap between cross-
lingual semantic and token-to-token representations.

aim to facilitate knowledge transfer from languages with
ample resources to those with fewer resources. Furthermore,
recent studies (Wu et al. 2020b; Yang et al. 2022a; Zhou
et al. 2022, 2023) unify model-based and data-based transfer
methods to enhance CrossNER. The efficacy of these meth-
ods hinges on both the inherent cross-lingual abilities of the
pre-trained models and the quality of the synthetic data pro-
duced via phrase-level and sentence-level translation.

Along the research line of levering the cross-lingual pre-
trained model, previous works (Mayhew, Tsai, and Roth
2017; Xie et al. 2018; Wu et al. 2020b; Wu, Wang, and
Liu 2020; Chen et al. 2021; Yang et al. 2022a) perform
phrase-level and sentence-level translation and annotate cor-
responding target entities. These methods can be broadly
classified into two groups, as illustrated in Figure 1. Within
the first group, methods like TSL (Wu et al. 2020a) generate
soft labels in the target language based on the model trained
using the source language. These soft labels are then utilized
to facilitate training a NER model for the target language. In
contrast, techniques belonging to the second group, such as
CROP (Yang et al. 2022a), leverage both the source model
and translation data to fine-tune the NER model for the target
domain. Despite their effectiveness, most existing studies fo-
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cus primarily on aligning semantic spaces, often disregard-
ing the crucial cross-lingual syntactic context encompass-
ing token-to-token relationships within entities. Yet, these
relations play a pivotal role in cross-lingual NER learn-
ing, given that the structure of token-to-token relationships
within bilingual sentences should exhibit similar patterns.
Consequently, formulating a CrossNER framework capable
of capturing token-level contextual nuances across diverse
languages emerges as a significant challenge.

To address the above limitation, we propose a novel
multi-view contrastive learning framework for cross-lingual
named entity recognition in this work. We reformulate
the problem of entity recognition into token-to-token rela-
tion classification. A multi-view contrastive learning with
source-codeswitch semantic contrastive and token-to-token
relation contrastive is employed to train the cross-lingual
NER model. Specifically, the token-to-token relation as-
pect concentrates on both intra-entity and extra-entity re-
lationships. In the context of intra-entity relations, two to-
kens’ adjacency is scrutinized, along with determining if
they signify the start-end relationship, i.e., whether they
represent the initial and concluding words of the same en-
tity. Conversely, extra-entity relations between tokens sig-
nify that they do not pertain to the same entity. To improve
the representation of entities across different languages, we
introduce sentence-level semantics source-codeswitch con-
trastive learning. Within this framework, code-switching
sentences simultaneously incorporate source and target to-
kens, promoting more effective cross-lingual knowledge
transfer. Further, the multilingual NER model can be iter-
atively trained on the distilled multilingual corpora from the
initial multilingual model, which makes full use of unla-
beled training data to improve the performance of the Cross-
NER. We conduct experiments on the XTREME benchmark
covering 40 languages and then test on the CoNLL bench-
mark of 4 languages. Experimental results demonstrate that
our method significantly outperforms most cross-lingual se-
quence labeling and span-based methods. Extensive probing
experiments further analyze how our method can benefit the
token-level cross-lingual representation by encouraging the
consistency of different languages.

Our main contributions are summarized as follows:

• We develop a multi-view contrastive learning approach
with both sentence-level and token-level aligning, simul-
taneously enhancing the semantic and entity representa-
tion of different languages.

• We introduce the code-switched data together with the
source data to jointly conduct the cross-lingual transfer,
which effectively captures the relationships between to-
kens in entities, improving the CrossNER performance.

• We conduct comprehensive experiments on two bench-
marks, demonstrating competitive cross-lingual NER
performance, establishing new state-of-the-art results
on most of the evaluated cross-lingual transfer pairs
(XTREME-40 and CoNLL).

Related Work
Cross-lingual NER Cross-language named entity recog-
nition (CrossNER) achieves significant progress in recent
years due to the development of pre-trained language mod-
els (Ni, Dinu, and Florian 2017; Mayhew, Tsai, and Roth
2017; Xie et al. 2018; Wu and Dredze 2019; Yu, Bohnet,
and Poesio 2020; Hu et al. 2020; Wu et al. 2020b,a; Liu
et al. 2021; Han et al. 2022; Zhou et al. 2022; Yang et al.
2020a, 2022a). The approaches for CrossNER are mainly di-
vided into two categories: model-transfer and data-transfer
methods. Model-transfer methods (Xie et al. 2018) gener-
ally use language features to train an NER model on the la-
beled source language data and then directly use it on the
target language data. These features include aligned word
representations (Ni, Dinu, and Florian 2017; Wu and Dredze
2019; Li et al. 2021b), Wikifier features (Mayhew, Tsai,
and Roth 2017), and meta-learning (Wu et al. 2020c). Data-
transfer methods (Wu et al. 2020b,a; Zhou et al. 2022; Yang
et al. 2022c,b,a; Wang et al. 2023; Chai et al. 2024) con-
struct pseudo-labels for target language data by translating
data (Wu et al. 2020b; Guo et al. 2022; Yang et al. 2021a)
from the source language typically. Further, self-training can
continue to solve the lack of target data based on the exist-
ing trained CrossNER model. However, these methods usu-
ally use sequence tagging and fail to model the impact of
token-to-token relationships in NER.

Contrastive Learning Contrastive learning is used in
computer vision for image classification (Chen et al. 2020;
He et al. 2020; Khosla et al. 2020) and is now widely used
in various tasks (Chuang et al. 2020; Giorgi et al. 2020; Hou
et al. 2020; Gao, Yao, and Chen 2021; Das et al. 2021; Chen
et al. 2022). In NLP, (Giorgi et al. 2020; Gao, Yao, and Chen
2021; Chen et al. 2022) propose to enhance semantic repre-
sentation and a pre-trained model based on contrastive learn-
ing. Hou et al. (2020) apply contrastive learning for slot fill-
ing and Das et al. (2021) propose CONTaiNER for few-shot
NER combining contrastive learning with Gaussian distri-
bution. Contrastive learning can effectively pull the distance
between positive samples and push the distance between
negative samples to achieve better recognition results.

Problem Formulation
CrossNER aims to extract entities from target language sen-
tences and assign them to predefined categories, without la-
beled data specific to the target language. Specifically, given
the target sentence X = {x1, . . . , xN}, each token is as-
sociated with a corresponding label t = t1, . . . , tN (Tags
follow the BOI schema, such as B-LOC, I-LOC, O), turn-
ing this task into a sequence labeling task (Wu et al. 2020b;
Yang et al. 2022a). Building on the insights from prior re-
search (Tang et al. 2022; Ye, Lin, and Sun 2021; Shang,
Huang, and Mao 2022; Zhu and Li 2022; Li et al. 2021a;
Mo et al. 2023), our approach tackles the CrossNER prob-
lem by establishing relationships between all tokens within
multilingual sentences. This strategy serves to bridge the se-
mantic and syntactic gaps across different languages simul-
taneously, thus enabling more effective cross-lingual NER.
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Figure 2: Overview of the proposed MCL-NER. It transforms the sequence labeling problem to the classification of the token
pair relation with semantic contrastive learning and token-to-token relation contrastive learning.

We reformulate the CrossNER task as a token pair rela-
tion classification problem. Given the source sentence X =
{x1, . . . , xN} of N tokens, the relations between token pairs
in X are extracted into a relation set/matrix R, which can be
categorized into intra-entity Rin and extra-entity Rextra re-
lations. For an entity E = (xs, . . . , xe) spanning from the
s-th token to the e-th token (1 ≤ s ≤ e ≤ N ), R(xs, xe) de-
notes the start-end relation. Additionally, R(xi, xi+1) (s ≤
i < e) signifies the neighbor relation between consecutive
tokens within the entity. Note that the entity with just one
word has a start-end relation and no neighbor relation. Here,
R(·, ·) denotes the relation between two tokens. The intra-
entity Rin encompasses both start-end relations (R(xs, xe))
and neighbor relations (R(xi, xi+1) (s ≤ i < e)) within
an entity. Moreover, relations such as R(xi, xj) (s ≤ i <
e ∧ j /∈ [s, e]) represent the extra-entity relations.

P (R|X) =
∏

1<i,j<N∧i ̸=j

P (R(xi, xj)|xi, xj ; Θner) (1)

where the relation set R contains relations between the token
xi and xj in the sentence. Θner is the NER model parameter.

In the cross-lingual setting, we amalgamate both source
and target languages within a single sentence. Subsequently,
we employ contrastive learning techniques to narrow the dis-
parity between the source relation R(xi, xj) and the corre-
sponding aligned relations R(ya, yb) in the target language.
Simultaneously, we refine the representations of xi:j and
ya:b through semantic contrastive learning. This multi-view
contrastive learning process can be conceptualized as:

min(|R(xi, xj)−R(ya, yb)|+ |F (xi, xj)− F (ya, yb)|) (2)

where R(·) earns relation representation, F (·) gets semantic
representation, |R(xi, xj) − R(ya, yb)| is relation distance,
|F (xi, xj)− F (ya, yb)| is representation distance.

Cross-Lingual Multi-view Contrastive
Learning

As shown in the overall architecture of Figure 2, we resolve
the cross-lingual NER task by distinguishing the relation be-
tween tokens and tokens for better modeling of intra-entity
and extra-entity. We design a semantic contrastive objective
to cluster the representations with the same meaning in dif-
ferent languages and introduce token-to-token relation con-
trastive learning for gathering similar token-to-token rela-
tions within entities across different languages. Following
the previous work (Wu et al. 2020b; Yang et al. 2022a), the
initial model is jointly trained on labeled source data and
its code-switch counterparts (the translated data is a special
case of code-switched data). Further, the target raw data is
labeled by the previous model to build the synthetic corpora
for the subsequent iteration of optimizing via self-training.

Semantic Contrastive Learning
For zero-resource CrossNER without target annotated data,
effectively representing the same entity with the cross-
lingual pre-trained model in different languages becomes
crucial to enhance the performance of the CrossNER model.
To address this challenge, we enrich the original source sen-
tences by randomly substituting source phrases with target
translations to create code-switched sentences comprised of
both source and target tokens. This approach provides as-
sistance for our proposed model to align the cross-lingual
context of different languages and improve its ability to
recognize named entities. Contrastive learning can be nat-
urally and effectively used to reduce the gap among differ-
ent languages under the cross-lingual scenario with code-
switched data. Based on the code-switched corpora, we pro-
pose source-codeswitch contrastive learning to minimize
the distance between positive samples and maximize the
distance between negative samples. Constructing a code-
switched sentence for CrossNER involves mixing entity
names in both source and target languages to ensure that the
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code-switched sentence is fluent and accurate in terms of
contextual information. For example, a code-switched sen-
tence comprised of English and Chinese entity names can be
“我要去北京看看 the Great Wall (I want to go to Beijing
to see the Great Wall)”. In this sentence, “北京 (Beijing)”
is the Chinese location entity while “the Great Wall” is the
English translation of the Chinese token “长城”. The code-
switched sentence containing both source and target entities
facilitates entity recognition in CrossNER.

Given a source sentence X = {x1, . . . , xN} and its code-
switched sentence Y = {y1, . . . , yM} (the target translation
is a special case of the code-switched sentence), we consider
them a positive sample pair within a batch and the source
sentence is paired with other negative samples. The model
is encouraged to learn language-agnostic representations for
capturing the same meaning across different languages. The
cosine similarity is used to measure the distance between
sentence pairs. We apply an extra contextual fusion layer to
refine the features from the cross-lingual pre-trained model
to enhance the contextual information within the sequence.
Supposing H = {h1, . . . , hN} denote the final features of
each token in source sentence X and H

′
= {h′

1, . . . , h
′

N}
denote the features of translated data, we obtain the sentence
semantic representation Havg = f(H) and H ′

avg = f(H ′),
where f(·) denotes the average or pooling operation.

We introduce the contrastive learning between source and
code-switched sentences, which helps model to reduce the
gap of different language entities with the same meaning as:

Lsc = − log
esim(Havg,H

′
avg)/τ∑B

j=1e
sim(Havg,H

j
avg)/τ

(3)

where sim(·) is cosine similarity, B is the number of source
data, τ is the temperature. Havg and H ′

avg are corresponding
representations of the source and code-switched sentence.

Token-to-Token Relation Contrastive Learning
We introduce the token-to-token relation of our cross-lingual
NER method and then leverage token-pair relation con-
trastive learning to cluster the representation of different lan-
guages. Token-pair relation is the important feature in the
NER task (Shang, Huang, and Mao 2022; Zhu and Li 2022),
which can be used to enhance the cross-lingual entity recog-
nition by constraining the cross-lingual token-pair relation.

Given a sentence X = {x1, . . . , xN}, we obtain the hid-
den representation H = {h1 . . . , hN} after the encoder
layers. The relation representation {rij |(i, j ∈ [1, N ])} ∈
RN×N×dh of token pair (xi, xj) is then obtained through
the biaffine token-to-token relation layer.

h̃i = MLP(hi), h̃j = MLP(hj)

rij = h̃i
⊤
W1h̃j +W2(h̃i ⊕ h̃j) + b

(4)

where W1, W2 and b denote the trainable parameters, ⊕
means concatenation. MLP is the fully connected layer.

The source or code-switched tokens are fed into the condi-
tional layer normalization (Yu et al. 2021) module to obtain

the relation representation r
′

ij as:

r
′

ij = γi ⊙ (
hj − µ

σ
) + λi

γi = Wαhi + bα, λi = Wβhi + bβ

µ =
1

dh

dh∑
k=1

hjk, σ =

√√√√ 1

dh

dh∑
k=1

(hjk − µ)2

(5)

where γi and λi are from hi. µ and σ are the mean and stan-
dard deviation taken across hj elements respectively. hjk is
the k-th dimension of hj . ⊙ is the element-wise product. dh
is hidden size of hi. Wα, Wα, bα, bβ are learned parameters.

Finally, we take the token-to-token relation representa-
tions rij and r′ij into an MLP layer to obtain their projection
representations zij and z′ij . The contrastive learning objec-
tive of token-to-token relation is defined as:

Ltc = − log
esim(zij ,z

′
ij)/τ∑2N

j=1e
sim(zij ,z

′
ij)/τ

(6)

where contrastive learning applies to both source and target
data, sim(zij , z

′
ij) is the cosine similarity of source sentence

and its counterparts (e.g. code-switched or source sentence).

Self-Training
Due to the scarcity of annotated target language data, we
use self-training to get pseudo labels for target data. First,
our cross-lingual NER model Θsrc

ner is trained on the source
labeled dataset Dsrc

x,r = {((xi, xj), rij)}Ni=1,j=1:

Lce = − 1

N2

∑
i

∑
j

R∑
r=1

r̂ij logP (rij = r|(xi, xj)) (7)

where r̂ij is the gold relation label of the token pair (xi, xj),
P (rij |(xi, xj) is the relation prediction probability of the
token pair (xi, xj). R denotes the total number of relation
classes. The final loss can be formed of multiple contrastive
learning losses and the token-to-token relation class loss.
The final loss of the CrossNER model is accumulated as:

LΘsrc
ner

= Lsrc
ce + w(Lsrc

sc + Lsrc
tc ) (8)

Then, the model Θsrc
ner generates pseudo labels of token pairs

for unlabeled target dataset Dtgt
x = {(xi)}Mi=1. The model

is trained on the source and target pseudo dataset. Since
pseudo-labels of the target data may bring extra noise, we
only retain the contrastive learning of token pair relation and
minimize the mean squared error (Ren et al. 2022) of the
source and target model on the prediction distribution. The
training objective of the model Θtgt

ner is defined as:

Ltgt = Ltgt
ce + w1Ltgt

tc + w2Lmse (9)

Lmse =
1

N2

N∑
i=1

N∑
j=1

|P (rij |Θsrc
ner), P (rij |Θtgt

ner)| (10)

where the loss Ltgt
ce of the target model is similar to Equation

7, Ltgt
tc likes Equation 6, P (rij |Θ) is the predicted probabil-

ity of the token pair relation under the model Θ, w1 and w2

are the hyperparameters. | · | is the MSE distance.
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mBERT
Method af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv ka
mBERT (Devlin et al. 2018) 76.9 44.5 77.1 68.8 78.8 71.6 74.0 76.3 68.0 48.2 77.2 79.7 56.5 66.9 76.0 46.3 81.1 28.9 66.4 67.7
+Translate Train (Yang et al. 2022a) 74.5 37.6 77.8 73.2 77.2 74.9 69.4 74.1 63.2 43.1 75.9 76.1 55.4 68.1 77.2 48.2 77.2 36.6 55.1 64.4
UniTrans (Wu et al. 2020b) 78.2 47.0 79.5 74.6 79.8 75.6 75.2 76.5 67.2 49.3 75.6 80.1 58.4 72.1 77.9 44.6 78.3 37.6 56.2 69.9
CROP (Yang et al. 2022a) 81.0 48.0 80.8 74.9 80.3 78.7 84.2 78.3 70.6 63.2 79.1 83.5 64.7 77.1 82.5 46.4 79.9 45.3 57.7 74.1
Ours 82.2 50.3 81.1 79.0 82.3 78.9 83.2 79.3 72.2 54.9 79.4 82.3 61.9 78.9 78.1 63.3 82.3 57.2 72.2 70.4
Method kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh Avgall

mBERT (Devlin et al. 2018) 50.4 60.2 53.7 56.2 61.9 47.6 82.1 79.6 65.2 72.8 50.8 46.8 0.4 71.2 75.5 36.9 69.7 51.7 44.1 61.7
+Translate Train (Yang et al. 2022a) 48.2 61.2 61.0 58.7 67.5 57.3 79.6 78.4 61.2 69.2 62.7 51.2 2.4 72.7 72.6 58.9 69.5 51.1 45.3 62.3
UniTrans (Wu et al. 2020b) 52.5 61.4 63.5 62.3 65.8 59.2 82.4 80.3 64.8 65.2 63.2 56.1 3.1 73.4 77.9 64.1 69.7 50.1 47.4 64.5
CROP (Yang et al. 2022a) 54.9 62.6 72.7 70.6 71.1 61.3 84.6 81.7 69.7 68.3 64.9 61.6 3.9 76.9 80.4 78.0 70.0 51.8 54.4 68.5
Ours 56.0 63.4 62.4 67.9 76.2 64.3 85.6 83.3 71.1 75.3 57.9 60.4 11.2 83.5 74.3 72.4 81.4 65.4 63.5 70.4

Table 1: Experimental results on XTREME-40 initialized by pretrained cross lingual language model mBERTbase.

XLM-R
Method af ar bg bn de el es et eu fa fi fr he hi hu id it ja jv ka
XLM-R (Conneau et al. 2019) 74.6 46.0 78.0 68.3 75.2 75.7 70.2 72.2 59.9 52.0 75.8 76.6 52.4 69.6 78.2 47.4 77.7 21.0 61.8 66.5
+Translate Train (Yang et al. 2022a) 76.2 47.8 79.2 74.3 75.8 67.7 68.4 75.8 61.2 41.0 76.8 76.4 55.0 71.9 76.0 50.6 78.1 35.4 54.7 68.4
UniTrans (Wu et al. 2020b) 78.1 48.1 79.3 74.6 75.2 74.9 73.8 76.9 62.7 49.2 74.6 76.5 53.4 70.4 76.9 48.6 77.3 21.6 62.2 66.8
CROP (Yang et al. 2022a) 80.3 45.2 80.4 75.7 79.6 78.5 83.1 77.2 66.8 65.5 77.9 82.9 63.5 77.4 81.6 46.1 78.8 45.4 63.2 74.0
Ours 79.7 57.0 81.5 79.5 80.2 79.1 79.9 77.7 67.1 55.8 78.1 83.0 64.8 78.1 78.5 51.9 79.9 52.9 61.5 71.4
Method kk ko ml mr ms my nl pt ru sw ta te th tl tr ur vi yo zh Avgall

XLM-R (Conneau et al. 2019) 43.2 49.9 62.3 59.6 67.3 53.5 80.2 78.1 64.3 70.3 55.0 50.1 3.0 69.4 78.1 63.6 68.2 47.5 27.7 61.3
+Translate Train (Yang et al. 2022a) 40.1 55.5 60.0 59.8 69.8 61.6 79.6 76.4 60.9 70.0 63.7 50.7 3.4 74.7 72.3 62.7 69.6 46.8 41.2 62.3
UniTrans (Wu et al. 2020b) 46.5 57.2 65.5 64.5 70.2 62.6 81.8 79.4 68.8 68.9 65.1 56.1 4.8 74.8 76.4 71.0 69.8 55.1 44.4 64.2
CROP (Yang et al. 2022a) 50.2 59.8 73.8 71.6 71.8 69.0 83.5 82.3 70.2 69.0 65.6 59.9 3.1 75.5 80.5 80.4 70.1 52.6 50.3 68.2
Ours 53.2 57.0 69.1 67.1 74.4 66.4 83.0 81.2 65.1 71.8 61.8 61.2 19.2 79.3 76.2 80.5 76.7 77.2 60.3 69.7

Table 2: Experimental results on XTREME-40 initialized by pretrained cross lingual language model XLM-Rbase.

Experiments
Datasets
XTREME-40 The proposed method is evaluated on the
XTREME benchmark (Hu et al. 2020). Following the pre-
vious work (Hu et al. 2020), we use the same split for the
train, validation, and test sets, including the LOC, PER, and
ORG tags. All NER models make the English training data
the source language and evaluate other languages data.

CoNLL We also run experiments on CoNLL-02 and
CoNLL-03 datasets (Sang 2002; Sang and Meulder 2003)
covering 4 languages: Spanish (es), Dutch (nl), English (en),
and German (de). The datasets have LOC, ORG, MISC, and
PER entity types. We split them into the train, validation,
and test sets, following the prior work (Yang et al. 2022a).

Implementation Details and Evaluation
For a fair comparison, we adopt the same structure and
model size, which all have 12 layers with an embedding di-
mension of 768 under the base architecture of both mBERT
(Devlin et al. 2018) and XLM-R (Conneau et al. 2019). We
set the batch size as 32 for XTREME-40 and CoNLL. We
use AdamW (Loshchilov and Hutter 2019) for optimization
with a learning rate of 1e−5 for the pre-trained model and
1e−3 for other extra components. The dimension of the pro-
jection representations for contrastive learning is set to 128.
We use average entity-level valid F1 scores of all languages
to choose the best checkpoint and report the F1 scores on
all test sets. We compare our approach with the different
strong baselines UniTrans (Wu et al. 2020b), CROP (Yang
et al. 2022a), Translate-Train (Yang et al. 2022a), and TSL
(Wu et al. 2020a), which are initialized by the cross-lingual

pre-trained model mBERT and XLM-R. We set a threshold
and remove samples below it to mitigate the noise raised by
pseudo-label data. Besides, we eliminate data that only has
the “O” label and use the continuity of the inner relation of
the entity to remove some discontinuous entity data.

Main Results
XTREME-40 We present the results on the XTREME-40
dataset in Table 1 and 2 by different cross-lingual pre-trained
language models including mBERT and XLM-R. Overall,
the average F1 score of our method outperforms the previ-
ous baselines by a large margin. Compared with the meth-
ods UniTrans and CROP initialized by mBERT, our work
significantly improves +1.9 F1 points. For languages id (In-
donesian), zh (Chinese), and ja (Japanese) distant from En-
glish, our method can further gain +10 points improvement
than CROP. It is due to the effectiveness of the shared repre-
sentations across the different languages by multi-view con-
trastive learning. For the methods initialized by the XLM-R,
our model also gets a consistent promotion by +1.5 points
compared to the baseline CROP in the average F1 score.

CoNLL Table 3 shows the experimental results on CoNLL
dataset. To make a fair assessment, we use the mBERT base
model. Compared with TSL, our approach achieves an av-
erage F1 score improvement of +2.3. An averaged +1.3 F1
improvement is gained compared to UniTrans and CROP,
which means the effectiveness of our proposed multi-view
contrastive learning comprised of semantic and token pair
relation contrastive. In contrast to the previous models, our
method demonstrates favorable enhancements by reducing
the gap among different languages in the shared space and
clustering cross-lingual entities with the same meaning.
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Method de es nl Avg
X-Lingual Clusters (Täckström et al. 2012) 40.4 59.3 58.4 52.7
+Wikifier (Tsai et al. 2016) 48.1 60.6 61.6 56.8
Inverted Softmax (Smith et al. 2017) 58.5 65.1 65.4 63.0
Cheap Translation (Mayhew et al. 2017) 57.2 64.1 63.4 61.6
BWET (Xie et al. 2018) 57.8 72.4 71.3 67.2
TMP (Jain et al. 2019) 65.2 75.9 74.6 71.9
mBERT (Devlin et al. 2018) 75.0 74.6 77.9 75.8
BERT-f (Wu and Dredze 2019) 71.1 74.5 79.5 75.0
XLM-R (Conneau et al. 2019) 73.4 77.4 78.9 76.6
Cross-Augmented (Bari et al. 2020b) 61.5 73.5 69.9 68.3
Meta-learning-based (Wu et al. 2020c) 73.2 76.8 80.4 76.8
TSL (Wu et al. 2020a) 75.3 78.0 81.3 78.2
UniTrans (Wu et al. 2020b) 74.8 79.3 82.9 79.0
MulDA (Liu et al. 2021) 78.2 77.5 78.4 78.0
+Translate Train (Yang et al. 2022a) 74.2 77.8 79.2 77.1
CROP (Yang et al. 2022a) 80.1 78.1 79.5 79.2
Ours 81.0 79.2 81.3 80.5

Table 3: Experimental results on CoNLL.
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w/o tc
w/o sc & tc

Figure 3: Ablation study of MCL-NER. XTREME-Avg de-
notes the average F1 scores of 39 languages in XTREME.

Analysis
Ablation Study To verify the effectiveness of MCL-NER,
we introduce the following series of ablation experiments:
① Ours, which is the final model with the multi-view con-
trastive objectives; ② w/o sc, which adopts token-to-token
relation contrastive learning; ③ w/o tc, which use the se-
mantic contrastive objective; ④ w/o sc & tc, where seman-
tic and token pair relation contrastive learning are removed.
From the ablation experiments in Figure 3, our method out-
performs ②, ③, and ④. ② w/o sc, which shows aligned se-
mantic representations in different languages play a pivotal
role in CrossNER by enhancing shared semantic represen-
tations. ③ w/o tc gets worse performance compared to our
method ①, indicating that the contrastive learning of relation
between tokens clusters the representations of the similar en-
tities. ④ w/o sc & tc has the worst performance, which ver-
ifies that a multi-view of semantic and relation contrastive
learning between tokens is the best strategy.

Representation on Token-to-Token Relationships To
intuitively understand the effectiveness of token-to-token re-
lation representation contrastive, we take a close look at the

−20
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40
60
80
100
120
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Figure 4: (a) denotes the representation on token-to-token
relation without contrastive learning and (b) is the represen-
tation on token-to-token relation with contrastive learning.

locper
orgorg

(a)

locper
orgorg

(b)

Figure 5: t-SNE visualization of different pre-defined cate-
gories (e.g. LOC) in Chinese. (a) and (b) indicate the token-
to-token relation representations between entities w and w/o
contrastive learning respectively.

token-to-token relations within a sentence. We visualize the
distance between the generated representations of the token-
to-token relationships without contrastive learning and the
counterparts with our method. The distance matric (cosine
similarity) is shown in Figure 4. It can be seen that the sim-
ilarity between the token-token relationship features of the
baseline displays a random pattern. However, two slashes
of Figure 4(b) with higher brightness appear in the similar-
ity matrix in a fixed pattern. The positive sample pair has a
higher score with brightness, achieving the desired effect.

Distribution of Multilingual Corpora We conduct a t-
SNE visualization (van der Maaten and Hinton 2008) of
token-to-token relation representations. Figure 5(a) implies
that the model w/o multi-view contrastive learning generates
token pair relation representations between different classes.
Figure 5(b) shows that MCL-NER w/ multi-view contrastive
objectives produce more distinct and distinguishable repre-
sentations, where entities can be separated into independent
regions for better performance of CrossNER.

Effect of Training Data Size We consider the impact
from two aspects: the amount of source labeled data and
the pseudo-label target data. Randomly sample to build the
source data size ratio for analytic experiments according to
a proportion from 10%, 20%, . . . , 100% in Figure 6(a). In
Fgiure (b), we randomly sample the pseudo-label target data
and put the train data size to {1K, 2K, . . . , ALL} sentences
to train the model. From Figure 6(a), surprisingly, train-
ing with only 10% of the source data brings huge gains.
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Figure 6: (a) Evaluation results on the validation sets with different source data training sizes. (b) Evaluation results on the
validation sets with different pseudo-label target data training sizes. (c) Pseudo label quality for unlabeled target data.

SentencesLanguage
1981 war Ronald Reagan{PER} als Pr ̈asident der Vereinigten Staaten{ORG} vereidigt worden .

German
TSL: Ronald Reagan{PER} || Pr ̈asident der Vereinigten Staaten{PER}

UniTrans: Ronald Reagan{PER} || Vereinigten Staaten{LOC}

Ours: Ronald Reagan{PER} || Pr ̈asident der Vereinigten Staaten{ORG}

Hij stond met Hull City AFC{ORG} in de finale van de strijd om de FA Cup 2014{ORG} , die de ploeg van trainer-
coach Steve Bruce{PER} met 3-2 verloor van Arsenal{ORG} .

Dutch TSL: Hull City AFC{ORG} ||  Steve Bruce{PER} || Arsenal{ORG}

UniTrans: Hull City AFC{ORG} || FA Cup 2014{ORG} || trainer-coach Steve Bruce{PER} || Arsenal{ORG}

Ours: Hull City AFC{ORG} || FA Cup 2014{ORG} || Steve Bruce{PER} || Arsenal{ORG}

世界上有多个地⽅以“剑桥”为地名，分别分布在英国{LOC}、美国{LOC}、加拿大{LOC}、澳大利亚{LOC}、
新西兰{LOC}等国：此外，“剑桥”还是剑桥大学{ORG}的简称。

Chinese TSL: 剑桥{LOC} || 英国{LOC} || 美国{LOC} || 加拿大{LOC} || 澳大利亚{LOC} || 新西兰{LOC} || 剑桥大学{ORG}

UniTrans: 剑桥{LOC} || 英国{LOC} || 美国{LOC} || 加拿大{LOC} || 澳大利亚{LOC} || 新西兰{LOC} || 剑桥大学{ORG}

Ours: 英国{LOC} || 美国{LOC} || 加拿大{LOC} || 澳大利亚{LOC} || 新西兰{LOC} || 剑桥大学{ORG}

Figure 7: Case study on CrossNER. Texts with colorful backgrounds are gold entities, and the red fonts are incorrect predictions.

In Figure 6(b), the overall model performance continues to
be improved with increasing pseudo-label target data since
the disturbance of pseudo-label data noise may cause slight
fluctuations in training. When the pseudo-label target data
size grows to a certain extent, the progress of the CrossNER
model becomes smaller. The reason is that the model can
not learn more useful information from sufficient data un-
less given new valuable knowledge for CrossNER.

Pseudo Label Quality The quality of pseudo-labels is
crucial for the success of self-training cross-lingual NER.
To evaluate the effectiveness of our method in improving
pseudo-label quality, we use the gold labels of the unlabeled
target language data as a reference to measure the F1 score
after each epoch. We select representative languages from
different language families, including ar, bn, zh, de, es, and
nl from XTREME-40. In Figure 6(c), Our experiments show
that the quality of pseudo labels about target data is im-
proved with the increasing training epoch, proving the effec-
tiveness of our multi-view contrastive learning cross-lingual
NER method. Especially a significant improvement in the F1
score of data zh can be observed, raising nearly 20 points.

Case Study We select some cases of target languages that
are similar and distant from the source language in Figure 7.
In German, TSL and UniTrans have similar mistakes in the

ORG entity “Präsident der Vereinigten Staaten”. TSL incor-
rectly tags the entity type, while UniTrans mislabels it and
decides the entity span wrongly. In Dutch, UniTrans has an
error in the PER entity span, and TSL misses an ORG entity.
Our work gains the right prediction by learning the relation
of token pairs and achieving explicit recognition with token-
to-token relation contrastive learning. For Chinese, TSL and
UniTrans recognize the first “剑桥” as a LOC entity, while
our model gets the right prediction. It can be attributed to
our method getting better semantics than baselines.

Conclusion
In this work, we propose MCL-NER, a multi-view con-
trastive learning framework for the cross-lingual NER, in-
cluding semantic and token-to-token relation contrastive
learning. We build the code-switched data by randomly re-
placing some phrases with the target counterparts for the se-
mantic contrastive learning of the source and corresponding
code-switched sentence. Token-to-token relation contrastive
learning enhances the syntactic representation of entities in
different languages. Contrastive learning objectives mini-
mize the semantic gap across languages and improve cross-
lingual recognition performance. Experiments show that our
approach performs better than baselines by a large margin
on the XTREME-40 and CoNLL benchmarks.
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