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Abstract

The rapid progress of Transformers in artificial intelligence
has come at the cost of increased resource consumption
and greenhouse gas emissions due to growing model sizes.
Prior work suggests using pretrained small models to im-
prove training efficiency, but this approach may not be suit-
able for new model structures. On the other hand, training
from scratch can be slow, and progressively stacking lay-
ers often fails to achieve significant acceleration. To address
these challenges, we propose a novel method called Apollo,
which prepares lessons for expanding operations by learning
high-layer functionality during training of low layers. Our
approach involves low-value-prioritized sampling (LVPS) to
train different depths and weight sharing to facilitate effi-
cient expansion. We also introduce an interpolation method
for stable model depth extension. Experiments demonstrate
that Apollo achieves state-of-the-art acceleration ratios, even
rivaling methods using pretrained models, making it a uni-
versal and efficient solution for training deep models while
reducing time, financial, and environmental costs.

Introduction
Transformers (Vaswani et al. 2017) have recently achieved a
significant impact on the field of artificial intelligence (Wang
et al. 2020; Li et al. 2020; Dosovitskiy et al. 2021; Cao et al.
2021; Wang et al. 2023a). Nevertheless, the training cost is
increasing in terms of the growing model size, which causes
an amount of resourcing consumption and greenhouse gases
emission (Schwartz et al. 2019; Pan et al. 2019). Addressing
this problem, recent work (Chen et al. 2022; Chen, Goodfel-
low, and Shlens 2016; Wang et al. 2023b; Pan et al. 2023)
suggests to improve training efficiency by reusing a pre-
trained small model as an initialization method that con-
tains knowledge prior. However, the requirement of a pre-
trained model can cause fatal obstacles, especially for a
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new-designed model structure, which affects the applicabil-
ity of these studies as general strategies for training. On the
other hand, the studies of training from scratch (Gong et al.
2019; Yang et al. 2020) generally stack layers to train Trans-
former progressively. Nevertheless, these methods usually
cannot achieve significant acceleration in training, and are
thus slower than training from pretrained models. Against
this background, it is an emergency to design a universal
method to efficiently train the models with reduced time and
financial costs, while benefiting the ecological environment.

To achieve this goal, the progressive expansion of mod-
els in depth proves to be a crucial aspect in training from
scratch. One noteworthy example is StackBERT (Gong et al.
2019), where a stacking learning strategy contributes to im-
proved training efficiency through two merits: (1) Fewer lay-
ers in the initial stages of training require fewer computa-
tional resources, leading to faster training; (2) Lower trained
weights provide a usable prior that benefits the training of
stacked higher weights. While StackBERT undeniably ac-
celerates training from the second merit, there are still two
concerns that need to be addressed. Firstly, the suitability
of the stacking method is questionable. For instance, di-
rectly stacking the 1-st layer onto the 7-th layer of a 12-
layer Transformer is not intuitive due to the clear differ-
ences in semantic functionality between them (Rogers, Ko-
valeva, and Rumshisky 2020). Moreover, even though there
might be some similarities across the entire model, it has
been pointed out that most of the layers are different from
each other (Chen et al. 2022). Consequently, it raises doubts
about whether the normally trained weights are sufficiently
prepared well to be expanded effectively, given the lack of
knowledge in higher layers.

Motivated by this consideration, we introduce “Apollo” -
a novel approach to preparing lessons for low-layer weights
to learn the high-layer functionality in the training process.
This strategy proves beneficial in further extending the ca-
pabilities of the model. In essence, Apollo involves two
key components. Firstly, we employ a low-value-prioritized
sampling (LVPS) technique, which randomly selects a depth
for training at each step. This helps to ensure a diverse
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Figure 1: An illustration of the Apollo for training an L-layered model within T steps. We divide this training process into S
stages. In the t-th step at the s-th stage, the model weights are N (s) layers (the left layers in each stage in the figure). To let the
N (s) layers learn functionality in high layers in advance, we construct L(t) layers (the right layers in each stage in the figure) by
sharing the N (s) weights through an interpolation method, where N (s) ≤ L(t). As shown in the figure, the same color denotes
the same weight. We randomly choose L(t) at t-th step through a probability function Low-Value-Prioritized Sampling (LVPS).
Since LVPS tends to select shallower layers, it can greatly save computation costs. Furthermore, we progressively increase
the N (s) weights when stepping into the next stage. Since weights in the early stage can learn the properties of higher layers,
Apollo can significantly contribute to the training efficiency.

training experience. Subsequently, we share the low-layer
weights, enabling them to adapt to the selected layers by
LVPS. These shared weights are well-prepared not only for
learning high-layer functionality but also for recurrent trans-
formation, as supported by previous work (Lan et al. 2020;
Dehghani et al. 2019; Yang et al. 2021). It is worth noting
that while weight-sharing strategies have been explored pre-
viously to facilitate information exchange across layers, our
approach is novel in its dynamic application to sample lay-
ers, which is important to learn high-layer property to im-
prove training efficiency. Furthermore, we address the issue
of training stability by introducing an interpolation method
to extend the depth of the model. This is essential since di-
rectly stacking layers can cause large gradients, which can
be detrimental to training stability. In all, we summarize our
contribution as:

• Through sharing weights in the early stage to learn the
functionality of high layers, Apollo effectively expands
the depth of networks, resulting in remarkable training
acceleration.

• Through LVPS, Apollo achieves a substantial reduction
in training FLOPs by predominantly sampling low depth
layers, while retaining the benefit of expanding depth.

• Through replacing layer stacking with layer interpola-
tion, Apollo further enhances the stability of the ex-
panded model.

• Experiments show that Apollo attains state-of-the-art
training efficiency, surpassing even the methods reliant
on pretrained models.

Related Work
Efficient training from scratches. Training from scratch
means training without any prior knowledge. Some ap-
proaches (Gong et al. 2019; Yang et al. 2020; Li et al. 2022;
Gu et al. 2021; Shen et al. 2022) are known as “progres-
sive training,” which involves initially pretraining a smaller
scratch model and then gradually increasing its size, result-
ing in accelerated training. There are various training strate-
gies for such models that are universally applicable and in-
dependent of our own method. For instance, employing op-
timization techniques like Adam (Kingma and Ba 2015)
can accelerate the learning process by considering the op-
timizer’s perspective. Shoeybi et al. (2019) have success-
fully utilized mixed precision training to enhance training
efficiency, while low-rank methods provide a viable option
for memory and time-efficient training (Kamalakara et al.
2022). Additionally, Wu et al. (2021) have demonstrated im-
proved data efficiency by taking note of rare words. Other
effective training methods include dropping layers (Zhang
and He 2020), knowledge inheritance (Qin et al. 2022), and
merging tokens (Bolya et al. 2022). Our method embraces
the concept of progressive training and attains noteworthy
training efficiency by preparing instructive lessons to facili-
tate the expansion of layer depth.

Efficient training by reusing pretrained models. Recent
studies have demonstrated the great potentials of develop-
ing large pre-trained models via expanding a small model.
The pioneering work of Net2Net (Chen, Goodfellow, and
Shlens 2016) introduced the concept of function-preserving
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transformations which increase the width via neuron split-
ting and the depth via identity layers. However, the randomly
chosen neurons for splitting in Net2Net are not promised
to be well performed. Addressing this challenge, a series
of studies (Wu, Wang, and Liu 2019; Wu et al. 2020b;
Wang et al. 2019b; Wu et al. 2020a) have adopted func-
tional steepest descent to select the optimal subset of neu-
rons for splitting. Following the idea of function preserva-
tion, bert2BERT (Chen et al. 2022) expanded small trans-
formers. More recently, LiGO (Wang et al. 2023b) intro-
duced a trainable linear operator to learn an effective ex-
pansion formula. Mango (Pan et al. 2023) utilized a ten-
sor ring matrix product operator (TR-MPO) to grow a small
pretrained model to a large counterpart for efficient train-
ing. In the past, the utilization of pretrained methods con-
sistently yielded greater acceleration than that achieved by
training from scratch. Remarkably, our approach demon-
strates highly promising results, surpassing even the swift-
ness of training from a pretrained model.

Method
In this section, we will introduce our method to sample the
information of the higher layer to accelerate training.

Notations
To describe the implementation of Apollo, we introduce re-
lated notations here. We denote an L-layered network by
f (L)(·), and denote the function of the l-th layer of f (L) as
fl(·), where l ∈ [L]. Thus, given an input x, f (L)(x) can be
formulated as

f (L)(x) = fL(fL−1(. . . fl(. . . f1(x)))). (1)

We denote the set of N weights in f as {θi}Ni=1, and the
weights of l-the layer as Θ(fl). As our method samples in-
formation of higher layers through weight sharing, here we
formally consider a mapping function g(·) to arrange the
g(l)-th weight to the l-th layer as

Θ(fl) = θg(l), (2)

where g(·) ∈ [N ]. Moreover, for the convenience of express-
ing the process of layer expansion, we denote the layer size
of the t-th step as L(t), where t ∈ T and T is the total steps.
Thus, a network at the t-th step can be denoted by f (L(t)).

Transformer Architecture. Here, we introduce the struc-
ture of the Transformer, each block of which mainly contains
two basic types of layers, i.e., the multi-head self-attention
(MHSA) layer, and the feed-forward neural network (FFN)
layer. Assuming inputs of the l-th layer are query Ql ∈ Rd,
key Kl ∈ Rd, and value Vl ∈ Rd, where d is the dimension,
the l-th layer can be formulated as

fl(Ql,Kl,Vl) = FFN(MHSA(Ql,Kl,Vl)). (3)

The parameters of the MHSA layer of the l-th layer are de-
noted by W

{Q,K,V,O}
l ∈ Rd×d. The weights of the FFN

layer are WIN
l ∈ Rd×αd and WOUT

l ∈ Rαd×d, where α
is an expanding ratio that is often set to 4. Note that, we ne-
glect biases in the formulation for simplification, which does

Algorithm 1: Process of Apollo

Require: the input data x, the ground-truth y, the stage set-
ting {st, t ∈ [1, T ], st ∈ [1, S]}: a non-decreasing list,
indicating the stage of each step.

1: for t = 1 to T do
2: if t > 1 and st > st−1 then
3: for n = 1 to N (s) do
4: θn := COPY

(
θ
gN

(sprev)
:N(s)

interpolation (n)

)

5: end for
6: end if
7: L(t) = LVPS(N (s), L)
8: for l = 1 to L(t) do
9: Θ(fl) := SHARE

(
θ
gN(s):L(t)

interpolation (l)

)

10: end for
11: L = Loss

(
f (L(s))(x), y

)

12: {∆θi}N
(t)

= L. backward()
13: Update all the weights {θi}N

(s)

through {∆θi}N
(s)

14: end for
Ensure: The trained model f (L) with {θi}L

not affect the generality of the proposed method. Following
the above formulation, all weights of the l-th layer can be
denoted as θl = W

{Q,K,V,O,IN,OUT}
l .

Efficient Training by Apollo
Given the potential similarities between high and low layers,
the gradual expansion of layers during training can lead to
enhanced acceleration, as opposed to the direct approach of
training from scratch (Gong et al. 2019). However, as previ-
ously discussed, lower layers struggle to effectively capture
the intricacies of higher-level features, particularly when uti-
lizing a stacking methodology which can cause training in-
stability. To address this challenge, we introduce Apollo, an
innovative approach that facilitates progressive model train-
ing by leveraging weight sharing within the training process.
This approach enables the accession of high-level function-
ality prior to layer expansion, thus mitigating the aforemen-
tioned issue.

Progressive Training. Specifically in an L-layer net-
work, Apollo divides the whole training process into S
stages. We use N (s), s ∈ [S] to denote the weight number of
the s-th stage, satisfying

N (s) < N (s+1). (4)

As restricted in Eq. (4), Apollo increases actual weights
when stages go on. This progressive training way is efficient
for accelerating language models.

Preparing Lessons. In order to provide lessons for N (s)

weights within the s-th stage, thereby facilitating the pre-
learning of higher-layer functionalities, Apollo employs a
strategic weight-sharing approach. This involves distribut-
ing the N (s) weights across L(t) layers, drawn from the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

18862



1 2 3 4 5 6

L(t)

0.0

0.2

0.4

0.6

0.8

1.0

P
LV

P
S

( L
(t

))

k=0

k=1

k=2

k=3

k=4

k=5

Figure 2: A case of choosing hyper-parameters k of LVPS to
sample 1-6 layer number.

range [N (s), L], thereby establishing a connection to higher-
layer elements. The determination of the appropriate L(t) is
realized through the utilization of a sampling function de-
noted as P (L(t)) at each training step. The core idea of this
sampling function is the prioritization of shallower depths
– specifically, N (s) in this context – to strike a balance be-
tween computational efficiency and sustained performance.
Grounded in this consideration, we introduce a novel ap-
proach coined as Low-Value-Prioritized Sampling (LVPS).

In the development of LVPS, we employ an inverse pro-
portional function as the cumulative distribution function for
layer selection with a formulation as

FLVPS(x) = c− b

x+ k
, c > 0, b > 0, x ∈ [N (s), L], (5)

where b, k and c are the hyper-parameters. This func-
tion is congruent with our sampling objective, which fa-
vors the selection of shallower depths. Then, by setting
FLVPS

(
N (s)

)
= 0 and FLVPS (L) = 1. The probability den-

sity function PLVPS can be solved as

PLVPS(L
(t)) =

{
b

(L(t)+k)2
, if L(t) ∈ [N (s), L],

0, otherwise,
(6)

w.r.t
∫

PLVPS(L
(t)) dL(t) = 1, (7)

where b and c can be solved in terms of Eq. (7) as

b =
(N (s) + k) ∗ (L+ k)

L−N (s)
, c =

L+ k

L−N (s)
. (8)

Therefore, we only need to adjust k to derive different sam-
pling settings as shown in Fig. 2. In this paper, we set
k = 0 in every experiment to obtain the least computation
complexity. We employ the notation LVPS(α, β) to signify
the process of sampling a value within the interval [α, β].
PLVPS(L

(t)) is the probability function of LVPS(N (s), L).
A comparison with other sampling methods can be found

in Table 1 and Fig. 3. In detail, Uniform Sampling (US)
samples the layers equally, thereby mitigating the potential
layer bias, while Edge Sampling (ES) tends to sample layers

1 2 3 4 5 6

L(t)

0.0

0.2

0.4

0.6

0.8

1.0

P
(L

(t
) )

US

FS
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LVPS

Figure 3: Comparison among US, FS, ES, and LVPS to sam-
ple 1-6 layer number.

Method Probability Density Function

LVPS PLVPS(L
(t)) = b

(L(t)+k)2

ES PES
(
L(t)

)
= 1

k ∗
(

1
L(t)−N(s)−b

+ 1
L+b−L(t)

)

US PUS(L
(t)) = 1

L−N(s)

FS PFS(L) = 1

Table 1: An overview of sampling methods: (1) Low-Value-
Prioritized Sampling (LVPS), (2) Uniform Sampling (US),
(3) Edge Sampling (ES), and (4) Full Sampling (FS). L(t)

can only derive values in [N (s), L]. Since the integration of
the probability density function is 1, b can be solved when
k is determined. In this paper, we set k = 0 and k = 10 for
LVPS and ES, respectively. FS always samples L(t) = L.

in low and high positions to learn the high-layer informa-
tion while maintaining efficiency. Alternatively, Full Sam-
pling (FS) always samples the deepest depth, helping early-
trained weights adequately acquire the functionality of each
layer, which, however, demands significant computational
resources due to its selection of the maximum layer num-
ber at each step. Among these sampling methods, LVPS can
achieve the highest efficiency in progressive training.

Stack V.S. Interpolation
In the training process of Apollo, it is important to select a
feasible method for expanding the layer for sharing in each
step and initializing weights of the next stage. As shown in
Fig. 4, the common-used methods are stacking and interpo-
lating layers. Given a target to expand L1 to L2, the stacking
method can be formed as

gL1:L2

stack (l2) = l2 mod L1, (9)

where l2 ∈ [L2] is the index of L2. The stacking method is
usually adopted in language models, e.g., BERT (Gong et al.
2019). By contrast, the interpolation method is often used in
the computer vision field, e.g., ResNet (Chang et al. 2018),
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Figure 4: A case of expanding 3 layers to 6 layers. The same
color denotes the same weight. The stacking method recur-
rently arranges the layers, e.g., the 1-st layer → the 4-th
layer. By contrast, the interpolation method arranges the lay-
ers in a neighbor, e.g., the 1-st layer → the 2-nd layer.

and can be formulated as

gL1:L2

interpolation(l2) = ⌊ l2 ∗ L1

L2
⌉, (10)

where ∗ means dot production, and ⌊·⌉ denotes the rounding
operation. Although the two expanding methods have both
shown good performance in their fields, there is still a lack
of analysis on the comparison between them, especially in
the applicability of language models. In this paper, we in-
vestigate the influence of the stability and performance of
these methods. We defer an analysis experiment to the exper-
iment section. Here, we would like to give the conclusion:
(1) There is only a small performance gap between them;
(2) interpolation can reach better stability than the stacking
method. As a result, we adopt interpolation instead of the
stacking method as the expanding method of the proposed
Apollo training for language models.

Experiment
In this section, we conduct experiments to validate the per-
formance of our proposed method.

Common setting: We implement a series of experiments
on BERT and GPT for validation. We use AdamW as the
optimizer with a learning rate of 10−4 and weight decay of
10−2 in all the experiments. We chose the training batch
sizes of 768 and 512 for BERT (Devlin et al. 2019) and
GPT (Radford et al. 2019) models, respectively. We use the
Scratch model, StackBERT, bert2BERT, and LiGO as base-
lines. Layer numbers of Apollo are [1, 3, 6, 12] and change
at epoch [2, 4, 10]. LiGO is warmly trained for 100 steps
as claimed in the original paper (Wang et al. 2023b). The
training dataset is a concatenation of English Wikipedia and
Toronto Book Corpus (Zhu et al. 2015).

Experiment on Expanding Method
We implement the experiment to show the influence of
stacking and interpolating layers. We use BERT as the back-
bone. We train a 6-layer BERT model called BERT-Base/2
which is the half of BERT-Base for 10 epochs with a 768
batch size. Then, we expand the trained BERT-Base/2 into
the 12-layer BERT-Base through the stacking (Eq. (9)) and

3 2 1 0 1 2 3 4 5
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D
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si
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BERT-Base/2
BERT-Base/2-S
BERT-Base/2-I

Figure 5: Distribution of output activations. BERT-Base/2
is half of BERT-Base. BERT-Base/2-S and BERT-Base/2-I
denote to stack and interpolate BERT-Base/2 to BERT-Base,
respectively. After stacking BERT-Base/2, the distribution
of output activations changes a lot, while the interpolation
method keeps the distribution well.

Model Trainable Layer Loss Gradient (1e-3)

BERT-Base Ra. - 12 10.56 11.45±26.46

BERT-Base/2 - 6 1.82 1.66±4.71
BERT-Base/2-S ✗ 12 7.32 55.28±241.52
BERT-Base/2-I ✓ 12 3.97 44.01±225.76

Table 2: Results of the analysis of expanding methods.
BERT-Base Ra. means a randomly initialized BERT-Base.
When expanding BERT-Base/2 from 6 to 12, the loss and
gradients of the stacking method rise sharply, which causes
failure in further training. By contrast, the interpolation
method achieves smaller gradients and loss and is thus train-
able later. However, both of the two methods cause higher
gradients than a random model, indicating an unstable state.

interpolating (Eq. (10)) methods. We use 500 data samples
for validation. Moreover, we apply Apollo to train BERT-
Base with stacking and interpolation methods.

Illustrated in Fig.5, directly stacking BERT-Base/2 ex-
hibits a notable alteration in the distribution of output ac-
tivations, whereas the interpolation method preserves this
distribution. This distinction results in interpolation yielding
smaller losses and gradients in comparison to the stacking
technique. This advantage contributes to the enhanced train-
ability of BERT-Base-I, as evidenced in Table2. Addition-
ally, in Table 3, where expanding BERT-Base/2 increases
both loss and gradients, Apollo showcases a reverse trend.
Here, layer expansion within Apollo leads to a reduction
in the loss and gradient for the lessons on the functionality
of 12 layers, ensuring robust stability in progressive learn-
ing. Notably, interpolation further diminishes gradient val-
ues and improves the acceleration ratio, measured in terms
of FLOPs. Therefore, we adopt interpolation as the preferred
expansion method for Apollo considering these findings.
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Figure 6: Results of BERT-Base and GPT-Base. Apollo achieves the highest acceleration on BERT-Base and GPT-Base in terms
of FLOPs at 41.6% and 47.9%, respectively. In addition, Apollo can keep the best training efficiency on wall time for BERT-
Base at 41.1%. Apollo surpasses methods (i.e., bert2BERT and LiGO) relying on pretrained models in all cases.

Model Acc. Ratio Layer Loss Gradient (1e-3)

Apollo-S 39.7%
6 1.82 1.65±3.72

12 1.76 1.42±3.50

Apollo-I 41.6%
6 1.82 1.59±3.33

12 1.76 1.39±3.01

Table 3: Results of expanding methods for Apollo. “S” and
“I” mean the stacking and the interpolation methods, respec-
tively. Apollo can decrease the gradient values loss after ex-
panding layers since learning the functionality of a 12-layer
network. Moreover, the interpolation method can derive a
comparably better acceleration ratio in terms of FLOPs and
smaller gradient values.

Experiment on Sampling Method
We construct the experiment on BERT-Base to investigate
the influence of the sampling methods including ES, US, FS,
and LVPS, with a comparison to the w/o sampling case.

Results are shown in Fig. 7. The LVPS sampling method
leads with the highest acceleration ratio, attaining an im-
pressive 41.6%. Both ES and LVPS attach the top two po-
sitions for acceleration, underscoring the utility of sampling
lower layers. Significantly, LVPS outperforms Apollo w/o
sampling by a substantial margin of +9.3%, affirming the
pronounced benefits of extracting high-layer functionalities
through sampling. US performing normally may indicate
that sampling middle layers is not really helpful. FS demon-
strates the least acceleration due to its consistent sampling
of the maximum layers, incurring a substantial FLOP cost.
In summation, LVPS strategically harnesses the ability to
capture high-layer functionalities while simultaneously min-
imizing FLOP usage by primarily sampling lower layers.

Experiment on BERT
We construct this experiment to show the training efficiency
of BERT. We train Apollo and StackBERT from scratch,

0 2 4 6 8
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Figure 7: Results of the analysis on sampling methods.
LVPS achieves the highest acceleration ratio at 41.6%, sur-
passing ES and FS at 4.1% and +17.1%, respectively. Most
sampling methods are faster than Apollo w/o Sampling. FS
performs the lowest acceleration by always sampling the
deepest depth, which is resource-consuming.

while training bert2BERT and LiGO from BERT-Small to
BERT-Base for 40 epochs. Additionally, we also implement
short training on BERT-Large for 5 epochs.

As shown in Fig. 6, Apollo achieves the highest ac-
celeration rate of 41.6% in FLOPs saving, which outper-
forms bert2BERT by an additional +6.0%. Through train-
ing from a pretrained BERT-Small, bert2BERT and LiGO
exhibit superior performance compared to the progressive
training approach StackBERT, resulting in acceleration ra-
tios of 29.5% with corresponding improvements of +6.1%
and +4.0%, respectively. However, the convergence speed
of both bert2BERT and LiGO is found to be slower in com-
parison to Apollo, which shows the accelerated ability of
the Apollo method through the “lessons” of higher layers.
To substantiate the effectiveness of Apollo, comprehensive
evaluations were conducted using the SQuAD and GLUE
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Model
Saving

(FLOPs)
Saving

(Wall Time)
SQuADv1.1

(F1)
SQuADv2.0

(F1)
SST-2
(Acc)

MNLI
(Acc)

MRPC
(Acc)

COLA
(Mcc)

QNLI
(Acc)

STS-B
(Acc)

QQP
(Acc)

GLUE
Avg.

SQuAD
Avg.

Scratch - - 89.05 77.49 92.04 84.05 87.65 56.95 91.39 89.16 91.17 84.63 83.27

Training from the Pretrained Model: BERT-Small→BERT-Base

bert2BERT 35.6% 35.2% 90.02 78.99 92.89 84.92 86.91 60.32 91.81 88.11 90.72 85.10 84.50
LiGO 33.5% 33.2% 90.09 78.34 92.75 84.99 87.44 61.10 91.33 87.94 90.42 85.14 84.22

Progressive Training form Scratch

StackBERT 29.5% 28.9% 89.82 78.21 92.94 84.63 87.65 61.61 90.95 87.13 90.20 85.01 84.01
Apollo 41.6% 41.1% 89.87 78.42 92.28 84.81 87.06 60.57 91.43 88.27 90.69 85.02 84.15

Table 4: Experiments on downstream tasks of BERT-Base on GLUE (Wang et al. 2019a), SQuADv1.1 (Rajpurkar et al. 2016),
and SQuADv2.0 (Rajpurkar, Jia, and Liang 2018) dataset. The terms “Training from the Pretrained Model” and “Progressive
Training from Scratch” denote the pretraining type of the methods in the table. Compared with baselines, Apollo can achieve
the highest FLOPs saving under similar downstream performance, even better than training from the pretrained model.
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Figure 8: Results of BERT-Large.

benchmark datasets, as illustrated in Table 4. For a larger
BERT-Large in Fig. 8, Apollo also shows a significant ac-
celeration ratio at 55.1%. The results clearly demonstrate the
ability of Apollo to exhibit proficient transfer learning capa-
bilities, coupled with faster convergence rates, thus making
it promising for practical applications.

Experiment on GPT
We also implement the experiment to validate the perfor-
mance of GPT. We train Apollo, StackBERT and Scratch
from a random initialization, and bert2BERT and LiGO
from GPT-Small. The training epoch is 35.

As shown in Fig. 6(c), we construct a comparison among
the Scratch model, StackBERT, bert2BERT, LiGO, and
Apollo. Notably, our proposed Apollo method exhibits a re-
markable 47.9% acceleration ratio. Despite the structural
disparities between GPT and BERT, encompassing dis-
tinct features such as the mask method, and the position
of layer normalization, Apollo consistently maintains the
highest performance across the evaluated models. Specifi-
cally, Apollo shows a significant advancement over Stack-

BERT, achieving an improvement of +11.9% for the pre-
pared lessons before expanding. Furthermore, compared to
bert2BERT and LiGO, Apollo attains a considerable acceler-
ation advantage with +6.8% and +9.9% higher performance,
respectively. These findings highlight the substantial accel-
eration capabilities of the Apollo method, affirming its ef-
fectiveness for broader applications.

Conclusion
Training language models imposes a substantial demand on
computational resources. Compared to training from pre-
trained models, progressive training from scratch offers a
universal and flexible solution to accelerate training, as it
does not require a pretrained model. However, previous pro-
gressive methods suffered from inefficient layer expansion,
leading to suboptimal training efficiency. In light of these
challenges, we propose Apollo, a novel approach that im-
parts lessons for weights in the early stage, achieving a more
natural and efficient expansion. Additionally, we conduct a
thorough analysis of the influence between stacking and in-
terpolating methods for expanding model depth, advocating
the use of interpolation for improved stability in progres-
sive training. Experimental results consistently demonstrate
that Apollo achieves remarkable acceleration across various
language models, even surpassing methods that rely on pre-
trained models. This implies the significant effectiveness of
Apollo in enhancing training efficiency. In the future, we ex-
pect that Apollo will contribute to the realization of green AI
by significantly reducing the cost of training Transformers.
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