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Abstract

Named entity recognition (NER) aims to identify and clas-
sify specific entities mentioned in textual sentences. Most ex-
isting superior NER models employ the standard fully su-
pervised paradigm, which requires a large amount of anno-
tated data during training. In order to maintain performance
with insufficient annotation resources (i.e., low resources),
in-context learning (ICL) has drawn a lot of attention, due
to its plug-and-play nature compared to other methods (e.g.,
meta-learning and prompt learning). In this manner, how to
retrieve high-correlated demonstrations for target sentences
serves as the key to emerging ICL ability. For the NER task,
the correlation implies the consistency of both ontology (i.e.,
generalized entity type) and context (i.e., sentence seman-
tic), which is ignored by previous NER demonstration re-
trieval techniques. To address this issue, we propose Con-
sistNER, a novel three-stage framework that incorporates on-
tological and contextual information for low-resource NER.
Firstly, ConsistNER employs large language models (LLMs)
to pre-recognize potential entities in a zero-shot manner. Sec-
ondly, ConsistNER retrieves the sentence-specific demonstra-
tions for each target sentence based on the two following con-
siderations: (1) Regarding ontological consistency, demon-
strations are filtered into a candidate set based on ontology
distribution. (2) Regarding contextual consistency, an entity-
aware self-attention mechanism is introduced to focus more
on the potential entities and semantic-correlated tokens. Fi-
nally, ConsistNER feeds the retrieved demonstrations for all
target sentences into LLMs for prediction. We conduct exper-
iments on four widely-adopted NER datasets, including both
general and specific domains. Experimental results show that
ConsistNER achieves a 6.01%-26.37% and 3.07%-21.18%
improvement over the state-of-the-art baselines on Micro-F1
scores under 1- and 5-shot settings, respectively.

Introduction
NER is a fundamental natural language processing (NLP)
task for various downstream tasks such as entity linking
(Sevgili and Shelmanov 2020), event extraction (Xiang
and Wang 2019), and Q&A (Kolomiyets and Moens 2011).
Existing NER methods with pre-trained language models
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(PLMs) have achieved outstanding performance by employ-
ing the standard fully supervised paradigm (Peters et al.
2017; Souza, Nogueira, and Lotufo 2019). However, such
a supervised paradigm heavily depends on large-scale anno-
tated data. Hence, in real-world scenarios, existing methods
tend to struggle when recognizing new entities with insuffi-
cient annotation resources (i.e., low resources).

Several types of methods have been proposed to allevi-
ate the challenge of low-resource NER, varying in meta-
learning (Wu et al. 2020; de Lichy, Glaude, and Campbell
2021; Ma et al. 2022b), prompt learning (Ma et al. 2022a;
Liu et al. 2022; Chen et al. 2022) and in-context learn-
ing (Brown et al. 2020; Smith et al. 2022; Du et al. 2022).
Among these, in-context learning (ICL), which concate-
nates a query and few-shot demonstrations to prompt LLMs
for prediction, is plug-and-play and does not require addi-
tional inductive bias learning or sophisticated template de-
sign. Generally, the primary research of ICL can be grouped
into two directions: query forms (Wang et al. 2023b; Mishra
et al. 2022; Wang et al. 2022; Wei et al. 2023; Wang et al.
2023a) and demonstration retrieval techniques (Ma et al.
2023; Jimenez Gutierrez et al. 2022; Lee et al. 2022; Wang
et al. 2023a). The variances in query forms have the potential
to cause significant differences in model predictions. Com-
pared to directly applying the straightforward instructions
as queries (Wang et al. 2023b; Mishra et al. 2022; Wang
et al. 2022), multi-turn Q&A according to entity types could
improve NER performance (Wei et al. 2023; Wang et al.
2023a). However, queries are often manually created based
on human introspection (Petroni et al. 2019; Brown et al.
2020; Schick and Schütze 2021b,a,c), which results in query
design becoming an engineering problem that requires ex-
tensive human experience and time (Shin et al. 2021).

On detailed analysis, the key to emerging ICL ability
lies in how to retrieve high-correlated demonstrations. Cur-
rent retrieval techniques have shown certain promising re-
sults in this regard (Ma et al. 2023; Jimenez Gutierrez et al.
2022; Wang et al. 2023a). However, these techniques fail
to locate the delicate demonstration considering the consis-
tency of ontology (i.e., generalized entity type) and con-
text (i.e., sentence semantic), simultaneously. (1) Regard-
ing the lack of ontological consistency, Ma et al. (2023)
and Gutiérrez et al. (2022) use CLS embeddings of PLMs
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Target: New Year
(1): Null
(2): new year
(3): Sally
(4): Jakarta
(4): new year

#1: So I wish you all the best of luck.
#2: Now it is looking more likely to spill into the new year.
#3: All right Sally good luck to you and your son.
#4: Officials hope the Jakarta side of the investigation will
resume early in the new year.
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Retrieve #1, #3

CLS-based Method

I thank my friends and wish everyone a Happy New Year.
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Figure 1: An illustration of different demonstration retrieval
techniques, where different colors denote different gener-
alized entity types. For the CLS-based Method, examples
#1, #3 are retrieved based on the sentence embedding (CLS)
similarity. For the Entity-based Method, after extracting en-
tities with a NER tagging model, examples #2, #4 are re-
trieved based on the entity (New Year) embedding similarity.

to select semantically similar training examples as demon-
strations. In this manner, the retrieved demonstrations might
lack ontological consistency with target sentences, whose
pre-given entity types still remain inconsistent after being
generalized. As Figure 1 shown, considering the CLS-based
method, the retrieved examples #1, #3, which only contain
a PER entity Sally, could not provide sufficient assistance
in recognizing the EVENT entity New Year in the target
sentence. (2) Regarding the lack of contextual consistency,
Wang et al. (2023a) suggest retrieving demonstrations based
on the entity similarity, which could not guarantee the con-
textual consistency between the demonstrations and target
sentences. Considering the entity-based method in Figure 1,
the DATE entity new year in examples #2, #4 conveys dif-
ferent meanings compared to the EVENT entity New Year in
the target sentence. This could mislead LLMs into recogniz-
ing the New Year in the target sentence as a DATE entity.

To address the above two issues, i.e. the inconsistency
of ontology and context, we propose ConsistNER, a novel
three-stage framework that incorporates ontological and
contextual information for low-resource NER. Firstly, LLMs
are employed in a zero-shot manner to pre-recognize po-
tential entities, enabling the utilization of local informa-
tion (i.e., entities and entity types) for later. Secondly, to
retrieve the sentence-specific demonstrations for each tar-
get sentence, we consider both ontological and contextual
consistency. Motivated by the bag of words (BoW) (Zhang,
Jin, and Zhou 2010), we derive the bag of ontology (BoO)
and the ontology distribution (OD) representation to filter
demonstrations and construct the candidate set to main-
tain ontological consistency. Inspired by prototypical net-

work (Snell, Swersky, and Zemel 2017), we design a dual
self-attention to derive the entity-aware contextual (EAC)
representation, which pays more attention to the potential
entities and semantic-correlated tokens, to maintain contex-
tual consistency. Finally, after all target sentences have re-
trieved their own sentence-specific demonstrations, Consist-
NER feeds dataset-specific demonstrations, which are se-
lected based on the occurrences, into LLMs to solve NER.

Experimental results on four benchmark datasets from
CoNLL2003, OntoNotes5.0, NCBI and BC5CDR demon-
strate the superior performance of ConsistNER over state-
of-the-art low-resource NER models, with improvements on
F1 scores of 6.01%, 26.37%, 19.56% and 21.44% on the
four datasets, respectively. The effectiveness of maintaining
ontological and contextual consistency between demonstra-
tions and target sentences is also verified. Additionally, we
analyze the theoretical boundary of ConsistNER, which re-
veals the importance of pre-recognition quality. To sum up,
our major contributions are three-fold:

• We propose ConsistNER, a framework devoted to re-
trieving high-correlated demonstrations, in order to
tackle the low-resource NER task with LLMs.

• We devise a novel sample correlation measure mecha-
nism that considers both entity type ontology and con-
textual semantic, specifically designed for the NER task.

• Extensive experiments demonstrate the superiority of
ConsistNER over state-of-the-art baselines. Further anal-
ysis verify effectiveness of ConsistNER in maintaining
ontological and contextual consistency.

Method
We formulate the low-resource NER in the typical N -way-
K-shot form. Given the training set D and the target sen-
tence set T (both unlabeled), for N entity types, Consist-
NER first retrieves and annotates K examples for each entity
type from D to form the support set S = {(xi,yi)}N×K

i=1 ,
where xi = {xi

1, x
i
2, ..., x

i
m} is an m-token text and yi =

{(eij , yij)}lj=1, y ∈ Y is a list of l tuples, where e and
y denote contained entity and its entity type, and Y is a
pre-defined entity type set. ConsistNER then feeds S into
LLMs for prediction and outputs a list of l′ recognized tu-
ples {(ej , yj)}l

′

j=1 for each target sentence in T .
The overall architecture of ConsistNER is shown in Fig-

ure 2. In the first stage, ConsistNER pre-recognizes all texts
from D and T in a zero-shot manner to extract local in-
formation (i.e., entities and entity types), obtaining the pre-
recognized training set D̂ and target sentence set T̂ . In the
second stage, for the target #i from T̂ , ConsistNER first fil-
ters demonstrations from D̂ and constructs the candidate set
Ci for it based on the OD representation. Subsequently, we
build a dual (target- and train-level) attention mechanism to
derive the EAC representation and retrieve target #i-specific
demonstrations Ĉi from Ci. In the third stage, we select the

dataset-specific demonstrations Ŝ from {Ĉi}|T̂ |
i=1 based on the

occurrences, which are then annotated as S to prompt LLMs
to recognize entities in T .
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Stage #2: Sentence-specific Demonstration Retrieval

target #1-specific
demonstrations 

Stage #1: Pre-recognition
Instruction: 
Identify the entities expressed by each
sentence, then locate each entity to words
in sentence. The possible entity types are
[GPE, EVENT, DATE, ...]

Pre-recognized Training Set :
#1: So I wish you all the best of luck.
#2: Now it is looking more likely to spill
into the new year.
#3: May you meet with good fortune and
prosperity in the New Year! 
......

#2, #3 ...

......

Pre-recognized Target Sentence Set  :
#1: I thank my London friends and wish
everyone a Happy New Year.
......

=[1, 0, 2, ...]

Step #1: Ontology-based Demonstration Filtering

=[0.077, 0.000, 0.154, ...]
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Identify the entities expressed by each
sentence, then locate each entity to
words in sentence. The possible entity
types are [GPE, EVENT, DATE, ...]
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May you meet with good fortune and
prosperity in the New Year!
[(New Year, EVENT)]
... ...
Input: I thank my London friends and
wish everyone a Happy New Year.
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Figure 2: Overview of ConsistNER w.r.t. the target sentence I thank my London friends and wish everyone a Happy New Year.

Pre-recognition
Previous work viewed NER as a token-level classification
task, which emphasized the significance of local informa-
tion (Yan et al. 2021). Therefore, a high-correlated NER
demonstration should be consistent with the target sentence
at the token level. Specifically, for NER, the most crucial lo-
cal information is entities and entity types. To enable the
utilization of such information in subsequent stages, we
adopt LLMs in a zero-shot manner (i.e., without demonstra-
tions) (Kojima et al. 2022) to identify potential entities in D
and T to obtain the pre-recognized D̂ and T̂ . For example,
as shown in Stage #1 in Figure 2, the pre-recognition results
of target #1 in T̂ are London(GPE) and New Year(DATE).
But in fact, New Year is an EVENT entity representing a tra-
ditional festival rather than a DATE entity.

Sentence-specific Demonstration Retrieval
With D̂ and T̂ from Stage #1, we can retrieve sentence-
specific demonstrations Ĉi from D̂ for target #i in T̂ con-
sidering both ontological and contextual consistency.

Ontology-based Demonstration Filtering Since entity
types grouped under the same ontology are often corre-
lated (Roche 2003), we assume that not only demonstra-
tions with the same entity types could assist in recognition,
but also demonstrations sharing the same ontology could
achieve this. Based on this consideration, we first lever-
age a pre-defined mapping schema to generalize pre-given
entity types into the ontology level. As shown in Step #1
of Stage #2 in Figure 2, generalized pre-given entity types
GPE, EVENT and DATE belong to different ontologies rep-
resented by different colors.

Subsequently, motivated by the bag of words (BoW)
where a text is represented as the bag of its words (Zhang,
Jin, and Zhou 2010), we propose the ontology-level BoW,
the bag of ontology (BoO), to describe the occurrences of
each ontology in a text. As shown in Step #1, the BoO for
target #1 is [1, 0, 2, ...]. Additionally, with the text length,

the ontology distribution (OD) representation φ could be
derived by computing the BoO values per unit text length,
which denotes the density of each ontology in a text. The
OD representation for target #1 is [0.077, 0.000, 0.154, ...].

With the OD representation, for the target #i in T̂ , we
include training examples from D̂ that have overlapping on-
tology in the demonstration candidate set Ci. As shown in
Step #1, examples #2 and #3 are included in the target #1
candidate set C1. In this way, each included demonstration
could provide assistance in predicting the entities belonging
to overlapped ontology. Notably, when the target sentence
does not contain any ontology, we also include training ex-
amples without ontology in its demonstration candidate set.

Context-based Demonstration Retrieval The vanilla
sentence representation (e.g., the CLS embeddings or the
mean of all token embeddings (Huang et al. 2021)) treats
each token equally, which is not appropriate for NER that
pays more attention to the potential entities and semantic-
correlated tokens. Hence, we build a dual (train-level and
target-level) self-attention mechanism to derive the entity-
aware contextual (EAC) representation for training exam-
ples and target sentences, respectively.

For train-level attention, we first employ BERT (Devlin
et al. 2019) to encode training examples. Given the pth m-
token training example xp = {xp

1, x
p
2, ..., x

p
m} ∈ D̂, BERT

will map all tokens into the hidden embedding representa-
tion Hp = {hp

1,h
p
2, ...,h

p
m}, where h ∈ Rdh is the repre-

sentation of x and dh is its dimension.
Based on the pre-recognition, we could derive the raw en-

tity semantic representation by averaging the embeddings of
the potential entity span. Given the pth training sample xp

with l potential entities {(ep1, y
p
1), ..., (e

p
l , y

p
l )}, where epi and

ypi denote the ith entity and its entity type, the raw entity se-
mantic representation hp

ei ∈ Rdh of epi is as follows:

hp
ei =

1

|Mp
i |

∑
j∈Mp

i

hp
j (1)
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where Mp
i denotes the index set of the ith entity span.

Since each token in the context contributes differently
when recognizing entities, we assume that the tokens seman-
tically correlated to the entity could provide more assistance.
Therefore, when computing the sentence representation, we
not only pay more attention to the potential entities but also
to semantic-correlated tokens. To achieve this, raw entity se-
mantic representation is utilized to sift out the entity-specific
information through the sentence attentively (Cong et al.
2022). The entity-specific information ĥp

i ∈ Rdh of epi is
as follows:

ĥp
i = softmax(

hp
eiH

pT

√
dh

)Hp (2)

Since a sentence may contain multiple potential entities,
we consider the average of the entity-specific information
of all potential entities as the EAC representation. The EAC
representation εp ∈ Rdh of xp is as follows:

εp =
1

l

l∑
i=1

ĥp
i (3)

where l denotes the number of potential entities in xp.
Inspired by prototypical network (Snell, Swersky, and

Zemel 2017), we compute the prototype for each entity
type by averaging the raw entity semantic representation of
that type in the training set D̂. The prototype representation
σk ∈ Rdh of the kth entity type is as follows:

σk =
1

|Sk|
∑

epi ∈Sk

hp
ei (4)

where Sk is the entity set of the kth entity type in D̂.
For target-level attention, we also employ BERT to en-

code target sentences. Given the qth m-token target sentence
xq = {xq

1, x
q
2, ..., x

q
m} ∈ T̂ , BERT maps all tokens into the

hidden embedding representation Hq = {hq
1,h

q
2, ...,h

q
m}.

Given that recognizing entity types is simpler than recog-
nizing entities, we tend to rely more on the entity types pre-
recognized by LLMs rather than the entities. Hence, when
computing the EAC representation of target sentences, we
only utilize the pre-recognized entity types.

Given the qth target sentence xq with l potential enti-
ties {(eq1, y

q
1), ..., (e

q
l , y

q
l )}, if it contains kth entity type yk,

we use the corresponding prototype representation σk to
gather prototype-specific semantics through the sentence at-
tentively. The prototype-specific information ĥq

k ∈ Rdh of
σk is as follows:

ĥq
k = softmax(

σkHqT

√
dh

)Hq (5)

Similarly, we consider the average of the prototype-
specific information of the contained entity types as the EAC
representation. The EAC representation εq ∈ Rdh of xq is
as follows:

εq =
1

|Yq|
∑

yk∈Yq

ĥq
k (6)

where Yq is the entity type set of xq .
As shown in Step #2 of Stage #2 in Figure 2, when

computing the EAC representation of target #1, the pre-
recognized entity types GPE and DATE will pay more at-
tention (deeper color) to London and New Year, respectively.
Eventually, with the OD (φ) obtained in Step #1 and EAC
(ε) representation for each training example and target sen-
tence, we consider the weighted sum of their respective sim-
ilarities as the similarity between the pth training example
and the qth target sentence:

simp,q = λS(φp,φq) + (1− λ)S(εp, εq) (7)

where S denote pre-defined similarity measures (e.g., co-
sine similarity), and λ is the hyperparameter weight. Ac-
cordingly, we can retrieve demonstrations from the candi-
date set Ci for the target #i,. As shown in Step #2, example
#3 has been retrieved for target #1.

Since all above computations depend on pre-recognition,
errors originating from Stage #1 would propagate through-
out the entire pipeline. As shown in Stage #1, after LLMs
incorrectly pre-recognize New Year as a DATE entity
rather than an EVENT entity in target #1, most retrieved
demonstrations will contain DATE entities. Inevitably, these
demonstrations would lead LLMs to predict DATE, result-
ing in inaccurate predictions. Therefore, similar to (Ma et al.
2023; Jimenez Gutierrez et al. 2022), we select top-k seman-
tically similar training examples to replace part of the re-
trieved demonstrations, serving as the final sentence-specific
demonstrations Ĉi.

Execution
After all target sentences have retrieved their own sentence-

specific demonstrations {Ĉi}|T̂ |
i=1, we can not directly anno-

tate them to form the support set S due to the low-resource
settings. Therefore, we select the ones that occur the most
frequently per entity type as the dataset-specific demonstra-
tions Ŝ . Subsequently, we manually annotate these demon-
strations to form S , which is then fed into LLMs for predic-
tion. For each target sentence in T , ConsistNER outputs a
list of l′ recognized tuples {(ej , yj)}l

′

j=1. As shown in Stage
#3 in Figure 2, ConsistNER outputs [(London, GPE), (New
Year, EVENT)], where the recognition of New Year in target
#1 has been corrected to EVENT.

Experiments
Datasets and Experimental Settings
For the general domain, our experiments consider two
datasets. (1) CoNLL2003 (Sang and Meulder 2003) consists
of data taken from Reuters news stories. (2) OntoNotes5.01

is a large corpus comprising various genres of text, such
as news, weblogs, etc. For the specific domain, our exper-
iments consider two datasets. (1) NCBI (Doğan, Leaman,
and Lu 2014) consists of 793 PubMed abstracts annotated
with disease-related mentions. (2) BC5CDR (Li et al. 2016)
consists of 1,500 PubMed articles annotated with chemical

1https://catalog.ldc.upenn.edu/LDC2013T19
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Model CoNLL2003 OntoNotes5.0 NCBI BC5CDR
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoBERT 49.90±8.6† 61.30±9.1† 20.30±6.9† 36.70±4.1† 17.24‡ 34.18‡ 23.61‡ 40.58‡
NNShot 61.20±10.4† 74.10±2.3† 27.80±9.4† 50.50±4.1† 11.82‡ 16.22‡ 32.96‡ 39.30‡

StructShot 62.40±10.5† 74.80±2.4† 27.90±9.7† 52.90±4.8† 4.63‡ 13.89‡ 16.09‡ 30.97‡
CONTaiNER 61.20±10.7† 75.80±2.7† 32.10±9.8† 56.20±5.0† 16.51‡ 26.83‡ 37.25‡ 41.21‡

COPNER 67.00±3.8† 74.90±2.9† - - 15.54‡ 24.23‡ 36.30‡ 42.78‡
VQ + Random 68.57±2.7 73.51±2.3 55.29±1.5 - 25.54±2.3 34.34±4.0 51.59±3.4 59.50±0.9

VQ + CLS 70.66±0.2 75.49±0.1 56.87±0.3 - 27.23±0.1 41.92±0.2 54.10±0.2 60.19±0.1
VQ + ConsistNER 73.01±0.1 78.87±0.1 58.47±0.2 - 34.85±0.2 42.73±0.2 57.98±0.2 61.20±0.1
G-N* + Random 57.26±2.2 63.87±2.0 49.52±1.3 - 28.65±3.9 37.95±3.6 55.88±2.1 60.20±2.0

G-N* + CLS 60.94±0.2 67.94±0.2 50.83±0.5 - 35.15±0.3 41.44±0.4 56.73±0.3 62.65±0.2
G-N* + ConsistNER 61.10±0.3 71.83±0.2 50.95±0.7 - 36.80±0.2 43.87±0.5 58.69±0.2 63.96±0.3

Table 1: Performance (%) of different Models on the CoNLL2003, OntoNotes5.0, NCBI and BC5CDR datasets under the 1-
and 5-shot settings, where VQ and G-N* denote the vanilla query and GPT-NER*, respectively. The best results are in bold.
Due to the 4096 token limit, the 5-shot setting on OntoNotes5.0 is not feasible. Results with † and ‡ are retrieved from original
papers and (Li and Zhang 2023), respectively.

and disease mentions. Since the entity types in CoNLL2003
and BC5CDR are sufficiently abstract, we only formulate
mapping schemas for OntoNotes5.0 and NCBI, which gen-
eralize entity types from the concrete to the abstract. For ex-
ample, we generalize OntoNotes5.0 entity types FAC, GPE
and LOC into the LOC ontology.

We employ ChatGPT2 (gpt-3.5-turbo) as the LLM back-
bone in our experiments. We adopt two query forms. (1)
Vanilla query (VQ) (Wang et al. 2023b; Mishra et al.
2022; Wang et al. 2022) uses straightforward instructions to
recognize entities in a sentence. (2) GPT-NER (Wang et al.
2023a) transforms the sequence labeling task into a genera-
tion task, which uses special symbols (i.e., @@ and ##) to
mark entities in a sentence. However, for each input, GPT-
NER needs to enquire n times, where n denotes the number
of entity types, resulting in significant overhead. Hence, sim-
ilar to (Li and Zhang 2023), we use </type> and <type> to
mark entities and only need to enquire 1 time for each input,
referred to as GPT-NER* (G-N*). We adopt two demonstra-
tion retrieval techniques to compare with ConsistNER.
(1) Random retrieval strategy indicates randomly select-
ing k examples from the training set as demonstrations. (2)
CLS retrieval strategy indicates selecting k nearest neighbor
(kNN) (Ma et al. 2023; Jimenez Gutierrez et al. 2022) of the
input from the training set as demonstrations, where the dis-
tance is measured by the cosine similarity between the CLS
embeddings. We use the span-level Micro-F1 score for eval-
uation and report the mean and associated standard deviation
over 5 runs on the full testing set.

Baselines
We choose five representative low-resource NER models
as baselines for comparison. ProtoBERT (Snell, Swersky,
and Zemel 2017) combines prototype-based learning with
BERT (Devlin et al. 2019). NNShot (Wiseman and Stratos
2019) is a simple method based on token-level nearest neigh-
bor classification. StructShot (Yang and Katiyar 2020)
adopts an additional Viterbi decoder (Forney 1973) based

2https://openai.com/blog/chatgpt

on NNShot. CONTaiNER (Das et al. 2022) leverages con-
trastive learning to infer the distributional distance of Gaus-
sian embeddings of entities. COPNER (Huang et al. 2022)
proposes to leverage class-specific words from natural lan-
guage to serve as the agents of corresponding entity types.

Main Results
The main results are shown in Table 1. Firstly, regard-
less of different query forms or demonstration retrieval
techniques, LLMs consistently outperform other fine-tuning
baselines, which indicates the effectiveness of in-context
learning in low-resource scenarios. Specifically, under the 1-
shot setting, ConsistNER achieves performance gains up
to 6.01%, 26.37%, 19.56% and 21.44% over the strongest
baselines on the four datasets, respectively. Under the 5-
shot setting, ConsistNER achieves performance gains up
to 3.07%, 9.69% and 21.18% over the strongest baselines
on CoNLL2003, NCBI and BC5CDR, respectively. This
demonstrates the growing LLMs superiority as annotation
resources decrease. Moreover, LLM methods show lower
standard deviations than fine-tuning baselines, indicating
their stability with limited annotations.

Secondly, for both VQ and G-N∗, CLS consistently out-
performs Random by up to 4.10%, 1.58%, 7.58% and
2.51% on the four datasets, which shows the importance
of contextual consistency. And greater improvements can be
observed in specific domains, demonstrating that LLMs lack
the domain-specific knowledge (e.g., disease and chemical)
which can be provided by appropriate demonstrations.

Thirdly, for both VQ and G-N∗, ConsistNER consis-
tently outperforms CLS by up to 3.89%, 1.60%, 7.62% and
3.88% on the four datasets, which demonstrates the signif-
icance of maintaining ontological consistency and focusing
more on potential entities and semantic-correlated tokens.

The VQ outperforms G-N* on CoNLL2003 and
OntoNotes5.0, but performs worse on NCBI and BC5CDR.
Despite expectations, G-N* should consistently excel due
to better query form design. However, VQ tends to over-
confidently label Null tokens as entities. This results in the
VQ over-recognizing entities and performing poorly on the
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Figure 3: Results of ablation experiments.

Model CoNLL OntoNotes NCBI BC5CDR
ConsistNER 73.01 58.47 34.85 57.98

w/o OC 71.12 57.75 32.97 57.27
w/o OC & Attn. 70.66 56.87 27.23 54.10
w/o OC & CC 68.57 55.29 25.54 51.59

w/o Repl. 71.93 57.13 33.06 55.15

Table 2: Results (%) of ablation experiments under the 1-
shot setting, where OC, Attn., CC and Repl. denote onto-
logical consistency, attention mechanism, contextual consis-
tency and demonstration replacement.

NCBI and BC5CDR which contain fewer entities in a sen-
tence. Unlike G-N*, which omits numerous entities, it per-
forms poorly on CoNLL2003 and OntoNotes5.0 due to their
high entity density.

Ablation Experiments
Effect of Different Demonstration Numbers We con-
duct experiments on CoNLL2003 to explore the effect of
different demonstration numbers. As shown in Figure 3a,
Set-S and Sen-S represent dataset-specific and sentence-
specific demonstrations, respectively. We observe that as
the number of demonstrations increases, the performance of
both Set-S and Sen-S is on an upward trend, which is due
to the additional information provided by more demonstra-
tions. Notably, after the 5-shot, the Sen-S performance is
converged, while the Set-S performance continues to rise.
This phenomenon owes to the fact that the current constraint
on Set-S performance is no longer insufficient demonstra-
tions, but rather errors within the pre-recognition. These er-
rors result in continually selecting inconsistent demonstra-
tions, thereby preventing further performance improvement.

About Ontological Consistency To verify the effective-
ness of maintaining ontological consistency, we remove Step
#1 of Stage #2 and set λ in Equation 7 to 0. As shown
in Table 2, comparing ConsistNER and w/o OC, we

observe the performance degradation by up to 1.89% on
CoNLL2003, which shows the significance of maintaining
the consistency of ontology. As mentioned before, we se-
lect candidate demonstrations based on ontology overlap.
Intuitively, using entity type overlap as the criterion seems
more reasonable. As shown in Figure 3b, although using
entity type-based criterion has advantages when demon-
strations are limited, as the number of demonstrations in-
creases, the ontology-based criterion gradually surpasses it.
This is because the former criterion overly emphasizes low-
level entity type consistency, thus losing the diversity of re-
trieved demonstrations or even omitting maintaining con-
textual consistency. Besides, LLMs often struggle to distin-
guish entity types belonging to the same ontology. There-
fore, demonstrations with overlapping ontology can enhance
LLMs’ understanding of each entity type under the same on-
tology and thus reducing incorrect recognition.

About Contextual Consistency To verify the effective-
ness of maintaining contextual consistency, we remove the
entire Stage #2. As shown in Table 2, comparing w/o OC
and w/o CC & OC, we observe the performance degrada-
tion by up to 7.43% on NCBI, which shows the significance
of maintaining the consistency of context. Meanwhile, to
verify the effectiveness of the self-attention mechanism, we
remove Step #1 of Stage #2 and the self-attention mecha-
nism. As shown in Table 2, comparing w/o OC and w/o
OC & Attn., we observe that even without maintaining
ontological consistency, the entity-aware self-attention still
improves performance by up to 5.74% on NCBI, which
shows importance of paying more attention to the potential
entities and semantic-correlated tokens for NER.

About Demonstration Replacement To verify the effec-
tiveness of demonstration replacement, we remove the re-
placement operation in Stage #2. As shown in Table 2,
comparing ConsistNER and w/o Repl., we observe
the performance degradation by up to 2.83% on BC5CDR,
which shows the significance of the replacement. We also
study the impact of different proportions of replacement. As
shown in Figure 3c and 3d, we observe that for CoNLL2003
and OntoNotes5.0, the suitable replacement proportion is
around 60%. A proportion that is too low would hinder the
mitigation of error propagation, while too high would limit
the effectiveness of the self-attention mechanism.

Analysis Experiments
Set-S and Sen-S To investigate the performance influ-
enced by Set-S and Sen-S, we conduct experiments
to compare their performance. As shown in Table 3,
Set-S consistently underperforms Sen-S, with perfor-
mance degradation as high as 14.54%, 10.67%, 12.26%, and
9.22% on four datasets, respectively. This shows that each
target sentence has its own high-correlated demonstrations
that maintain ontological and contextual consistency, while
Set-S needs to balance all target sentences, unavoidably
leading to a decrease in performance.

Theoretical Boundary As mentioned earlier, the pre-
recognition quality could affect demonstration retrieval. In
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Model CoNLL2003 OntoNotes5.0 NCBI BC5CDR
Set-S Sen-S Set-S Sen-S Set-S Sen-S Set-S Sen-S

VQ + CLS 70.66±0.2 80.14±0.1 56.87±0.3 59.97±0.3 27.23±0.1 34.07±0.2 54.10±0.2 59.12±0.2
VQ + ConsistNER 73.01±0.1 82.22±0.1 58.47±0.2 64.21±0.4 34.85±0.2 38.21±0.1 57.98±0.2 62.48±0.1

G-N* + CLS 60.94±0.2 70.80±0.0 50.83±0.5 53.40±0.3 35.15±0.3 40.77±0.1 56.73±0.3 59.72±0.1
G-N* + ConsistNER 61.10±0.3 75.64±0.1 50.95±0.7 61.62±0.6 36.80±0.2 49.06±0.1 58.69±0.2 67.91±0.2

Table 3: Performance (%) comparison between Set-S and Sen-S under the 1-shot setting, where Set-S and Sen-S denote set-
specific and sentence-specific demonstrations, respectively. The rest abbreviations herein are the same as in Table 1.

Model CoNLL2003 OntoNotes5.0 NCBI BC5CDR
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

VQ + ER 73.01 78.87 58.47 - 34.85 42.73 57.98 61.20
VQ + TB 74.80(+1.79) 81.00(+2.13) 64.11(+5.64) - 38.80(+3.95) 46.09(+3.36) 61.41(+3.43) 64.70(+3.50)

G-N* + ER 61.10 71.83 50.95 - 36.80 43.87 58.69 63.96
G-N* + TB 63.11(+2.01) 73.86(+2.03) 55.81(+4.86) - 42.29(+5.49) 49.67(+5.80) 62.44(+3.75) 67.06(+3.10)

Table 4: Performance (%) comparison between ER and TB under the 1- and 5-shot settings, where ER and TB denote empirical
results and theoretical boundaries of ConsistNER, respectively. The rest abbreviations herein are the same as in Table 1.

light of this, we replace the pre-recognition results with
the ground truth, enabling the retrieved demonstrations to
maximally emerge the ICL capabilities of LLMs, leading
to the achievement of the theoretical performance bound-
aries. As shown in Table 4, we can observe that, regard-
less of datasets, number of demonstrations or query forms,
the theoretical boundaries (TB) of ConsistNER are con-
sistently 1.79%-5.64% above the empirical results (ER) of
ConsistNER. Specifically, we notice that the performance
improvement is more significant on OntoNotes5.0 compared
to other datasets. This is because OntoNotes5.0 contains
more entity types, thereby posing more challenges for LLMs
to recognize entities. Accordingly, the pre-recognition on
OntoNotes5.0 will include more errors, leading to more
inappropriate demonstrations being retrieved to misguide
LLMs. Thus, with the improved pre-recognition quality,
there is a substantial performance boost on OntoNotes5.0.
Given the TB, we could approximate it by improving pre-
recognition quality. For example, we could use pre-built lex-
icons (Chiu and Nichols 2016; Collobert et al. 2011) or
gazetteers (Liu, Yao, and Lin 2019) in pre-recognition to re-
trieve more instructive demonstrations.

Advantages of Ontology The major innovative advan-
tages of ontology are in two aspects: generalization in
concept hierarchy and generalization in diverse tasks. (1)
Generalization in concept hierarchy. During pre-training,
LLMs primarily encounter general knowledge while lack-
ing domain-specific knowledge, which leads to their inabil-
ity to differentiate excessively fine-grained entity types. In
this case, pre-recognition which outputs entity types has a
low accuracy. Inspired by the concept hierarchy of ontology
in knowledge graphs, we generalize entity types upwards
to ontology (e.g., Biden: president→official→person) and
require pre-recognition only to output ontology. Thus pre-
recognition is aligned with the pre-training tasks of LLMs
and provides more solid prior knowledge for later stages.
(2) Generalization in diverse tasks. When dealing with other
information extraction tasks like relation extraction, proper-

ties and property hierarchy of ontology (e.g., relations and
generalized relations) can also be useful. This open-ended
question remains to be further explored in future research.

A Chaos Phenomenon Furthermore, we have discovered
a chaos phenomenon, where erroneously pre-recognized
training examples could still assist LLMs. For example, after
both Orlando from the target sentence LA LAKERS 92 Or-
lando 81 and MINNESOTA from the training example Texas
13 MINNESOTA 2 have been erroneously pre-recognized as
LOC entities, this training example will be retrieved as a
demonstration for its both ontological and contextual con-
sistency with the target sentence. However, the labels in
demonstrations are correct, i.e., MINNESOTA as an ORG,
which could correct the misrecognition of Orlando. The su-
perficial reason behind this phenomenon is that LLMs can
pre-recognize Orlando and MINNESOTA as the same type
of entity, but they cannot distinguish whether they are LOC
or ORG entities. Essentially, for pre-recognition, Consist-
NER aims to identify the fine-grained text information used
to retrieve high-correlated demonstrations, rather than sim-
ply type entities. Therefore, the accuracy of pre-recognition
is not crucial, as long as it labels entities of the same type
with the same label. Thus this chaos phenomenon reveals
the robustness of ConsistNER.

Conclusion
In this paper, we argue that the key to emerging ICL abil-
ity lies in how to retrieve high-correlated demonstrations,
where correlation implies the consistency of both ontology
and context for NER. Based on this motivation, we propose
a three-stage framework, ConsistNER, to incorporate onto-
logical and contextual information for low-resource NER. In
this way, the retrieved demonstrations could maintain both
ontological and contextual consistency. We conduct experi-
ments on both general and specific domains, which demon-
strates that ConsistNER not only effectively instructs LLMs,
but also boosts NER with state-of-the-art performance.
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