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Abstract

Numerical reasoning is a vital capability for natural language
processing models to understand and process numerical in-
formation in real-world scenarios. Most current methods first
generate the Intermediate Meaning Representations (IMRs)
of questions and then generate answers. Current SOTA meth-
ods generate programs as IMRs with large language mod-
els (LLMs). Intuitively, equations have fewer restrictions and
closer semantics to the question than programs, leading to
higher generation accuracy. However, current LLMs generate
equations worse than programs, where we assume that the
equation data is rare in pre-training data compared to pro-
grams. So in this paper, we try to use equations as IMRs to
solve the numerical reasoning task by addressing two prob-
lems: (1) Theoretically, how to prove that the equation is an
IMR with higher generation accuracy than programs; (2) Em-
pirically, how to improve the generation accuracy of equa-
tions with LLMs. For the first problem, we propose and
prove a proposition to theoretically compare the generation
accuracy of different IMRs. For the second problem, we
present a method called Boosting Numerical Reasoning by
Decomposing the Generation of Equations (BRIDGE), which
can improve the accuracy of LLMs in generating equations
as IMRs by reducing the tendency of generating constant
expressions and programs. Our method improves the per-
formance by 2.2%, 0.9%, and 1.7% on GSM8K, SVAMP,
and Algebra datasets compared to the previous state-of-the-
art methods under the single reasoning path setting. Our
code and prompts are available at https://github.com/zirui-
HIT/Bridge for Numerical Reasoning.

Introduction
Numerical reasoning is an essential ability of natural lan-
guage processing (NLP) models to handle documents fulling
of numerical information, which is widely used in finance,
science, and other fields (Chen et al. 2021b, 2023; Lu et al.
2023). Generally, numerical reasoning is to generate a value
result based on the given question, which describes the val-
ues and relationships of quantities (Zhang et al. 2020).

Numerical calculations, by their inherent complexity,
make it a struggle to produce accurate value results di-
rectly (Thawani et al. 2021). To overcome this challenge,
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Equation
alice_candy = 2 ✕ bob_candy
david_candy + 2 = 3 ✕ bob_candy
david_candy + 2 = 18
ans = alice_candy

Program
david_candy = 18 - 2
bob_candy = (david_candy + 2) / 3
alice_candy = 2 ✕ bob_candy
ans = alice_candy

Constant Expression
ans = 2 ✕ (18 - 2 + 2) / 3

Alice has twice as much candy as Bob. 
David has 3 times of Bob if David takes 2.

How much candy does alice have?
If David takes two candies, he has 18.

Alice has twice as much candy as Bob. 
David has 3 times of Bob if David takes 2.

How much candy does alice have?
If David takes two candies, he has 18.

Alice has twice as much candy as Bob. 
David has 3 times of Bob if David takes 2.

How much candy does alice have?
If David takes two candies, he has 18.

Question
Alice has twice as much candy as Bob. David has 3 times of Bob if David takes 2. If David 
takes two candies, he has 18. How much candy does alice have?

Figure 1: Examples of three types of IMRs. The dotted line
indicates the correspondence between the question and the
generated IMR. The more complex the correspondence is,
the more challenging it becomes to generate accurately.

most current methods first generate Intermediate Meaning
Representations (IMRs) of questions, then compute the
value results with external tools (e.g., algorithms, inter-
preters) (Huang et al. 2018; Wang, Zhang, and Wang 2023).
For example, the constant expression is a commonly used
IMR (Roy and Roth 2015; Koncel-Kedziorski et al. 2016).
The program is another common IMR used by the current
state-of-the-art (SOTA) methods (Chen et al. 2022; Gao
et al. 2022; Xie et al. 2023). Examples of these two types
of IMRs are shown in Figure 1. Current methods mainly use
large language models (LLMs) to generate IMRs because
LLMs can use few-shot inference to generate various IMRs
without training (Jin and Lu 2023; Xie et al. 2023).

In addition to the IMRs above, previous work has also
used systems of equations as IMRs (Roy, Upadhyay, and
Roth 2016; He-Yueya et al. 2023). From an intuitive view,
using equations as IMRs should be better than using pro-
grams because equations do not need to define variables be-
fore using them, leading to closer semantics to natural lan-
guage questions. An intuitive example is shown in Figure 1.
However, the current method using equations as IMRs does
not have better performance than that of using programs
(He-Yueya et al. 2023). So in this paper, we try to use equa-
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tions as IMRs to solve the numerical reasoning task by ad-
dressing two problems: (1) Theoretically, how to prove that
the equation is an IMR with higher generation accuracy
than programs; (2) Empirically, how to improve the gener-
ation accuracy of equations with LLMs.

For the first problem, we present and prove a proposition
to compare the generation accuracy of different IMRs: given
two IMRs, IMRA and IMRB , if IMRA is the subset of
IMRB , then the accuracy in generating IMRB of ques-
tions theoretically surpasses IMRA. Based on this proposi-
tion, we can prove that the accuracy of generating equations
is higher than that of programs. Because programs can be
seen as equations with the restriction “variables must be de-
fined before being used”, programs are a subset of equations.
Consequently, employing equations as IMRs confers theo-
retically higher generation accuracy than that of programs.

For the second problem, current LLMs have poor perfor-
mance in generating equations (He-Yueya et al. 2023). We
assume that is because current LLMs are mainly pre-trained
with constant expressions and programs for numerical rea-
soning (Brown et al. 2020; Chen et al. 2021a), which makes
LLMs prefer to generate these two types of IMRs rather
than other IMRs during few-shot inference. This limits the
numerical reasoning ability of LLMs since these two types
of IMRs may not be the best IMRs for this task. To lower
the tendency of LLMs to generate constant expressions and
programs, we propose our method called Boosting Numeri-
cal Reasoning by Decomposing the Generation of Equations
(BRIDGE). Our method erases asking parts and decomposes
questions into sub-questions, which can improve the ten-
dency of LLMs to generate equations.

To evaluate the effectiveness of BRIDGE, we adopt experi-
ments on GSM8K (Cobbe et al. 2021), SVAMP (Patel, Bhat-
tamishra, and Goyal 2021), and Algebra (He-Yueya et al.
2023), which are mainstream datasets of the numerical rea-
soning task. BRIDGE improves 1.6% performance over the
previous SOTA results on all above datasets on average and
achieves new SOTA results under the single reasoning path
setting. In addition, ablation experiments show that BRIDGE
can improve the proportion of equations in generated results,
which shows that our method can indeed improve the ten-
dency of LLMs to generate equations as IMRs.

Our contribution can be summarized as follows:

• To theoretically prove that equations have higher gener-
ation accuracy than the IMRs of the current SOTA meth-
ods, we present and prove a proposition that can theoreti-
cally compare the generation accuracy of different IMRs.

• To empirically improve the performance of LLMs in gen-
erating equations other than constant expressions and
programs, we present BRIDGE, which improves the ten-
dency of LLMs to generate equations as IMRs.

• To verify the effectiveness of BRIDGE, we conduct ex-
periments on multiple mainstream numerical reasoning
datasets, where our method achieves new SOTA results
on all datasets under the single reasoning path setting.

Methodology
In this section, we introduce our work in detail. First, we ex-
plain why we use equations as IMRs as an intuitive explana-
tion for our proposition. Then, we present and prove a propo-
sition that can theoretically compare the generation accuracy
of different IMRs. After that, we introduce the pipeline of
BRIDGE.

Equations as Intermediate Meaning
Representation
Intuitive Principle of IMR Design The previous research
has shown that even with the same model architecture, gen-
erating different IMRs may lead to different performances
(Huang et al. 2018; Li et al. 2022). Therefore, the design
of IMRs also affects the accuracy of generating. Generally,
the more restrictive rules there are on IMRs, the harder it is
for the model to generate such IMRs. Because if IMRs have
more restrictions, the model needs more reasoning steps to
meet these restrictions, resulting in the semantic difference
with the question, increasing the difficulty of reasoning.

Comparison of Different IMRs A commonly used IMR
is the constant expression (Roy and Roth 2015; Koncel-
Kedziorski et al. 2016), which asks that only values, no vari-
ables, appear in one single expression as a result. This leads
to a great semantic difference between the questions and the
constant expressions because questions may describe many
relationships between different quantities. To address these
restrictions, previous works propose using programs, which
is the IMR of the current SOTA methods (Chen et al. 2022;
Gao et al. 2022; Xie et al. 2023). First, the program allows to
use variables to calculate other variables instead of just con-
stant values. Second, programs can use multiple statements
rather than just one statement to represent the answer.

However, programs also have their restrictions, where
each variable must be defined before use. This also leads
to a semantic difference between the IMR and the question
because one question may describe the relationships of vari-
ables before giving their values. To solve this restriction, we
propose to use the equation as IMR, where the equation al-
lows variables to be used before their definition (Roy, Upad-
hyay, and Roth 2016; He-Yueya et al. 2023). Therefore, the
equation is closer to the semantics of questions than pro-
grams, leading to higher generation accuracy.

Discovery from IMR Comparison From the above anal-
ysis, we can discover that increasing the number of restric-
tions on IMRs is actually a process of screening a set. For
example, programs are equations with the restriction “vari-
ables must be defined before being used”. Constant expres-
sions are programs with the restriction “there is only one
assignment statement with only specific values”. In the fol-
lowing, we summarize this discovery into a proposition to
guide the design of IMRs with high generation accuracy.

Generation Accuracy of Different Intermediate
Meaning Representations
In the following, we prove that generating equations has
higher accuracy than generating programs, for which we
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Direct + Erase + Decompose

Question
Alice has twice as much candy as 
Bob. David has three times as 
many as Bob if David takes two 
more candies, which is 18. How 
much candy does alice have?

Equations
alice_candy = 2 ✕ bob_candy
david_candy = 3 ✕ bob_candy
david_candy = david_candy + 2
david_candy = 18
ans = alice_candy

Erased Question
Alice has twice as much candy as 
Bob. David has three times as 
many as Bob if David takes two 
more candies, which is 18.

Equations
alice_candy = 2 ✕ bob_candy
david_candy + 2 = 3 ✕ bob_candy
david_candy + 2 = 18
ans = alice_candy

Erased & Decomposed Question
1. Alice has twice as much candy as Bob.
2. David has three times as many as Bob 
if David takes two more candies.
3. If David takes two candies, he has 18.

Equations
alice_candy = 2 ✕ bob_candy
david_candy + 2 = 3 ✕ bob_candy
david_candy + 2 = 18
ans = alice_candy

Equations of Erased Question
alice_candy = 2 ✕ bob_candy
david_candy + 2 = 3 ✕ bob_candy
david_candy + 2 = 18

Equations of Erased Question
alice_candy = 2 ✕ bob_candy
david_candy + 2 = 3 ✕ bob_candy
david_candy + 2 = 18

1.Erase
2.Decompose

3.Translate

4.Answer

Figure 2: The illustration of BRIDGE under different settings of reasoning stages. The incorrect reasoning paths and results
are annotated with red. The Direct method modifies the value of the constant unknown “david candy” like the program. The
method that only uses Erase misses the equation “david candy + 2 = 3× bob candy” since it pretends to translate one entire
sentence into one single equation. The correct one is annotated with green, which decomposes the numerical reasoning of
LLMs into four stages. (1) Erase: erase the asking part of the question; (2) Decompose: decompose the question into multiple
sub-questions; (3) Translate: translate the sub-questions to equations; (4) Answer: generate the answer equation.

present a proposition that can theoretically compare the gen-
eration accuracy of different IMRs. Before presenting this
proposition, we first propose an auxiliary proposition:

Proposition 1 Given IMRA and IMRB , let A = {all exam-
ples of IMRA} and B = {all examples of IMRB}, A ⊆ B.
Given one natural language question q. Let N(q, x) denote
the hop number (Yang et al. 2018) required to generate x
based on q. Then ∃b ∈ B, ∀a ∈ A,N(q, b) ≤ N(q, a),
where all a, b are the IMRs of q.

The hop number in Proposition 1 can be regarded as a nu-
merical quantification of the difficulty of generating differ-
ent IMRs. Intuitively, if IMRA is a subset of IMRB, it means
that IMRA has more restrictions than IMRB, so more rea-
soning hops are needed to convert a natural language ques-
tion to the corresponding IMRA. With Proposition 1, we can
present the proposition to compare the generation accuracy
of different IMRs:

Proposition 2 Given IMRA and IMRB , A ⊆ B. Given one
natural language question q. Then generating IMRB of q has
higher accuracy than IMRA.

Based on Proposition 2, we can compare the generation
accuracy of different IMRs by judging the inclusion rela-
tionship of IMRs. Considering the discussion above, pro-
grams are a subset of equations, so generating equations as
IMRs has higher accuracy than generating programs in the-
ory. However, Proposition 2 can only compare the genera-
tion accuracy from the view of different IMRs themselves.
Apart from the type of IMR, the generation accuracy also de-
pends on many other factors, such as the model architecture

and pre-training data. For example, although using equations
as IMR has higher accuracy than constant expressions ac-
cording to Proposition 2, models pre-trained with constant
expressions have higher accuracy in generating expressions
than generating equations. Therefore, in order to empirically
enhance the ability of LLMs to generate equations, we need
to design specific methods that boost the generation capabil-
ities of LLMs for equations outside of constant expressions
and programs.

Pipeline of BRIDGE
In this section, we introduce the pipeline of BRIDGE, which
decomposes the numerical reasoning into four stages. The
illustration of BRIDGE is shown in Figure 2.

Stage1: Erase The previous research has shown that the
current NLP models mainly learn the mapping between in-
put and output formats rather than specific NLP capabili-
ties (McCoy, Pavlick, and Linzen 2019; Jawahar, Sagot, and
Seddah 2019; Bubeck et al. 2023). So during the few-shot
inference, current LLMs are more inclined to generate con-
stant expressions and programs since we assume that these
IMRs are mainly contained in the pre-training data (Brown
et al. 2020; Chen et al. 2021a). However, since the pre-
training data is not available as an open resource, we have
been unable to validate this assumption thus far. To enhance
the tendency of current LLMs to generate equations, we
should disrupt the input format of numerical reasoning ques-
tions that LLMs have seen in the pre-training data

We observe that even if the asking part is erased, the re-
maining part can still be expressed as solvable equations.
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Algorithm 1: Generate Answer Equation
Input: Natural language question question, translated
equations equations, number of retries limit retry.
Output: Equation of the answer.

1: temperature = 0
2: for i = 1 to retry do
3: ans = answer(question, equations, temperature)
4: if is solvable(equations, ans) then
5: return ans
6: else
7: temperature += 0.1
8: end if
9: end for

10: return None

For example, about the question “Alice has twice as much
candy as Bob. How much candy does Alice have if Bob has
12 candies”, after erasing the asking part “How much candy
does Alice have”, the rest part can still be listed as equations
“alice candy = 2×bob candy, bob candy = 12”. To guide
the LLMs in generating equations, we erase the asking part
of each question. This disrupts the input format, as observed
in the pre-training data, and reduces the tendency to generate
constant expressions or programs.

Stage2: Decompose During generating equations based
on questions, LLMs may translate one entire sentence into
one single equation, resulting in missing intermediate infor-
mation and unsolvable equations. Take the results only with
Erase stage as an example in Figure 2, LLMs directly trans-
late “David has three times as many as Bob if David takes
two more candies, which is 18” into “david candy + 2 =
18” while ignoring the information “David has three times
as many as Bob if David takes two more candies”. To ad-
dress this issue, we try to decompose the question into sub-
equations before generating the equations. With the decom-
posed sub-questions, LLMs are able to generate equations
based on finer-grained information, thus alleviating the phe-
nomenon of missing information.

Stage3: Translate In this stage, we use both the erased
question and the decomposed sub-questions as the input to
generate the corresponding equations with LLMs, which
complement each other for the generation of the complete
equations. However, the Translation stage may generate un-
solvable equations where there is no solution for the equa-
tions. This makes it to be unable to get the value of each
quantity to calculate the answer in the next stage. To address
this problem, if the Translation stage generates unsolvable
equations, we set the result to be empty and let the next stage
generate all equations from scratch.

Stage4: Answer The Translation stage currently com-
putes the value of each quantity separately, whereas we need
to collectively compute them together, which is done by
equation solving and post-processing 1. Concretely, in this

1For example, if the answer should be present with a percent-
age, the result value needs to be multiplied by 100.

stage, we use the original questions and the translated equa-
tions as input and output the final answer equation. The pro-
cess of this stage is shown in Algorithm 1. Since the trans-
lated equations themselves have certain semantic informa-
tion, LLMs can understand the meaning of each unknown
and use them to represent the answer equation. If the equa-
tions are unsolvable, we can not get the answer. So we let
the LLMs regenerate the results if the generated equations
are unsolvable and gradually increase the generation tem-
perature until the results are solvable.

Experiments
In this section, we adopt experiments to verify the effective-
ness of our method. First, we give the setup information of
our experiments. Then, we present the main experiment re-
sults to demonstrate that our method can improve the nu-
merical reasoning ability of LLMs. After that, to prove the
effectiveness of each stage of BRIDGE, we give the ablation
experiments of each stage. Finally, we analyze the experi-
ment results of BRIDGE to shed light on future research.

Experiment Setup
Dataset We adopt BRIDGE to GSM8K (Cobbe et al.
2021), SVAMP (Patel, Bhattamishra, and Goyal 2021),
and Algebra (He-Yueya et al. 2023), which are widely
used numerical reasoning datasets. The question number of
GSM8K, SVAMP, and Algebra is 1319, 1000, and 222, re-
spectively. GSM8K consists of grade school math questions,
which require 2-8 steps of reasoning and use basic arithmetic
operations (+−×÷) to get answers. SVAMP contains 1, 000
math questions selected from the existing numerical reason-
ing datasets, using basic arithmetic operations to solve. Dif-
ferent from the above datasets, Algebra is a dataset contain-
ing more algebra questions, which can reflect the ability of
the model to translate the questions into the corresponding
algebraic equations.

Metric We use the exact match (EM) as the evaluation
metric of our work. Because of the round-off error, follow-
ing the previous work (Chen et al. 2022; Gao et al. 2022),
we consider the prediction is equal to the ground truth if
their relative difference is below 10−3.

Model We use Codex (Chen et al. 2021a) and GPT3.5 2

as our experimental LLMs, which belong to the most widely
used LLMs. Codex is an advanced model that is capable of
translating natural language instructions into code across a
variety of programming languages. GPT3.5 is the model im-
proved on GPT-3 (Brown et al. 2020) and can handle both
natural language and code.

Implement Detail For the equation generation, we use
the Azure OpenAI API of code-davinci-002 and
gpt-3.5-turbo for our experiments 3. We use Codex
to denote code-davinci-002 and GPT3.5 to denote
gpt-3.5-turbo for brief in the following. We use 5-8

2https://platform.openai.com/docs/models/gpt-3-5
3https://azure.microsoft.com/en-us/products/cognitive-

services/openai-service
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shots for all the experimental datasets with different hard-
ness. For equation solving, we employ sympy (Meurer et al.
2017) to solve generated equations, which is a Python pack-
age for symbolic mathematics.

Main Result
The main experiment results are shown in Table 1. We can
see that BRIDGE brings robust performance improvement,
leading to new SOTA results on all datasets and models un-
der the single reasoning path setting, which proves the effec-
tiveness of our method.

GSM8K Compared with the results of the previous SOTA
methods, BRIDGE consistently surpasses the previous meth-
ods using programs as IMRs (PoT, PAL), empirically prov-
ing that equations are a better IMR than programs and the
correctness of Proposition 2 to a certain extent.

SVAMP BRIDGE also achieves the new SOTA result with
0.9% improvement. Notably, we can observe that the perfor-
mance boost brought by BRIDGE in SVAMP is not as valid
as GSM8K. This is because the semantics of bad cases in
previous methods are complicated, requiring enhancing the
understanding ability of LLMs to relationships of quantities
rather than simply changing IMRs.

Algebra BRIDGE brings 1.7% improvement compared
with the previous SOTA result. However, our method is less
robust compared with other datasets, with a fluctuation of
more than 1.7%. It is because Algebra is smaller than the
other two datasets with only 222 questions, resulting in more
obvious performance fluctuations.

Our method can also apply the self-consistency
method (Wang et al. 2023) to enhance the performance.
To prove this point, we evaluate BRIDGE on GSM8K
with self-consistency, which is shown in Table 3. The
result shows that self-consistency also brings significant
improvement to our method.

Ablation Study
Answer Generation We adopt the ablation study to verify
the stage effectiveness of BRIDGE. The experiment result
is shown in Table 4, from which we can see that: (1) The
Erase and Decompose stages can bring improvement to all
datasets, proving the effectiveness of these two stages; (2)
Compared with Erase, using Decompose can bring a more
significant improvement on GSM8K and SVAMP since De-
compose is also effective for questions that do not require
equation solving, while Erase is mainly designed for ques-
tions using equations; (3) Compared with GSM8K, the im-
provement in SVAMP is less obvious because the questions
of SVAMP are much simpler than GSM8K, and most ques-
tions not solved by previous methods require enhancing abil-
ities other than numerical reasoning, so the improvement
brought by our method is not significant.

Equation Generation To verify whether the Erase stage
can improve the tendency of LLMs to generate equations,
we count the number of generated equations in the results
with and without Erase. The experiment results are shown

2-shots 4-shots 6-shots 8-shots

72.3 72
73.7 75

70.1
72.9

74.6 75.8

71.6 71.6
74.3

77.6

Figure 3: The exact match of inference with different shots
on GSM8K run three times using gpt-3.5-turbo. Dif-
ferent color denotes the result of the different run.

in Table 2. From the results, we can see that: (1) On each
dataset, the numbers of results using equations on both cor-
rect and total cases have increased, proving that the Erase
stage indeed improves the tendency of LLMs to generate
equations; (2) Compared with GSM8K, the improvement of
the Erase stage in Algebra is not obvious because Algebra
mainly includes algebra questions, which can guide to gen-
erate algebra equations by questions themselves.

Analysis
Sensitivity to Exemplars To study the impact of different
prompts on BRIDGE, we write a total of 15 samples and ran-
domly select {2, 4, 6, 8} shots from them as prompts to run
three times. The experiment results are shown in Figure 3.
From the results, we can see that as the number of shots in
the prompt increases, the performance of our method grad-
ually improves. Besides, as the number of shots increases,
the variance of the results is gradually decreasing, indicat-
ing that the robustness is also gradually improving.

Equation Proportion To evaluate whether BRIDGE en-
hances the numerical reasoning ability of LLMs by gen-
erating equations, we select the cases where PoT is incor-
rect while our method is correct and see if each case gener-
ates equations as IMRs. The proportions of generating equa-
tions of different methods and datasets are shown in Table 5.
Based on the results, we can see that: (1) On all models
and all datasets, the performance improvement has equa-
tions involved, and it is most significant in Algebra, where
about half of the improvement uses equations; (2) The per-
formance improvement is not all brought by using equations
as IMRs because the results of LLMs are not robust, and
many questions in the part that does not use equations may
be solved in the results of other runs of PoT; (3) The im-
provement brought by using equations on SVAMP is not
significant because the questions of this dataset are relatively
simple, and most of them can be solved without equations.

Reasoning Complex We analyze the effectiveness of our
method of solving the questions with different complexes,
which are categorized by the number of statements or equa-
tions of answers. The performance improvement of our
method compared with PoT is shown in Table 6, which
shows that: (1) Our method can bring performance im-
provement of questions under different complexes, espe-
cially on the Algebra dataset, improvement is more than
30%, which proves the effectiveness of our method under
different complexes; (2) On the GSM8K dataset, the im-
provement of more complex questions is not obvious, show-
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Model Method GSM8K SVAMP Algebra

Codex

CoT (Wei et al. 2022) 65.6 74.8 47.9
Tab-CoT (Jin and Lu 2023) 61.6 82.9 −
Declarative (He-Yueya et al. 2023) 69.4 − 76.3
PoT (Chen et al. 2022) 71.6 85.2 −
PAL (Gao et al. 2022) 72.0 79.4 56.2

BRIDGE 74.2± 0.4 86.1± 0.5 78.5± 1.7

GPT3.5
CoT (Our runs) 76.5 80.8 53.6
PoT (Our runs) 74.8 79.3 64.0

BRIDGE 77.2± 0.4 82.3± 0.6 82.0± 0.9

Table 1: The exact match under different datasets and models with different prompt methods. The results of our method are
averaged over five runs. The best results of different datasets are annotated in bold.

Model Method GSM8K SVAMP Algebra

C T C T C T

Codex
BRIDGE 83 108 49 57 68 80
- Erase 61 89 44 52 65 77

∆(%) 36.1 21.3 11.4 9.6 4.6 3.9

GPT3.5
BRIDGE 93 139 56 65 77 86
- Erase 65 96 43 51 75 81

∆(%) 43.1 44.8 30.2 27.5 2.7 6.2

Table 2: The equations generated with and without Erase
stage. C denotes the correct cases, and T denotes the total
cases. ∆ denotes the ratio of the equations increased after
using Erase to that without Erase.

Method GSM8K
CoT w. Self-Consistency 82.0
PoT w. Self-Consistency 77.4

BRIDGE 77.2
w. Self-Consistency 83.6 (+6.4)

Table 3: The exact match of gpt-3.5-turbo with differ-
ent prompt methods. The best result is annotated with bold.

ing that BRIDGE brings relatively small performance im-
provement when dealing with more complex questions.

Error Type In order to investigate the main sources of er-
ror in BRIDGE, we count the number of bad cases where
errors occurred in different stages. We randomly select one
hundred bad cases of GSM8K and SVAMP, then manually
classify them according to the stages where the error oc-
curred. The results are shown in Figure 4.

Based on the results, we can draw the conclusion that:
(1) There are very few cases of LLMs making mistakes in
the Erase and Decompose stages because LLMs in these
two stages mainly rely on understanding the meaning of
the question and do not need reasoning, so they have bet-
ter performance; (2) The errors mainly concentrate in the
Translate and Answer stages, which proves that the ability of

Model Method GSM8K SVAMP Algebra

Codex
BRIDGE 74.2 86.1 78.5
- Erase 69.0 86.0 72.1
- Decompose 68.2 85.6 77.8

GPT3.5
BRIDGE 77.0 82.5 82.9
- Erase 76.1 81.9 81.5
- Decompose 74.2 81.9 79.7

Table 4: The ablation experiment results in Erase and De-
compose stages on GSM8K and SVAMP of different mod-
els. The first line of each model denotes using BRIDGE.

Model GSM8K SVAMP Algebra

Codex 20.8% 15.3% 47.8%
GPT3.5 41.7% 10.0% 59.6%

Table 5: Among the cases where PoT is incorrect while
BRIDGE is correct, the proportion of cases using equations.

current LLMs to translate natural language into equations is
still weak because LLMs still confuse the semantics between
questions and equations after erasing and decomposing; (3)
The main error types of GSM8K and SVAMP are not con-
sistent because the relationship of quantities in the questions
of GSM8K is more complicated and hard to be translated
into equations, while the main difficulty of SVAMP lies in
determining which quantity is asked by the question.

Case Study To better understand how BRIDGE improves
the numerical reasoning performance of LLMs, we present
a case study in Figure 5. Since the program needs to define
variables before use, when dealing with the question in Fig-
ure 5, it is necessary first to understand the relationships of
different quantities in the question, then adjust the order of
each sub-question in the result, which is with low genera-
tion accuracy. While BRIDGE uses equations as IMRs, the
generated results correspond to each sentence of the original
question in sequence, and the difficulty of generation is low,
leading to the correct result.
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#Steps GSM8K Algebra

PoT BRIDGE ∆ PoT BRIDGE ∆

≤ 4 71.1 78.6 7.5 49.5 80.5 31.0
[5, 6] 71.6 78.3 6.7 20.0 60.0 40.0
≥ 7 68.5 70.0 1.5 5.9 58.8 52.9

Table 6: The exact match of questions with different equa-
tions steps of code-davinci-002. #Steps denotes the
number of answer equations.

2-shots 4-shots 6-shots 8-shots

72.3 72
73.7

75

70.1

72.9
74.6

75.8

71.6 71.6

74.3

77.6

Erase Decompose Translate Answer
0

20

40

60

80
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a
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s
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Figure 4: The number of bad cases in different stages of
GSM8K and SVAMP of code-davinci-002.

Related Work
Numerical Reasoning with LLMs
The ability to perform numerical reasoning is essential for
NLP models as it enables them to understand and manip-
ulate numerical information embedded in natural language
(Lu et al. 2023). Utilizing LLMs for numerical reasoning
tasks has become the mainstream in current research due
to their brilliant few-shot inference ability without training
(Wei et al. 2022; Chen et al. 2022; Xie et al. 2023).

Early researches guide LLMs to generate answers and the
reasoning process in one step (Jie and Lu 2023; Liu and
Low 2023; Imani, Du, and Shrivastava 2023). For example,
CoT (Wei et al. 2022) asks LLMs to generate the reason-
ing process with natural language to get the answer. As the
pre-training data of LLMs include numerous programs, PoT
(Chen et al. 2022) and PAL (Gao et al. 2022) ask the model
to generate programs to solve numerical questions. Follow-
ing the same reason, Tab-CoT (Jin and Lu 2023) asks the
model to generate tables to solve this task, as a large amount
of tabular data is used during the pre-training of LLMs.

Besides, many works also try to decompose the process
of numerical reasoning into multiple steps to reduce the
difficulty of model inference (Gaur and Saunshi 2023; Li
et al. 2023; Wang, Zhang, and Wang 2023). For example,
PHP (Zheng et al. 2023) generates answers through multi-
turn inferences, and each turn can use the answers of the
previous turns as a hint. Decomposition (Xie et al. 2023)
generates multiple candidate results based on the previous
steps of each reasoning step (e.g., one program statement)
and keeps the best k of them like beam-search.

However, due to the high proportion of constant expres-
sions and programs in the pre-training data, LLMs prefer

Question
Caroline is three times older than Ben. Ben is two times older than Chris. If Chris is 
4, how old is Caroline?

Caroline is three times older than Ben. 
Ben is two times older than Chris.
If Chris is 4, how old is Caroline?

Program
chris_age = 4
ben_age = chris_age / 2
caroline_age = ben_age * 3
ans = caroline_age

Equation
caroline_age = 3 * ben_age
ben_age = 2 * chris_age
chris_age = 4
ans = caroline_age

Caroline is three times older than Ben. 
Ben is two times older than Chris.
If Chris is 4, how old is Caroline?

Figure 5: The results of PoT and BRIDGE of a case in
GSM8K. The above part is the result of PoT, and the below
part is BRIDGE. The error steps and results are annotated in
red, and the correct results are annotated in green.

to generate these two types of IMRs during few-shot infer-
ence. These may limit the numerical reasoning capability of
LLMs since these IMRs may not be the best format for solv-
ing the numerical reasoning task. To overcome this problem,
we present BRIDGE, which erases asking parts in questions.
After erasing, we disrupt the input structure that LLMs have
seen in the pre-training data, and LLMs are less likely to
generate constant expressions or programs.

Reasoning with Intermediate Meaning
Representation
In the field of NLP, a common way to reduce the difficulty
of reasoning is to generate answers with an intermediate
meaning representation (IMR) (Gan et al. 2021; Nie et al.
2022; Paul et al. 2023). Such methods first generate IMRs
of questions and then use external tools (e.g., algorithms,
interpreters) to generate the answer results based on IMRs.
Since generating the answer from IMRs is deterministic, the
main bottleneck is how to generate IMRs of questions.

The most widely studied IMRs are the semantic repre-
sentation language (Kamath and Das 2019). Previous works
have designed many semantic representation languages to
represent natural language sentences, such as AST (Jones
2003) and AMR (Banarescu et al. 2013). By converting
into these languages, then applying the converted results on
downstream tasks, the semantic understanding ability of the
model can be effectively improved (Che et al. 2021).

Many methods also employ IMRs to solve the numerical
reasoning task (Wang, Zhang, and Wang 2023; Paul et al.
2023). A commonly used IMR is constant expressions (Roy
and Roth 2015; Koncel-Kedziorski et al. 2016). The cur-
rent SOTA methods use programs as IMRs because pro-
grams have closer semantics to questions than constant ex-
pressions, and current LLMs have strong program genera-
tion capabilities (Chen et al. 2021a, 2022; Gao et al. 2022).
Besides, there are many other types of IMRs, such as dol-
phin languages (Huang et al. 2018), domain-specific lan-
guages (Chen et al. 2021b) and equations (Roy, Upadhyay,
and Roth 2016; He-Yueya et al. 2023).

However, most methods design IMRs based on expert ex-
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perience or experimental results, affected by factors other
than IMRs themselves, such as model structure and train-
ing data. To theoretically compare the generation of differ-
ent IMRs, in this paper, we propose and prove a proposition
to guide the design of IMRs with high generation accuracy.

Conclusion
In this paper, we employ equations as IMRs to solve the
numerical reasoning task by addressing two problems: (1)
Theoretically, how to prove that the equation is an IMR with
higher generation accuracy than programs; (2) Empirically,
how to improve the generation accuracy of equations with
LLMs. For the first problem, we present and prove a propo-
sition to compare the generation accuracy of different IMRs
in theory. For the second problem, we present BRIDGE to
enhance the equation generation of LLMs by reducing the
tendency of generating constant expressions and programs
and decomposing questions. To evaluate BRIDGE, we con-
duct experiments across three datasets: GSM8K, SVAMP,
and Algebra. Compared to the previous SOTA results, our
method has increased average performance by 1.6%, setting
new SOTA performance across all the datasets under the sin-
gle reasoning path setting. Moreover, ablation experiments
show that using BRIDGE can enhance the tendency of LLMs
to generate equations as IMRs, proving that our method can
improve the ability of LLMs to generate IMRs outside of
constant expressions and programs.
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