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Abstract

Recently we have witnessed the rapid development of video
question answering models. However, most models can only
handle simple videos in terms of temporal reasoning, and
their performance tends to drop when answering temporal-
reasoning questions on long and informative videos. To tackle
this problem we propose STAIR, a Spatial-Temporal Rea-
soning model with Auditable Intermediate Results for video
question answering. STAIR is a neural module network,
which contains a program generator to decompose a given
question into a hierarchical combination of several sub-tasks,
and a set of lightweight neural modules to complete each
of these sub-tasks. Though neural module networks are al-
ready widely studied on image-text tasks, applying them to
videos is a non-trivial task, as reasoning on videos requires
different abilities. In this paper, we define a set of basic
video-text sub-tasks for video question answering and de-
sign a set of lightweight modules to complete them. Differ-
ent from most prior works, modules of STAIR return inter-
mediate outputs specific to their intentions instead of always
returning attention maps, which makes it easier to interpret
and collaborate with pre-trained models. We also introduce
intermediate supervision to make these intermediate outputs
more accurate. We conduct extensive experiments on sev-
eral video question answering datasets under various settings
to show STAIR’s performance, explainability, compatibility
with pre-trained models, and applicability when program an-
notations are not available. Code: https://github.com/yellow-
binary-tree/STAIR

Introduction
Video question answering (video QA) is a challenging task
that lies between the field of Natural Language Processing
and Computer Vision, which requires a joint understand-
ing of text and video to give correct answers. However,
most approaches, including some recently proposed video-
text large pre-trained models, only treat videos as animated
images. They use black-box deep neural networks to learn
mappings directly from inputs to outputs on factual ques-
tions like “Who is driving a car?”, ignoring the biggest dif-
ference between videos and images: the existence of tem-
poral information. As a result, their performance tends to
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drop when understanding long and informative videos and
answering complicated temporal-reasoning questions, such
as determining the order of two events, or identifying events
in a given time period of the video, where small differences
in temporal expressions can lead to different results.

In comparison, in image question answering, many
neural-symbolic methods have been proposed to tackle with
complicated spatial-reasoning problems. Neural Symbolic
VQA (Yi et al. 2018) aims to parse a symbolic scene rep-
resentation out of an image, and converts the question to a
program that executes on the symbolic scene representation.
Neural Symbolic Concept Learners (Mao et al. 2019) also
convert images to symbolic representations, but by learn-
ing vector representations for every visual concept. How-
ever, though these neural symbolic methods can achieve
very good results on synthetic images like CLEVR (John-
son et al. 2016) and Minecraft (Wu, Tenenbaum, and Kohli
2017; Yi et al. 2018), they can not perform well on real-
world images. One promising neural-symbolic approach is
Neural Module Networks (NMNs) (Andreas et al. 2015). It
first converts the question to a program composed of sev-
eral functions using a program generator, and then executes
the program by implementing each function with a neural
network, which is also known as a “module”. With the in-
troduction of neural networks at execution, it works better
on real-word image question answering like VQA (Agrawal
et al. 2015), and can also provide clues about its reasoning
process by checking the program and inspecting the output
of its modules.

In this paper we apply the idea of NMN to video question
answering and propose STAIR, a Spatial-Temporal Reason-
ing model with Auditable Intermediate Results.

We define a set of basic video-text sub-tasks for video
QA, such as localizing the time span of actions in the video,
recognizing objects in a video clip, etc. We use a sequence-
to-sequence program generator to decompose a question
into its reasoning process, which is a hierarchical combi-
nation of several sub-tasks, and formalize this reasoning
process into a formal-language program. Note that though
the program generator requires question-program pairs to
train, in practice we found that the program generator trained
on AGQA2 (Grunde-McLaughlin, Krishna, and Agrawala
2022) question-program pairs (which is publicly available)
can generate plausible programs for questions from other
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datasets, so no further manual efforts are required to apply
STAIR on video QA datasets without program annotations.

We also design a set of lightweight neural modules to
complete each of these sub-tasks. These neural modules can
be dynamically assembled into a neural module network ac-
cording to the program. Then the neural module network
takes video feature and text feature from a video encoder and
a text encoder as input, and outputs a representation of the
question after reasoning, which is then used by a classifier
to generate the final answer. Different from most prior works
of neural module networks, our neural modules return inter-
mediate results specific to their intentions instead of always
returning attention maps. Here we use the term “auditable”
to describe that we can get the exact answer of each sub-task
with no further actions required, which greatly increases the
explainability of our method, and these intermediate results
can also serve as prompts to improve the accuracy of pre-
trained models. We also introduce intermediate supervision
to make the intermediate results more accurate by training
neural modules with ground truth intermediate results.

We conduct experiments on the AGQA dataset (Grunde-
McLaughlin, Krishna, and Agrawala 2021, 2022), a large-
scale, real-world video question answering dataset with
most questions of it require combinational temporal and log-
ical reasoning to answer, for a detailed analysis of STAIR.
We also conduct experiments on STAR (Wu et al. 2021)
and MSRVTT-QA (Gao et al. 2018) to test the feasibility of
STAIR on datasets without human annotations of programs.
In summary, the contributions of this paper include:

• We propose STAIR, a video question answering model
based on neural module networks, which excels at solv-
ing questions that require combinational temporal and
logical reasoning and is highly interpretable. We define
sub-tasks for video QA, and design neural modules for
the sub-tasks.

• We introduce intermediate supervision to make the inter-
mediate results of the neural modules more accurate.

• We conduct extensive experiments on several video ques-
tion answering tasks to demonstrate its performance, ex-
plainability, possibility to collaborate with pre-trained
models, and applicability when program annotations are
not available.

Related Works
Video Question Answering. Recent advances in video
question answering methods can be roughly divided into
four categories: (1) Attention based methods (Zhang et al.
2019; Li et al. 2019; Kumar et al. 2019) that adopt spatial
and/or temporal attention to fuse information from question
and video; (2) Memory network based methods (Xu et al.
2017; Gao et al. 2018; Fan et al. 2019; Kim et al. 2019) that
use recurrent read and write operations to process video and
question features; (3) Graph based methods (Jin et al. 2021;
Seo et al. 2021; Xiao et al. 2021; Cherian et al. 2022; Park,
Lee, and Sohn 2021; Zhao et al. 2022) that process videos
as (usually object level) graphs and use graph neural net-
works to obtain informative video representations; and (4)
Pre-trained models (Lei et al. 2021; Fu et al. 2021; Zellers

et al. 2021, 2022; Wang et al. 2023) that pre-train a model
in self-supervised manner with a mass of video-text multi-
modal data. Recently, many works also try to solve video
QA in zero-shot settings using large pre-trained transformer-
based models (Alayrac et al. 2022; Li et al. 2023; Zhang, Li,
and Bing 2023; Lyu et al. 2023). Though many works have
reported good video understanding and response generation
abilities of their models, these models require massive com-
puting resources to pre-train, and their training videos/ques-
tions are relatively simple in terms of temporal reasoning,
which means that these models are not robust at understand-
ing and reasoning temporal information of videos.

Since there is usually redundant information in the video,
Some works (Kim et al. 2020; Gao et al. 2022; Li et al. 2022)
also study helping the model focus on key information by
selecting video clips relevant to the question.

Though the above-mentioned methods have achieved out-
standing performance, for most of these methods their per-
formance tends to drop when evaluating on questions that re-
quire complicated logical reasoning or counterfactual ques-
tions and are difficult to interpret. To tackle these problems,
some works use neural symbolic approach (Yi et al. 2019)
(Qian et al. 2022) or construct physics models (Ding et al.
2021; Chen et al. 2021).

Neural Module Networks. Neural Module Networks
(NMN) have been widely used in image question answer-
ing (Andreas et al. 2015; Hu et al. 2017; Johnson et al.
2017; Mascharka et al. 2018; Hu et al. 2018). These meth-
ods explicitly break down questions into several sub-tasks
and solve each of them with a specifically-designed neural
network (module). Attention maps or image representations
are used to pass information among modules. Neural Mod-
ule Networks are generally more interpretable, and excel at
tasks that require compositional spatial reasoning such as
SHAPES (Andreas et al. 2015) and CLEVR (Johnson et al.
2016). A more advanced NMN for image-text tasks is the
recently-proposed Visual Programming (Gupta and Kemb-
havi 2023). Taking advantage of several off-the-shelf mod-
els such as CLIP (Radford et al. 2021), GPT-3 (Brown et al.
2020) and Stable Diffusion (Rombach et al. 2021), Visual
Programming is capable of performing image QA, object
tagging, and natural language image editing without further
training.

Contrary to the intense research efforts of NMNs on im-
age QA, there are significantly fewer works that focus on
video QA (Le, Chen, and Hoi 2022; Qian et al. 2022).
Though sharing the same motivation, it is non-trivial to de-
fine the sub-tasks and design their corresponding modules
for video modality, which is one of the main contributions
of our work. The work most similar to ours is DSTN (Qian
et al. 2022), which also uses neural module network for
video QA. But our work is significantly different from theirs
in better performance, better explainability, the usage of in-
termediate supervision, the ability to collaborate with pre-
trained models, and verifying its applicability when program
annotations are not available.
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Figure 1: Overview of STAIR.

Methodology
In this section, we describe the details of STAIR. STAIR
takes as input a video feature xv ∈ RT×hidV with T
frames encoded by a pre-trained visual feature extractor
and a question xq with L words, and selects an answer a
from a fixed set of all possible answers A. STAIR con-
sists of the following components: (1) a bi-directional LSTM
video encoder ENCvid which models the temporal rela-
tionship of the video feature and transforms it into the com-
mon hidden space v = ENCvid(xv), v ∈ RT×H ; (2)
a bi-directional LSTM text encoder ENCtxt which ex-
tracts the sentence-level and token-level question feature as
(q, t) = ENCtxt(xq), q ∈ RH , t ∈ RL×H ; (3) a collection
of neural modules {fm}, each of which has a set of associ-
ated parameters θm, performs a specific sub-task, and can be
combined into a neural module network; and (4) a two-layer
classifier ϕ(·) that predicts the final answer. Besides, a pro-
gram generator p = gen(xq) is trained individually to pre-
dict the program that determines the layout of the modules
given a question xq . The overview of the model is shown in
Figure 1.

Neural Modules
As mentioned above, our solving process of the questions
can be decomposed into several sub-tasks. For example, to
answer the question ”After cooking some food what did they
watch?”, there are 3 sub-tasks to solve: first localize the
clips among the entire video when the people are cooking,

then navigate to clips that happen after the cooking clips,
and finally focus on these clips to find out the object that the
people are watching.

Our STAIR contains 16 neural modules implementing dif-
ferent sub-tasks. All of these modules are implemented by
simple neural networks such as several linear layers or con-
volutional layers. Their inputs, outputs, and intended func-
tions are very diverse, including Filter module that finds
objects or actions from a given video clip, Exists mod-
ule that determines whether an object exists in the results
of Filter, Localize module that finds in which frames
an action happens, to name a few. The intentions and imple-
mentation details of all modules are listed in the Appendix.
Different from most of the previous works of neural module
networks, the inputs and outputs of our modules are not al-
ways the same (e.g., attention maps on images/videos), but
are determined by the intentions of each module. Take the
module Filter(video,objects) as an example, it in-
tends to find all objects that appear in the video. Instead of
returning an attention map showing when the objects occur,
in our implementation it must return a feature vector from
which we can predict the names of all objects in the video.
This design leads to significantly better explainability and
reliability, as we can know the exact objects it returns by
only inspecting the output.

Programs and the Program Generator
The design of the program is inspired by the AGQA dataset.
In AGQA, each question is labeled with a program con-
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Figure 2: A Diagram of Intermediate Supervision.

sisting of nested functions indicating the sub-tasks of this
question, and each video is tagged with a video scene graph
from Charades and Action Genome (Sigurdsson et al. 2016;
Ji et al. 2019). The answer can be acquired by executing
the program on the scene graph. We use a rule-based ap-
proach to convert the labeled program to a sequence of pro-
gram tokens, which is the Reverse Polish Notation of the
tree-structured layout of our modules. 1 To avoid confusion
hereafter we refer to the program before and after conver-
sion as sg program and nmn program. Note that though
nmn program is designed according to sg program in
AGQA, it also works on other video question answering
tasks as shown in Section .

Program tokens in nmn program can be categorized
into 4 types: (1) module tokens which corresponds to a
neural module, e.g., Filter, Localize; (2) the “video”
token that represents the video feature v; (3) text tokens
which corresponds to a text span in the question xq , e.g.,
“watch”, “cooking some food”; and (4) switch tokens which
are keywords switches between the branches in a module,
e.g., “max”, “after”, “fwd”(“forward”).

As nmn programs are not provided during inference,
we need to train a program generator to learn the mappings
from questions to nmn programs. We tried fine-tuning a
FLAN-T5-large (Wei et al. 2022), but this problem is easy as
a simple bi-directional LSTM encoder-decoder model with
attention can predict exactly the right nmn program for
more than 98% of the questions in AGQA, so we decide to
use the light-weight LSTM here.

Intermediate Supervision
Previous works mentioned that sometimes modules in the
neural module networks do not behave as we expected and
thus can’t provide meaningful intermediate outputs for us
to understand its reasoning steps despite predicting the fi-
nal answer correctly (Hu et al. 2017). To mitigate this prob-
lem, we use intermediate supervision to induce supervi-
sion to intermediate modules. An example of intermediate
supervision is shown in Figure 2. Given that nmn program
is obtained by converting sg program using a rule-based

1For details of this rule-based approach please refer to our code.

approach, we can record the correspondence between func-
tions in sg program and modules in nmn program.
Then we execute sg program on the video scene graph
and take the return value of functions as ground truth an-
swers of corresponding modules. 2 We use intermediate su-
pervision for all but the first module in nmn program (i.e.,
the root module in the tree structure), as the first module is
already directly supervised by the answer. Note that inter-
mediate supervision does not always improve the model’s
performance, as its main purpose is to make the outputs of
intermediate modules more accurate. Depending on the data
type, we use different criteria to calculate the intermediate
supervision loss LIS between the gold answer and module
prediction, which is elaborated in the Appendix.

Training Procedures
The program generator is trained individually, and the main
model, including video encoder, text encoder, neural mod-
ules, and classifier are trained in an end-to-end manner.

Generating nmn program is considered as a sequence-
to-sequence task. A model gen(·) takes question xq as input
and generate nmn program p̂ in an auto-regressive man-
ner:

logP (p̂|xq) =
∑
t

log(p̂t|xq, p̂<t) (1)

and the loss LGEN is calculated using the negative log
likelihood of ground truth nmn program p:

LGEN = −
∑
t

log(pt|xq, p<t) (2)

When training the main model, the ground truth
nmn program of train and valid set, or the nmn program
generated by the program generator of test set is used to as-
semble the neural modules fm into a tree-structured neural
module network. The classifier loss LCLS is calculated us-
ing the ground truth answer a and the predicted logits â over
all candidate answers produced by the classifier as:

LCLS = lce(â, a) (3)

The total loss of the main model is L = LCLS + ηLIS ,
where η is a hyper-parameter balancing the classifier loss
and the intermediate supervision loss.

Experiments
We evaluate STAIR mainly on AGQA balanced dataset
(Grunde-McLaughlin, Krishna, and Agrawala 2021), as it is
a large-scale, real-world video QA dataset with most ques-
tions in it requiring comprehensive temporal reasoning to
answer. AGQA balanced dataset contains 3.9M question-
answer pairs with 9.6K videos. Each question is associated

2As the authors of AGQA and Action Genome do not release
their code of acquiring answers via scene graphs, we have to im-
plement these functions by ourselves. For about 5% of all training
examples, our implementation can’t return the correct final answer
given sg program and scene graph of the corresponding video,
so we don’t use intermediate supervision on them.
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with a program that describes the reasoning steps to answer
the questions. Videos in AGQA are from Charades (Sigurds-
son et al. 2016), a diverse human action recognition dataset
collected by hundreds of people in their own homes. Each
video is annotated with a video scene graph containing spa-
tial and temporal information about actions and objects from
Action Genome (Ji et al. 2019). AGQA is very challenging,
as even state-of-the-art deep learning models perform much
worse than humans. We also evaluate on AGQA2 balanced
dataset (Grunde-McLaughlin, Krishna, and Agrawala 2022)
which contains 2.27M question-answer pairs selected with
a stricter balancing procedure and is even more challenging
than AGQA. Following (Le et al. 2020), we leave 10% of
the train set out as valid set, and require videos in train/valid
set to be different.

Model Implementations
Implementation. We used two different video features in
our experiments. One is the standard video features pro-
vided by the AGQA dataset, including appearance fea-
tures xa

v ∈ R8×16×2048 extracted from ResNet-101 pool5
layer(He et al. 2015), and motion features xm

v ∈ R8×2048

extracted from ResNeXt-101(Xie et al. 2016). We use mean
pooling on the second dimension of xa

v and concatenate it
with xm

v to obtain the final video feature xv ∈ R8×4096.
We name this video feature “RX”. However, as the official
RX feature only has 8 frames on temporal dimension which
is insufficient for complicated temporal reasoning, we also
extract a video feature ourselves. We sample frames from
videos with a frame rate of 24 fps, and use an I3D model pre-
trained on Kinetics (Carreira and Zisserman 2017) to extract
a 1024-d feature for every consecutive 16 frames. We clip
the temporal dimension length to 64, so the final video fea-
ture is xv ∈ RT×1024, T ≤ 64. We name this video feature
“I3D”.

STAIR is trained with batch size 32, initial learning rate
2e-4 and decays linearly to 2e-5 in 200k steps. η is set as 1.
STAIR is trained on a Nvidia A100 GPU, and it takes about
2 epochs (30 hours) on average for a single run.

Baselines. We compare STAIR with and without inter-
mediate supervision (-IS) with several baselines. We com-
pare with 3 representative video QA models: HME (Fan
et al. 2019) is a memory-network-based model to encode
video and text features; HCRN (Le et al. 2020) uses con-
ditional relational networks to build a hierarchical structure
that learns video representation on both clip level and video
level; PSAC (Li et al. 2019) uses both video and question
positional self-attention instead of RNNs to model depen-
dencies of questions and temporal relationships of videos.
To compare with models that explicitly model the multi-step
reasoning process, we also compare with DSTN (Qian et al.
2022), a neural module network concurrent to our work, and
MAC (Hudson and Manning 2018) which performs iterative
attention-based reasoning with a recurrent “Memory, Atten-
tion and Composition” cell. We make minor modifications
on the attention of MAC to attend to 2-D (T × dimV ) tem-
poral features instead of 3-D (H ×W × dimV ) spatial fea-
tures.

Methods Video Binary Open Overall #Prm
PSAC † RX 53.56 32.19 42.44 39M
HME † RX 57.21 36.57 46.47 42M

HCRN † RX 56.01 40.27 47.82 41M
MAC RX 57.74 41.24 49.15 16M

DSTN-E2E † RX 57.38 42.43 49.60 36M
STAIR RX 59.07 43.08 50.75 21M

STAIR-IS RX 60.15 42.84 51.14 21M
MAC I3D 58.19 46.84 52.28 10M

STAIR I3D 60.18 47.24 53.45 14M
STAIR-IS I3D 62.37 48.32 55.06 15M

Table 1: Results of AGQA. †: Results from (Qian et al.
2022). #Prm denotes number of parameters. #Prm of MAC
varies slightly with its number of steps, here we show #Prm
of a 12-step model.

Methods Video Binary Open Overall
MAC I3D 54.72 44.96 49.67

STAIR I3D 57.13 47.07 52.06
STAIR-IS I3D 56.48 46.41 51.41

Table 2: Results of AGQA2.

Model Performance
Table 1 shows the accuracy of all models on binary, open-
ended and all questions of AGQA. STAIR outperforms all
other baselines when using the same video feature, demon-
strating the effectiveness of our approach. All models using
the I3D video feature outperform their counterparts that use
the RX feature, which shows the higher quality of I3D fea-
tures. We also find that intermediate supervision does not
always improve the performance of STAIR, probably due to
the coordination problems among the losses of multi-task
learning. However intermediate supervision does improve
the model’s explainability by making the output of interme-
diate results more accurate, which is shown in the next sub-
section. We also compare STAIR with the strongest baseline
MAC using the I3D video feature on AGQA2, and the re-
sults are shown in Table 2.

Evaluation and Visualization of Modules’
Intermediate Output
As our STAIR is based on neural module networks, it enjoys
good interpretability while performing well. To demonstrate
the interpretability of STAIR, we evaluate the intermediate
results of Filter, Localize and Temporal modules,
as these modules occurs at high frequency, and the outputs
of them are intuitive and easy to inspect.
Filtermodule is designed to find objects and actions in

the video or related to a given verb. To check the correctness
of the output from Filter module, we use Recall@N in a
retrieval task as the evaluation metric. We calculate a candi-
date representation for each of the 214 candidate answers,
and use cosine similarity between the output of Filter
module and candidate representations to select a list of N
most likely predictions. If one of the predicted items occurs
in the list of ground truth action(s)/object(s), we count it as
a successful retrieval. We use the most frequently occurring
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Methods Filter Localize Temporal
(R@1/5) (IoU) (IoU)

Baseline 0.11/0.43 0.16 0.13
STAIR 0.12/0.30 0.19 0.35

STAIR-IS 0.25/0.50 0.23 0.40

Table 3: Performances of Filter, Localize and Temopral
modules.

N actions/objects as baseline results.
Localize module is designed to find when an ac-

tion happens in a video. We use IoUatt as the evalua-
tion metric. Given the predicted and ground truth attention
scores attp, attg ∈ RT , the metric IoUatt is calculated as
IoUatt = sum(min(attp, attg))/sum(max(attp, attg)),
where max and min are element-wise operations. We use
uniform distribution as baseline attention scores: attb ∼
U(0, 1)× T .
Temporal module is designed to transform the atten-

tion scores according to the switch keyword s. We use the
same metric IoUatt to evaluate the attention scores output
attout. Inspired by (Qian et al. 2022), we randomly sample
two frames as the start and end frames as baseline results.
Specially, the start frame is always the first frame when s =
‘before’, and the end frame is always the last frame when
s = ‘after’.

Table 3 shows the results. STAIR performs baseline on
most metrics except R@5 of Filter module, which indi-
cates that STAIR is capable of providing meaningful inter-
mediate results, and training with intermediate supervision
can make the intermediate results more accurate.

We also visualize the reasoning process of STAIR on
some real examples in the test set in the Appendix.

Compatibility with Pre-trained Models
Pre-trained models, including text-only ones and multi-
modal ones, have achieved state-of-the-art performance on
many question answering tasks. Here we first compare
STAIR with a single-modal pre-trained model GPT-2 (Rad-
ford et al. 2019), and a video-text pre-trained model Violet
(Fu et al. 2021). For GPT-2, we prepend I3D video features
to questions and assign different token type embeddings fol-
lowing (Li et al. 2020). For Violet, we sampled T = 10
video frames, resize them into 224 × 224, and split them
into patches with W ×H = 32 × 32. Though we can’t use
the pre-trained temporal position embedding as our T = 10
is larger than T = 4 in the pre-training stage and T = 5
for downstream tasks in the original paper, we find that this
gives better results. Table 4 shows that on AGQA STAIR
still underperforms GPT-2 and Violet, probably due to sig-
nificantly fewer parameters and the absence of pre-training.
However, the performance gap between STAIR and the pre-
trained models on AGQA2 is smaller, probably due to the
language bias being further reduced and it’s harder for pre-
trained models to find textual clues to solve the questions.

To combine STAIR with pre-trained models, we use a
straightforward method: we modify the questions to add the
intermediate results of our neural modules to the input of

pre-trained models as prompts. We get the top 1 candidate
result for every Filter module in STAIR-IS using meth-
ods described in intermediate output subsection, and con-
catenate it with its keyword inputs. As Filter modules
with lower levels have higher accuracy, we sort all Filter
modules in ascending order of level and take only the first
P modules into account, where P is selected in {1,3,5}
by valid set performance. Take the following question as
an example: What did they take while sitting in the thing
they went above?. To answer this question, the correspond-
ing nmn program contains one Filter module with pa-
rameter (video, above) and returns the result “bag”. So the
modified question becomes: above bag. What did they take
while sitting in the thing they went above?. This can reduce
the difficulty of questions by providing answers to some sub-
tasks so it requires fewer steps to answer them. We use this
method on the best-performing GPT-2 and denote it as GPT-
2+STAIR-IS. Experiments show that with the help of these
intermediate outputs, the performance of GPT-2 is further
improved. It is also an evidence of the usefulness of the in-
termediate results.

Given the recent rapid development of multi-modal large
pre-trained models, we also report the results of zero-
shot Video-ChatGPT (Maaz et al. 2023), a video-text pre-
trained model which is claimed to be optimized for temporal
understanding in videos, and Video-ChatGPT + STAIR-IS
in Table 5. Following (Maaz et al. 2023), Video-ChatGPT
is not fine-tuned, and we benchmark its performance on
AGQA2 with the evaluation pipeline using GPT-3.5. As it is
unfeasible to test on the entire test set of AGQA2 with 660K
questions, we randomly sample 1% (6.6K questions), repeat
the experiment for 3 times, and report the average accuracy
and standard deviation.

Experiments on Tasks Without Program
Annotations
One may question that the need for program annotations
limits the usage of STAIR. However, this question can be
resolved by verifying that program generators trained on
AGQA can be used to generate programs for questions from
other video QA datasets: since the program annotations of
AGQA is already publicly available, no more manual efforts
are required to apply STAIR on datasets without program
annotations.

To resolve this question, we conduct experiments on
STAR (Wu et al. 2021) and MSRVTT-QA (Xu et al. 2017).
We changed the program generator from an LSTM to a
FLAN-T5-large (Wei et al. 2022) fine-tuned on AGQA2
question-nmn program pairs to make the program gener-
ator more generalizable. Please refer to the Appendix for
details of the experiments. Surprisingly, though the pro-
gram generator has never seen questions from STAR and
MSRVTT-QA during training phase, it can generate exe-
cutable programs for more than 95% of the questions. Re-
sults are shown in Table 6 and Table 7. Though STAIR do
not perform well on Interaction type of questions as they are
too simple to take advantage of the compositional ability of
the neural modules, it outperformes several video question
answering baselines on Sequence, Prediction and Feasibility
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Methods AGQA AGQA2 #ParamsBinary Open Overall Binary Open Overall
STAIR 60.18 47.24 53.45 57.13 47.07 52.06 14.97M

STAIR-IS 62.37 48.32 55.06 56.48 46.41 51.41 15.11M
GPT-2 63.94 50.88 57.14 58.10 47.90 52.96 127M
Violet 60.87 52.88 56.72 50.28 49.93 50.11 160M

GPT-2+
STAIR-IS 64.26 50.97 57.34 60.46 49.86 55.13 127M+

15.11M

Table 4: Results of AGQA and AGQA2, comparing with pre-trained models.

Methods Overall
Video-ChatGPT 35.09 (0.76)

+ STAIR-IS 40.43 (0.89)

Table 5: Results of Video-ChatGPT on AGQA2.

Methods Int. Seq. Pre. Fea.
CNN-BERT † 33.59 37.16 30.95 30.84

L-GCN † 39.01 37.97 28.81 26.98
HCRN † 39.10 38.17 28.75 27.27
STAIR 33.20 39.16 38.41 31.30

ClipBERT † 39.81 43.59 32.34 31.42

Table 6: Accuracy on STAR test set, categorized by question
type. †: Results from (Wu et al. 2021)

types of questions which requires spatial and temporal rea-
soning. Results on MSRVTT-QA shows that STAIR is also
applicable to noisy, automatically-generated questions (Lin
et al. 2022). However, it performs worse than the pre-trained
ClipBERT and is only comparable with other simpler meth-
ods, as STAIR is designed for complex spatial-temporal rea-
soning while questions in MSRVTT-QA are mostly simple
factoid questions.

Conclusion
In this paper, we propose STAIR for explainable composi-
tional video question answering. We conduct extensive ex-
periments to demonstrate the performance, explainability,
and applicability when program annotations are not avail-
able. Moreover, STAIR is more auditable compared with
previous works, it returns direct, human-understandable in-
termediate results for almost every reasoning step, and can
be used as prompts to improve the performance of pre-
trained models. We also propose intermediate supervision
to improve the accuracy of intermediate results.

Possible future directions include: training program gen-
erators without direct supervision of ground truth programs
(e.g., with reinforcement learning like (Mao et al. 2019)),
better functional and structural designs of the neural mod-
ules (e.g., using more powerful pre-trained models), and ap-
plying on more video-text tasks other than QA.
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Methods MSRVTT-QA
Co-Memory (Gao et al. 2018) 32.0

HME (Fan et al. 2019) 33.0
HCRN (Le et al. 2020) 35.6

STAIR 34.8
ClipBERT (Lei et al. 2021) 37.4

Table 7: Accuracy on MSRVTT-QA test set.
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