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Abstract

Video event extraction (VEE) aims to extract key events and
generate the event arguments for their semantic roles from
the video. Despite promising results have been achieved by
existing methods, they still lack an elaborate learning strat-
egy to adequately consider: (1) inter-object interaction, which
reflects the relation between objects; (2) inter-modality inter-
action, which aligns the features from text and video modal-
ity. In this paper, we propose a Multi-view Interaction with
knowledge Distillation (MID) framework to solve the above
problems with the Knowledge Distillation (KD) mechanism.
Specifically, we propose the self-Relational KD (self-RKD)
to enhance the inter-object interaction, where the relation be-
tween objects is measured by distance metric, and the high-
level relational knowledge from the deeper layer is taken as
the guidance for boosting the shallow layer in the video en-
coder. Meanwhile, to improve the inter-modality interaction,
the Layer-to-layer KD (LKD) is proposed, which integrates
additional cross-modal supervisions (i.e., the results of cross-
attention) with the textual supervising signal for training each
transformer decoder layer. Extensive experiments show that
without any additional parameters, MID achieves the state-
of-the-art performance compared to other strong methods in
VEE.

Introduction
Video event extraction (VEE) is a challenging multi-modal
task in video understanding, which aims to identify the
events and generate their arguments in a video. For example,
as illustrated in Fig. 1 (a), a VEE system should classify the
drag event and generate <Arg0, the horse>, <Arg1, the man
wearing the healmet> as its event arguments. VEE could
drive many downstream applications, such as video descrip-
tion (Krishna et al. 2017; Xu et al. 2016; Wang et al. 2019),
visual content retrieval (Miech et al. 2019), and knowledge
graphs (Mahon et al. 2020).

Recently, many methods (Feichtenhofer et al. 2019; Xiao,
Tighe, and Modolo 2022; Yang et al. 2022; Xiao et al. 2022)
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Figure 1: An example of showing the importance of inter-
object interaction in VEE. The relative position between
“man” and “horse” is similar in the above two scenes, but
the two videos show very different events.

have been proposed for the VEE task. For instance, Sadhu
et al. (2021) utilized the strong SlowFast model (Feichten-
hofer et al. 2019) as the backbone for video feature extrac-
tion. Yang et al. (2022) explicitly model the states of ob-
jects/entities and their relations in the video. Despite their
promising results, existing methods still have shortcomings
in considering the interactions from the following views:

(1) Inter-object interaction: It reflects the relationship
between objects, which is critical to predict verbs and ar-
guments. As shown in Fig. 1, although “horse” and “man”
objects exist in both videos, the final event type is totally dif-
ferent because of the way they interact with each other. The
existing method (Yang et al. 2022) only models the inter-
object interaction with a union calculation following a sim-
ple pooling method, which drops most information.

(2) Inter-modality interaction: It exists in the the trans-
former decoder during the decoding process for generating
the event arguments, where the output from each transformer
layer reflect the interaction between text and video modali-
ties.

Existing methods (Sadhu et al. 2021; Yang et al. 2022)
only take the desired output text as the ground truth label
for training, and implicitly optimize the cross-modal align-
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ment. However, this training strategy neglects that the cross-
modal information included in the output features could be
served as extra supervision to improve the capability of the
inter-modality interaction. To alleviate the above problems,
an intuitive way is to annotate a large amount of fine-grained
data based on the provided dataset and give the ground-truth
for measuring the inter-object and inter-modality interac-
tion. But this approach is time-consuming and laborious.

Based on the above observations, we introduce the Multi-
view Interaction with knowledge Distillation (MID) frame-
work to enhance the learning process on the above two in-
teractions. First, to strengthen the inter-object interaction,
inspired by previous research (Cornia et al. 2020) that the
deeper layer of the encoder has high-level features contain-
ing more semantic knowledge than those features in lower
layers, we propose a self-Relational Knowledge Distillation
(self-RKD) mechanism. It takes the high-level inter-object
interaction of the deeper layer to supervise the low-level one
in the video encoder by itself. Specifically, self-RKD first
measures the degree of interactions between different ob-
jects with three kinds of metrics. Then, the computed met-
rics will be further taken as the distilling signal to transfer
the high-level relational knowledge from the deeper layer to
the shallow layer. In this manner, the capability of the whole
encoder can be promoted by boosting the inter-object inter-
action layer by layer.

Secondly, to strengthen the inter-modality interaction, we
propose a training strategy named Layer-to-layer Knowl-
edge Distillation (LKD). It considers not only single-modal
supervisions (textual ground-truth) but also supervisions
from cross-modal information, which is included in the out-
put contexts derived from the cross-attention of each trans-
former decoder layer. Specifically, we first train a teacher
model following the regular training procedure with only
the ground-truth text as the supervision. Then, the cross-
modal contexts derived from cross-attention in each layer
of the teacher model are used as additional supervision to
train a student model from scratch. The student model who
has the same model architecture as the teacher model is ran-
domly initialized and retrained with the combination of tex-
tual and cross-modal supervisions. By distilling knowledge
from each layer of the trained teacher model to the corre-
sponding layer of the student model, the student model could
capture the cross-modal knowledge to directly optimize the
inter-modality interactions.

We conduct extensive experiments on the large-scale Vid-
Situ (Sadhu et al. 2021) dataset, and the experimental results
have justified the effectiveness of the proposed MID. Par-
ticularly, benefiting from the inter-object interaction, MID
achieves 2.94% of F1@5 improvements on the test set of
the verb classification task compared to existing strong base-
lines. In addition, the semantic role prediction task enjoys
a further boost due to the inter-modality interaction, i.e.,
1.32% absolute gains on CIDEr. Additionally, we show that
the whole training process does not introduce any additional
parameters compared with previous methods. The contribu-
tions of this work could be summarized as follows:
• We propose a unified KD-based framework named MID

to improve the inter-object and inter-modality interac-

tions. We quantify their particular impacts on the learning
for the VEE task.

• This is the first work to introduce the self-Relational KD
(self-RKD) to enhance the inter-object interaction. And
we design the Layer-to-layer KD (LKD) to enhance the
inter-modality interaction.

• Without any additional parameters, the proposed MID
achieves the SoTA performance on all the sub-steps of
the VEE task. The relevant code will be released to facil-
itate research in the related area.

Problem Formulation
Given a video clip, a VEE system is required to output a
series of events {E} contained in a set of frames {fi}Si=0
sampled from the video. Each event E consists of multiple
pre-defined roles:

E = {v,<r0, a0>,<r1, a1>, . . . }, (1)

where v is the verb, r∗ are the argument roles, and a∗ are the
contents of the event arguments.

Extracting each E in VEE is typically modelled as a two-
stage pipeline task, consisting of verb classification and se-
mantic role prediction. The former is to predict the verb
v from a pre-defined verb set containing N categories ac-
cording to the video clip. The latter is to generate the event
argument a∗ with the argument role r∗. For example, the
event in Fig. 1 (a) is v=drag, and the main event arguments
are <AGENT(ARG0), the horse>, <TARGET(ARG1), the
man wearing the healmet>, etc.

As shown in Fig. 2, both tasks in the pipeline share the
same video encoder, where the SlowFast model (Feichten-
hofer et al. 2019) is utilized to generate the grid-like features
for each frame. Specifically, the raw video clip will be split
into two flows of frames with different sample rates. They
pass through their corresponding pathway (Slow or Fast
pathway) to generate two kinds of grid-like features gslow

and gfast with individual convolution blocks. Then, those
features are merged together with lateral connection (Fe-
ichtenhofer et al. 2019) to form the final grid-like features
g ∈ RF×W×H×d, where F is the number of the final sam-
pled frames after lateral connection, d is the feature dimen-
sion, W and H are the weight and height of the grid feature.
Besides, we utilize the object tracking model VidVRD (Gao,
Chen, and Huang 2021) to extract the objects’ positions,
which are represented with the coordinates of their bounding
boxes b ∈ RF×O×4, where O is the number of detected ob-
jects. Finally, the grid-like features g are further processed
by pooling the pixels within the normalized bounding boxes
to form the objects’ features p ∈ RF×O×d.

With the objects’ features p and the grid-like feature g,
following Yang et al. (2022), the event-aware video embed-
ding e is formed through an Embedding Block (EB):

e = EB (g,p) . (2)

Combining with different decoder modules, the event-
aware video embedding e could be leveraged for verb clas-
sification or semantic role prediction tasks.
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Figure 2: The overall framework of the MID framework.

Method
In this section, we first introduce the sub-tasks of video
event extraction, and then present how MID increases: (1)
the inter-object interactions via self-RKD, and (2) the inter-
modality interactions via layer-to-layer KD.

Verb Classification
The verb classification task takes a 2-second video clip as
an input to predict a verb from the pre-defined set. With the
encoder to provide event-aware visual embedding e in Eq. 2,
a linear function as the decoder is used to generate a predic-
tion yv ∈ RN . The cross-entropy loss between yv ∈ RN

and the ground-truth label ŷv ∈ RN is computed:

Lv = −ŷvlogyv, (3)

yv = Softmax(FC(e)), (4)
where Lv is the supervised loss of verb classification, FC
is the linear function. In the existing methods, generat-
ing event-aware visual embedding e lacks a comprehensive
strategy to activate the inter-object interaction. We present
self-RKD to fill this vacancy.

Self-RKD. The previous method (Yang et al. 2022) uses
the union box of two objects to gather the pixels within the
box and performs average pooling over the pixels to obtain
object interaction embedding. The inter-object interaction is
modelled by a pooling operator, which inevitably loses use-
ful information and affects the modal performance.

Instead of using a simple pooling strategy, our self-RKD
method aims to directly model the interactions between dif-
ferent objects, as shown in Fig. 3. For approaching such
purpose, self-RKD explicitly measures the inter-object in-
teraction with a metric function φ(§, †) between two objects
and take the higher-level inter-object interaction to boost the
low-level one within the SlowFast backbone.

Specifically, we leverage kernel functions to model the in-
teractions between different objects. Three kinds of kernel
functions φ(§, †) are provided:

(1) Naı̈ve MMD (Gretton et al. 2008), which measures the
distance between two distributions with kernel functions. It
reflects the distance between mean embeddings:

φ(§, †) =

∣∣∣∣∣1d
d∑

k=1

§ − 1

d

d∑
k=1

†

∣∣∣∣∣ , (5)

where d is the number of feature dimension of the object.
(2) Dot Production (Lin, RoyChowdhury, and Maji 2015),

which calculates the element-wise dot-product of different
objects:

φ(§, †) = −§ · †T . (6)

(3) Gaussian RBF (Peng et al. 2019), which is a com-
monly used kernel function whose value depends only on
the Euclidean distance from the original space:

φ(§, †) = exp

(
−∥§ − †∥22

2δ2

)
. (7)

Then, for implementing the inter-object interaction
knowledge transferring, we indicate gl as the grid-like fea-
ture output from the l-th layer of the SlowFast model. The
coordinates of each object’s bounding box extracted from
the pre-trained VidVRD (Gao, Chen, and Huang 2021) will
be scaled to the space of grid feature gl as the normalized
bounding box. The ROI align operation (He et al. 2017)
is used to obtain the d-dimensional objects’ feature from
different shape of bounding boxes. The feature of the j-th
object generated from the l-th SlowFast layer is {pl

ji}Fi=0.
With the objects’ features, the inter-object interaction Io
for the l-th SlowFast layer is Ilo ∈ RF×O×O, whose ele-
ment is φ(pl

j1i
,pl

j2i
). O is the number of detected objects,

j1, j2 ∈ [0, O] are indexes of objects:

Ilo =


φ(pl

0i,p
l
0i) · · · φ(pl

0i,p
l
Oi)

...
...

φ(pl
Oi,p

l
0i) · · · φ(pl

Oi,p
l
Oi)




F

i=1

. (8)

So far, each layer has its own inter-object interaction Ilo.
For the l-th layer, its higher-level Il+1

o will have richer inter-
object knowledge than current-level Ilo. As a result, we intro-
duce self-RKD to transfer the inter-object knowledge from
the higher-level layer to the lower-level layer. The loss of
self-RKD in the l-th layer is calculated as follows:

Ll
self−RKD = KL(Il+1

o , Ilo), (9)

Ll
2 =

1

OF

F∑
i=1

O∑
j=1

∥pl+1
ji –pl

ji∥22, (10)

where KL(.) is the Kullback–Leibler divergence and Ll
2 is

the L2 loss between the objects’ features in the adjacent lay-
ers. The L2 loss will provide the value stability of pji in
training. The overall loss function in the verb classification
task is:

Lvb = α0∗Lv+
1

Nv

Nv∑
l=1

(α1∗Ll
self−RKD+α2∗Ll

2), (11)

where α∗ are the hyper-parameters to make a trade-off
among three losses. Nv is the number of SlowFast layers.

Semantic Role Prediction
After training with the verb classification task, the param-
eters of the video encoder are frozen when training with
the semantic role prediction task. The frozen video encoder
provides the event-aware video embedding e. Through a
transformer decoder, the event arguments and their argument
roles are generated in an auto-regressive manner:

ys = TransDec(e, v, r0, a0, ...), (12)
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Figure 3: The architecture of the SlowFast model with self-RKD. Between two adjacent SlowFast layers, the L2 loss and
interaction KD loss are measured over the objects’ features and inter-object interactions of two layers, respectively.

where TransDec(.) is the transformer decoder, v is the verb,
r∗ are the special tokens for each argument role, and a∗ are
event arguments. ys ∈ RNp×dvocab is the likelihood of the
predicted texts. Np is the length of texts. dvocab is the size of
the vocabulary.

The ys is generated through multiple stacked transformer
decoder layers following a linear function, which projects
features of argument sequence PN l

to their corresponding
text, where N l is the last transformer decoder layer. Specif-
ically, argument sequence PN l

is the output of the final
TransDec layer. In the l-th layer of TransDec, the argument
sequence of this layer is P l = {vl,wl

1, ...,w
l
Np

}, where
vl is the feature of verb, and wl

∗ are the features of special
tokens (e.g., “[Arg0]”, representing the argument role) or
words (e.g., “white horse”, describing the event argument)
in the l-th decoder layer.

With the likelihood of the predicted logits ys, a cross-
entropy loss Ls is calculated between ys and the ground-
truth words ŷs for the semantic role prediction task:

Ls = − 1

Np

Np∑
i=1

ŷslogys. (13)

The general loss Ls of semantic role prediction explicitly
supervises the logit of each predicted word. However, the
inter-modality interaction in each decoder layer lacks a di-
rect supervising signal for optimization. To a certain extent,
the capacity of inter-modality interaction is not fully acti-
vated. As a result, we propose the layer-to-layer KD (LKD)
to provide an additional soft label from the cross-modal con-
text to make the inter-modality interaction of each layer ob-
tain guidance from a teacher model.

Layer-to-layer KD. LKD is conducted on the TransDec in
Eq. 12. The principle of LKD to improve the model perfor-
mance is similar to transfer learning (Chen et al. 2021b). It
provides a shortcut to let the inter-modality interaction of the
student quickly adapts to the semantic role prediction task.

Figure 4: The architecture of the layer-to-layer KD,
which provides inter-modality interaction guidance from the
teacher to the student at each transformer decoder layer.

Specifically, we first train a teacher model with the regular
training process and freeze its parameters. Then we lever-
age the ground-truth text and the output cross-modal context
from each layer of the teacher model to train a randomly ini-
tialized student model, which has the same model structure
as the teacher model.

In LKD, the inter-modality interaction of student and
teacher in the l-th decoder layer is noted as Ilm−student and
Ilm−teacher, respectively. They are the intermediate output
of the cross attention at each decoder layer. Essentially, both
of them represent the similarity between the event-aware
video embedding e and argument sequence P l of the l-th
decoder layer. They contain the knowledge about the align-
ment between visual and textual modalities.

For borrowing such interaction knowledge from the
teacher, as illustrated in Fig. 4, we calculate the LKD
loss based on two interactions Ilm−student and Ilm−teacher.
Specifically, we use the average pooling method to get
the features along the head dimension. Assuming the
original multi-head output of the cross-attention is o ∈
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Train Valid Test-Verb Test-Role
Clip 118,130 6,630 6,765 7,990
Verb 118,130 66,300 67,650 79,900
Role 118,130 19,890 20,295 23,970

Table 1: The statistic of the dataset.

Rh×(Np+1)×d, the output value will be ô ∈ R(Np+1)×d.
Then, the LKD loss for the l-th decoder layer between
teacher and student is calculated with their output features
ôl
student and ôl

teacher:

Ll
m =

∥∥ôl
teacher − ôl

student

∥∥2
2
. (14)

With LKD for each decoder layer, we could get an ad-
ditional supervising signal for optimizing the inter-modality
interaction. Combined with the general loss in Eq. 13, the
overall loss function can provide better convergence and
enhance inter-modality interactions in each decoder layer,
which could be formulated as:

Lsem = β0 ∗ Ls + β1 ∗
1

N l

N l∑
l=1

Ll
m, (15)

where β∗ are the hyper-parameters to balance the above two
losses. N l is the number of decoder layers.

Experiment
Dataset and Evaluations
We evaluate the models on the VidSitu (Sadhu et al. 2021)
dataset, which is a large-scale video understanding dataset
with over 130,000 video clips. The event ontology com-
prises 2,154 verb-senses, and each verb is associated with
a minimum of 3 semantic roles. The specific dataset statis-
tics are illustrated in Table 1. The results on the test set are
hidden and displayed in the leaderboard1. As for evaluation
metrics, following Yang et al. (2022), for the verb classifi-
cation task, we calculate the ranking-based metrics includ-
ing the Accuracy@1, Accuracy@5, Recall@5, and F1@5.
Meanwhile, for the semantic role prediction task, CIDEr
score (Vedantam, Zitnick, and Parikh 2015) and ROUGE-
L (Lin 2004) are computed between predictions and ground-
truth descriptions. We compute the micro-averaged CIDEr
score for each individual prediction, and we also calcu-
late the macro-averaged CIDEr score over every verb-sense
(CIDEr-Verb) and argument-type (CIDEr-Arg).

Implementation
For the verb classification task, we leverage SlowFast (Fe-
ichtenhofer et al. 2019) as the feature extractor and follow
its frame sampling rate and dimensions of grid features. The
batch size is set as 16. We leverage the Adam optimizer
with 1e-4 learning rate. The maximum number of objects
in each frame is 8. When distilling between different blocks,

1https://leaderboard.allenai.org/vidsitu-verbs/submissions/
public

the α∗ and β∗ in both losses are all set as 1.0. All the ex-
periments are conducted on 4 V100 GPUs. The models are
trained for 10 epochs and reported with highest validation
F1@5 score. For the semantic role prediction task, the vi-
sual event embedding for each video clip remains fixed, and
we only train the sequence-to-sequence model. The number
of transformer decoder layers is 3. We train the model for
10 epochs and report its performance using the highest val-
idation CIDEr obtained. The optimal hyper-parameters are
obtained by grid search. Following Yang et al. (2022), we
run the models 10 times with random seeds as 17, 33, 66,
74, 98, 137, 265, 314, 590, 788 due to the high variance of
free-form generated argument names.

Baselines
State-of-the-art Models. We compare with the recent
state-of-the-art (SoTA) models: (1) TimeSformer (Berta-
sius, Wang, and Torresani 2021), which enables spatiotem-
poral feature learning directly from a sequence of frame-
level patches; (2) I3D (Carreira and Zisserman 2017), where
filters and pooling kernels of very deep image classification
ConvNets are expanded into 3D; (3) SlowFast (Feichten-
hofer et al. 2019), which contains a slow pathway and a fast
pathway for video recognition; For the I3D and SlowFast
baselines, we consider the variant with Non-Local blocks
(Wang et al. 2018) for comparison. We also compare with
three variances of the OSE model (Yang et al. 2022): (4)
OSE-pixel + OME, which uses object state embedding to
track pixel changes; (5) OSE-pixel/disp + OME, which
uses object state embedding to track both pixel changes and
displacements; (6) OSE-pixel/disp + OME + OIE, which
uses object state embedding and object interaction embed-
ding. For the semantic role prediction task, we also include:
(7) GPT2 (Radford et al. 2019), which is a text-only de-
coder and has shown potential in many generation tasks.
(8) Video-LLaMA (Zhang, Li, and Bing 2023), which is a
multi-modal framework that empowers large language mod-
els for understanding the visual content in the video. Due
to the limitation of computational resources, we perform
zero-shot inference on Video-LLaMA. The input template
of Video-LLaMA is as follows:

Please parse the content of this video. Please gen-
erate five categories of event arument “Arg0”, “Arg1”,
“Arg2”, “ALoc”, “AScn” for the whole video. Those cate-
gories represent “Arg0”: Agent, object performing the ac-
tion; “Arg1”: Patient, object on which action is performed;
“Arg2”: Instrument, Benefactive, Attribute; “ALoc”: loca-
tion; “AScn”: where the event takes place. Please return the
results generated for each category in json format as: {“the
event arguments of video”:{“Arg0”:[], “Arg1”:[], “Arg2”:[],
“ALoc”:[], “AScn”:[]}}.

Ablation Models. We provide four variances of MID ac-
cording to the self-RKD methods to model the object-object
interactions: (8) MID (DOT), which leverages dot pro-
duction; (9) MID (RBF), which leverages Gaussian RBF;
(10) MID (MMD), which leverage naive MMD; (11) MID
(None), which does not utilize any self-RKD method but
model the inter-modality interactions with layer-to-layer
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Model Val Test
Acc@1 Acc@5 Rec@5 F1@5 Acc@1 Acc@5 Rec@5 F1@5

TimeSformer 45.91 79.97 23.61 36.46 - - - -
I3D♠ 30.17 66.83 4.88 9.10 31.43 67.70 5.02 9.35
SlowFast♠ 32.64 69.22 6.11 11.23 33.94 70.54 6.56 12.00
I3D 29.65 60.77 18.21 28.02 29.87 59.10 19.54 29.37
SlowFast 46.79 75.90 23.38 35.75 46.37 75.28 25.78 38.41
OSE-pixel + OME 52.75 83.88 28.44 42.48 52.14 83.84 30.66 44.90
OSE-pixel/disp + OME 53.32 84.00 28.61 42.68 51.88 83.55 30.83 45.04
OSE-pixel/disp + OME + OIE 53.36 83.94 28.72 42.80 52.39 83.47 30.74 44.93
MID (DOT) 52.11 83.33 29.50 43.57 52.31 83.27 31.86 45.90
MID (RBF) 53.14 84.43 30.30 44.60 52.87 83.89 33.01 47.38
MID (MMD) 54.84 85.14 30.68 45.11 53.11 84.55 33.49 47.98

Table 2: Experiment results on verb classification. ♠ indicates those methods does not pre-train on Kinetics-400 dataset.

Model CIDEr CIDEr-Verb CIDEr-Arg ROUGE-L
Avg Std Avg Std Avg Std Avg Std

GPT2♣ 34.67 42.97 34.45 40.08
I3D♣ 47.06 51.67 42.76 42.41
SlowFast♣ 45.52 55.47 42.82 42.66
Video-LLaMA 33.01 38.14 32.26 37.02
SlowFast 44.49 ± 2.30 51.73 ± 2.70 40.93 ± 2.42 40.83 ± 1.27
OSE-pixel + OME 47.82 ± 2.12 54.51 ± 3.00 44.32 ± 2.45 40.91 ± 1.32
OSE-pixel/disp + OME 48.46 ± 1.84 56.04 ± 2.12 44.60 ± 2.33 41.89 ± 1.12
OSE-pixel/disp + OME + OIE 47.16 ± 1.71 53.96 ± 1.32 42.78 ± 2.74 40.86 ± 2.54
MID (None) 48.60 ± 1.94 56.66 ± 1.92 44.98 ± 1.76 41.91 ± 1.98
MID (DOT) 48.71 ± 2.03 56.84 ± 1.73 45.13 ± 2.99 42.07 ± 1.83
MID (RBF) 49.12 ± 1.87 57.28 ± 1.94 45.71 ± 2.85 42.24 ± 1.52
MID (MMD) 49.78 ± 1.91 57.86 ± 2.28 46.49 ± 2.84 42.56 ± 1.13

Table 3: Experiment results on semantic role prediction. We report the average (Avg) results over 10 runs with standard deviation
(Std). The results with ♣ are the single-run performance reported in the VidSitu paper (Sadhu et al. 2021).

KD, utilizing the fixed visual event embedding of OSE-
pixel/disp + OME for the semantic role prediction task.

Main Experiment
Verb Classification. The experiment results are shown in
Table 2, where we could find that: (1) Both OSE and the pro-
posed MID leverage bounding boxes to track the object’s vi-
sual states. They both provide performance gains over those
baselines, demonstrating the effectiveness of modelling ob-
jects at a finer granularity. (2) Compared to the state-of-the-
art method OSE-pixel/disp + OME + OIE, all three variants
of MID have achieved a certain level of performance gains
in F1@5. Meanwhile, the methods utilizing self-RKD gen-
erally have a higher Recall@5, indicating the inter-object in-
teractions could effectively help the models to recall more
correct results from the verb candidate set.

Semantic Role Prediction. The experiment results on the
validation dataset are illustrated in Table 3, where we could
find: (1) OSE-pixel/disp + OME and MID (None) lever-
age the same visual event embedding generated from the
verb classification stage. However, MID (None) outperforms
the strong baseline in CIDEr. It illustrates that the LKD

CIDEr CIDEr
-Verb

CIDEr
-Arg ROUGE-L

MID (None)* 48.46 56.04 44.60 41.89
MID (DOT)* 48.52 56.26 44.81 41.94
MID (RBF)* 48.72 56.52 45.12 41.98
MID (MMD)* 49.13 56.92 46.03 42.11
MID (MMD) 49.78 57.86 46.49 42.56

Table 4: The average experiment results over 10 runs on se-
mantic role prediction. * indicates without LKD.

could effectively model the inter-modality interactions, lead-
ing to performance improvements. In addition, the per-
formance further improves when leveraging features from
the verb classification task trained with different self-RKD
mechanisms, demonstrating that inter-object interaction can
also promote argument generation. (2) The large language
model-based Video-LLaMA dose not perform well, an im-
portant reason is that it may generates long descriptive texts,
containing a number of arguments that do not belong to the
desired event category. (3) MID (DOT) does not perform rel-
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(a) Input Video Frame

(b) Self-RKD Matrix at the 
1st Block

(c) Self-RKD Matrix at the 4-
th Block
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adult1adult1adult1
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adult2

adult1

Figure 5: The inter-object interaction visualization.

atively well on both sub-steps of VEE. A possible reason is
that using dot production may not be able to precisely model
the relationship between objects, thus affecting performance
on subsequent tasks. (4) Compared with those strong base-
lines (such as OSE), which introduces trainable object em-
beddings, MID does not require any additional parameters,
and it brings performance improvement only through KD.

Ablation Study without LKD. We conduct the ablation
study by removing the layer-to-layer knowledge distillation
(LKD). The experiment results are illustrated in Table 4,
where we could find that: compared to those methods that
utilise the LKD in Table 3, the model performance meets
different degrees of degradation when we remove the LKD,
no matter using self-RKD or not. This is consistent with
our intuition that adding supervisory information directly
to each decoder layer of the transformer would benefit the
inter-modality interactions.

Object-object Interaction Visualization. We conduct the
experiment to visualize the interactions between different
objects, where the bounding boxes and object labels are ob-
tained from the object tracking model VidVRD (Gao, Chen,
and Huang 2021). The similarities between object pairs are
measured by the MMD metric. As illustrated in Fig. 5 (a),
there are three objects in the input video frame: the horse,
the running adult1, and the horse-drawn adult2. From Fig. 5
(b)(c), we could find that: since the horse drags the adult2,
there is a relatively strong inter-object interaction between
horse and adult2. Meanwhile, the similarity between horse
and adult2 becomes stronger as the number of model lay-
ers deepens. This finding is consistent with the finding in
Cornia et al. (2020) that the deeper layer of the feature ex-
tractor has high-level features. From this visualization result,
we could find that the proposed self-RKD mechanism could
effectively capture the inter-object interactions.

Case Study. We list several typical cases in Fig. 6 to
demonstrate that the proposed MID enhances the inter-

object and inter-modality interactions. In the first example,
there are two people pointing at each other and posing. The
proposed MID correctly determines point and gesture be-
cause it models the relationship between the two people in
a more appropriate way. Whereas the SoTA model OSE in-
correctly classifies the verb category as speak. In the sec-
ond example, there is a couple hugging and kissing each
other. Our method successfully captures this inter-object in-
teraction and correctly predicts embrace and hug. However,
OSE only focuses on that they are talking, leading to sev-
eral errors. In the third example, there is a woman smoking.
Compared to the results generated by OSE, MID is able to
generate the details of the woman’s clothes. An important
factor is that MID effectively models the inter-object and
inter-modality interactions, thus more detailed results can
be generated. We also compared with the strong video large
language model Video-LLaMA (Zhang, Li, and Bing 2023),
and we could find that Video-LLaMA may generate event
arguments that do not belong to the specific argument cate-
gory (e.g., the Arg0 type), which leads to difference between
the generated results and the ground truth values.

Related Work
Video Event Extraction
Event extraction is a crucial sub-task of information extrac-
tion. It is first proposed in the text field (Liu et al. 2023b;
Wei et al. 2021; Liu et al. 2023a, 2020), and then expand
into image/video (Yatskar, Zettlemoyer, and Farhadi 2016;
Pratt et al. 2020; Sadhu et al. 2021), or multimedia (Li et al.
2020; Chen et al. 2021a; Li et al. 2022) fields. Specifically,
in the video event extraction domain, Sadhu et al. (2021) in-
troduced a VidSitu dataset for video understanding. A series
of follow-up efforts (Xiao, Tighe, and Modolo 2022; Yang
et al. 2022; Xiao et al. 2022) were proposed to drive the de-
velopment of related areas. For example, Yang et al. (2022)
explicitly model the states of objects/entities and their re-
lationships in the videos. However, they do not adequately
model the interaction between objects (only calculate the
union of the bounding boxes and then get the pooling re-
sults). Meanwhile, leveraging the supervision of interactions
between different modalities at each transformer decoder
layer to boost performance is rarely considered in existing
methods. To solve these problems, in this work, we intro-
duce self-RKD and LKD, respectively.

Knowledge Distillation
Knowledge distillation (KD) is first proposed by Hinton,
Vinyals, and Dean (2015). It has been widely used in many
modalities, such as text (Liu et al. 2023c; Wei et al. 2022),
image (Passalis and Tefas 2018; Zhuang et al. 2018), and
video (Bhardwaj, Srinivasan, and Khapra 2019; Zhang et al.
2020). Zhang et al. (2019) introduced the self distillation
mechanism, which computes the association between dif-
ferent CNN block feature maps, but they cannot model the
interaction between objects. Müller, Kornblith, and Hinton
(2019) pointed out that the KD mechanism could play the
role of label smoothing. Several works (Chen et al. 2021b;
Zhang et al. 2019; Sun et al. 2020) utilize this property and
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Figure 6: Result comparison between SoTA and our model.

apply KD to the knowledge transfer field. However, leverag-
ing the cross-modal contexts derived from cross-attention in
the teacher model as the soft label to supervise the training
process of the student model is rarely considered.

Conclusion
In this work, we quantify the inter-object and inter-modality
interactions’ impacts on the learning for the video event ex-
traction task. To promote the two interactions, we propose
a unified model named MID, which consists of the self-
relational knowledge distillation (self-RKD) and the layer-
to-layer knowledge distillation (LKD), respectively. Exper-
imental results illustrate that without introducing any addi-
tional parameters, the proposed MID achieves the SoTA per-
formance on the large-scale VidSitu dataset. Considering the
generality of MID, in the future, we plan to apply it to other
event-related video tasks, such as action classification, video
description, etc.
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