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Abstract

Large language models (LLMs) have demonstrated remark-
able performance across a range of natural language process-
ing (NLP) tasks. However, they encounter significant chal-
lenges in automated reasoning, especially in multi-step rea-
soning scenarios. In order to solve complex reasoning prob-
lems, LLMs need to perform faithful multi-step reasoning
based on a given set of facts and rules. A lot of work has
focused on guiding LLMs to think logically by generating
reasoning paths, but ignores the relationship among available
facts. In this paper, we introduce MindMap, a straightfor-
ward yet powerful approach for constructing evidence chains
to support reasoning in LLMs. An evidence chain refers to
a set of facts that are associated with the same subject. In
this way, we can organize related facts together to avoid
missing relevant information. MindMap can seamlessly inte-
grate with existing reasoning frameworks, such as Chain-of-
Thought (CoT) and Selection-Inference (SI), by enabling the
model to generate and select relevant evidence chains from
independent facts. The experimental results on the bAbI and
ProofWriterOWA datasets demonstrate the effectiveness of
MindMap. Our approach can significantly enhance the per-
formance of CoT and SI, particularly in multi-step reasoning
tasks.

Introduction
The pursuit of general artificial intelligence has remained a
central objective within the realm of artificial intelligence
research (Silver et al. 2021; Goertzel and Pennachin 2007).
Recent years have witnessed remarkable advancements in
Natural Language Processing (NLP), largely attributing to
the emergence of large language models (LLMs) (Ouyang
et al. 2022). These models have exhibited exceptional ef-
ficacy across diverse tasks including machine translation,
question answering, and reading comprehension (Yang et al.
2023; Bang et al. 2023). The strategic expansion of lan-
guage model scale yields tangible improvements across vari-
ous problem domains, with task performance exhibiting pos-
itive correlations with model size (Creswell, Shanahan, and
Higgins 2023). However, a study pointed that the benefits of
scaling up are significantly reduced when dealing with com-
plex problems (Rae et al. 2021). Particularly, the enhanced
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Facts:
t=0 Mary took the football there.
t=1 John travelled to the office.
t=2 Mary travelled to the hallway.
t=3 Daniel moved to the hallway.
t=4 Daniel went to the office.
t=5 John went to the hallway.
t=6 John discarded the apple.
t=7 Mary went back to the garden.
t=8 Daniel went to the bedroom.
Question:
Where was the football before the 
garden?
Ground Truth:
hallway
Chains:
chain-0: Mary passed through 
the hallway(t=2), garden(t=7) in 
sequence with football.
chain-1: John passed through 
the office(t=1), hallway(t=5) in 
sequence with apple.
chain-2: Daniel passed through 
the hallway(t=3), office(t=4), 
bedroom(t=8) in sequence.
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Figure 1: Illustrating the working flow of the proposed
MindMap approach based on an example from the bAbI
dataset.

advantages of these models in tasks that involve sophisti-
cated logical reasoning are less evident compared to other
tasks (Wei et al. 2022).

Logical reasoning is essential for advancing various sci-
entific fields (Liu et al. 2020). It involves deducing new con-
clusions from existing facts and rules. For instance, with
facts like “David picked up the apple” and “David went to
the bedroom,”, deducing the apple’s location being in the
bedroom is a logical process. Such reasoning challenges
often require multiple steps to be executed effectively to
complete the reasoning process (Saparov and He 2023).
Although LLMs shows good ability in learning from in-
structions and demonstrations in context to answer ques-
tions (Brown et al. 2020; Dong et al. 2023; Min et al.
2022), they struggle with complex logical reasoning, espe-
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cially multi-step reasoning (Wei et al. 2022; Liu et al. 2023;
Kazemi et al. 2023).

Recent approaches have focused on guiding LLMs to
think step-by-step to improve the performance in logical rea-
soning. For example, Chain of Thought (CoT) (Wei et al.
2022) and Selection-Inference (SI) (Creswell, Shanahan,
and Higgins 2023) frameworks try to construct reasoning
paths or formulate reason procedures and obtain large im-
provements in many reasoning tasks.

However, these methods general treat each individual fact
as an isolated evidence, overlooking the inherent intercon-
nections among these pieces of evidence. In this paper, we
make a focused contribution in organizing available facts for
supporting reasoning. When we deal with a specific prob-
lem, only part of the available facts are relevant, while oth-
ers may be even noise. Therefore, it is important to group
related facts together to prompt us to think more compre-
hensively and deeply. Motivated by the procedure of man-
aging chains of custody in disclosure of crimes, we propose
the MindMap, which aims to construct evidence chains for
supporting logical reasoning.

Figure 1 shows the workflow of the proposed MindMap
for responding to a question from the bAbI dataset. The
framework consists of 3 modules: evidence chain construc-
tion, evidence chain summarization and evidence chain uti-
lization for reasoning. Specifically, an evidence chain is de-
fined as a group of facts associated with the same subject,
such as a series of events involving a person. Motivated by
the work of narrative event chains (Chambers and Jurafsky
2008), we extract subjects from facts using NLP tools to
form a subject set and construct an evidence chain for ev-
ery subject. To obtain more concise and coherent informa-
tion, the evidence chain summarization module provides a
summary that covers the main content and entities in the ev-
idence chain.

In this manner, MindMap utilizes a set of constructed ev-
idence chains or their summaries, rather than a collection of
independent facts, to support further reasoning. MindMap
can be integrated into existing reasoning frameworks such as
CoT and SI. Instead of selecting facts, MindMap enhances
CoT and SI by selecting and updating evidence chains.

We conduct evaluation on the bAbI (Weston et al. 2016)
and ProofWriterOWA (Tafjord, Dalvi, and Clark 2021)
datasets based on a LLM with 13B parameters. The experi-
mental results show that MindMap can significantly improve
the performance of CoT and SI, especially in the multi-step
reasoning setting. We observe that MindMap can help cover
many more supporting facts. Our method is straightforward,
and its effectiveness underscores the necessity of organizing
available facts. It also indicates that the integration of tra-
ditional NLP tools with LLMs has potential in addressing
complex reasoning problems.

Related Work
Large Language Models
Due to the continuous advancement of deep learning tech-
nology and the increase in computing power, remarkable
progress has been made in the development of LLMs (Rad-

ford et al. 2019; Chowdhery et al. 2023; Muennighoff et al.
2023). Notably, GPT4, which was released recently, has
achieved excellent results in various tasks (Katz et al. 2023;
Peng et al. 2023; Nori et al. 2023). However, these large
language models possess numerous parameters and con-
sume substantial resources, leading to the emergence of
many smaller open-source models in response to current de-
mands. For instance, Llama(13B) (Touvron et al. 2023) has
demonstrated superior performance on most benchmarks
when compared to GPT-3(175B) (Brown et al. 2020). Stan-
ford’s Alpaca (Touvron et al. 2023) and Vicuna (Chiang
et al. 2023) models, which are supervised fine-tuned ver-
sions based on LLaMa, exhibit even stronger dialogue ca-
pabilities. Specifically, Vicuna utilizes GPT-4 for scoring
and evaluation, boasting 13B parameters, and achieves up to
90% of ChatGPT’s effectiveness (Chiang et al. 2023). Due to
computation resource constraints, our experiments are con-
ducted based on Vicuna.

Reasoning with LLMs
Automated reasoning has been a challenging task in NLP.
Before the era of LLMs, the prevalent approaches to log-
ical reasoning were based on fine-tuning pre-trained mod-
els (Clark, Tafjord, and Richardson 2020; Betz, Voigt, and
Richardson 2021; Han et al. 2022). However, these methods
often led to unrealistic inferences due to implicit label-data
correlations (Zhang et al. 2023).

Recently, LLMs have shown stronger reasoning abilities
compared to previous approaches (Dong et al. 2023; Min
et al. 2022). The strength of LLMs lies in their ability to
automatically learn from context through in-context learn-
ing (Dai et al. 2023; Min et al. 2022), enabling them to make
accurate inferences by understanding specific contextual sit-
uations with just a few examples. Consequently, LLMs be-
come more flexible in handling various tasks by only modi-
fying the contextual hints (Dong et al. 2023).

However, LLMs face significant challenges when it
comes to multi-step reasoning tasks (Zhou et al. 2023).
Consequently, multi-step reasoning has emerged as a key
area that LLMs need to address. A representative work in
this direction is the Chain-of-Thought (CoT) approach (Wei
et al. 2022), which aids the model in making correct infer-
ences by outputting a series of reasoning paths, thereby also
enhancing the interpretability of the model’s outputs. De-
spite its advantages, CoT has its limitations, including in-
stances of incorrect reasoning and a tendency to fabricate
facts. Several subsequent improvements have been made to
CoT, such as the Tree-of-Thought approach (Yao et al. 2023)
and Graph-of-Thought approach (Besta et al. 2023). Re-
cently, the Selection-Inference (SI) algorithm has proposed
introducing a separation between the inference and selection
steps. This allows the model to reason based on the selected
relevant facts, generate new conclusions, and iteratively up-
date the facts. SI is reported to alleviate the problem of fab-
ricating facts (Creswell, Shanahan, and Higgins 2023).

However, these methods often fail to consider the relation-
ships among available facts, leading to the loss of important
and relevant information during reasoning. In this paper, we
introduce evidence chains to connect related facts and use
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Figure 2: The main framework of the proposed MindMap approach.

evidence chains for supporting reasoning. Our method can
be integrated with existing reasoning frameworks as a valu-
able plug-in component.

Methodology
Overview
We aim to solve natural language reasoning problems
based on LLMs. Formally, given a set of facts F =
{f1, f2, ..., fn}, a set of rules R = {r1, r2, ..., rm} and
a question q, we need to perform reasoning based on F
and R to figure out an answer a to respond q, i.e., a =
reasoning(F ,R, q), where reasoning represents specific
reasoning framework. The rule set R can be empty in the
task like reading comprehension via question answering.

We propose a framework called MindMap. The key idea
is to introduce the concept of evidence chain to explore the
structure within the given facts to support reasoning.

An evidence chain is defined as a group of facts, i.e.,
cs = {fs

1 , f
s
2 , ..., f

s
n}, where the facts fs

1 , f
s
2 , ..., f

s
n are all

associated with the same subject s. For example, s can be
a person, and cs can be a sequence of events that involve
the person s. Suppose there are k subjects S = {s1, ..., sk}
in the set of facts F . So F can be re-organized as a set of
evidence chains C = {c1, c2, ..., ck}. Accordingly, the rea-
soning task can be represented as a = reasoning(C,R, q).

Figure 2 illustrates the main framework of MindMap. It
has 3 core components: evidence chain construction, evi-
dence chain summarization, and evidence chain utilization
for inference.

Evidence Chain Construction
Subject extraction Each evidence chain is associated with
a subject. We first construct a set of subjects. Given a set of
facts F , we use the entity extraction and dependency parsing
modules in the Stanford CoreNLP toolkit (Manning et al.
2014) to extract the entities which are subjects in the facts
and group all of them into a set of subjects S .
Subject-centric evidence chain After extracting the sub-
jects, we build an evidence chain for every subject simply
by grouping all facts containing a specific subject. If there
exists temporal information, the facts in an evidence chain

will be temporally sorted. Otherwise they would be sorted
in the order as the original context.

Notice that a fact may contain multiple entities, so it can
be involved in multiple evidence chains.

Evidence Chain Summarization
Given a context, there may be multiple evidence chains, the
length of which could be short or long. To obtain a more
concise description of an evidence chain, we introduce the
evidence chain summarization module.

We propose an entity-centric summarization manner
based on LLMs in a few-shot setting. We use instructions
to guide a LLM to generate a summary covering main en-
tities in each evidence chain. Below is an one-shot learning
example of the prompt that is used for summarization.

TASK Instruction: Below are some
stories about people moving objects
between rooms. The facts are organized
as evidence chains, each of which
involves the same subject. Please Write
a summary for each chain and cover main
entities in each chain.
chain-0:
at t=0 Daniel went to the kitchen.
at t=1 Daniel picked up the apple
there.
at t=3 Daniel journeyed to the garden.
at t=9 Daniel travelled to the office.
at t=12 Daniel left the apple.
at t=13 Daniel went back to the
bedroom.
Entities about Daniel:
kitchen,apple,garden,
office,apple,bedroom
Summary:chain-0: Daniel passed through
the kitchen(t=0),garden(t=3),
office(t=9) in sequence with
apple.Then,he went to bedroom(t=13).
···
chain-to-be-summarized:
at t=2 Sandra travelled to the
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bathroom.
at t=3 Sandra went to the bedroom.
at t=8 Sandra journeyed to the office.
at t=9 Sandra went back the bedroom.
Entities about Sandra:
bathroom,bedroom,office, bedroom
Summary:[Let the model generate]

In this way, given an evidence chain c, we can get its sum-
mary summarize(c).

Evidence Chain Utilization for Inference
Utilizing evidence chains to organize facts for supporting
reasoning changes the reasoning formulation from a =
reasoning(F ,R, q) to a = reasoning(C,R, q) or a =
reasoning({summarize(c), c ∈ C},R, q). During infer-
ence, the facts are organized as evidence chains rather than
a sequence of facts.

The change of the formulation does not affect the reason-
ing framework, indicating that we can integrate MindMap in
any reasoning framework.

MindMap enhanced CoT In the CoT setup, besides an-
swering questions, explanations for the answers are also in-
cluded to inspire the model to reason.

MindMap enhances CoT based on evidence chains. The
key step is question-oriented evidence chain selection that
we let LLMs choose evidence chains that can help answer
the question. We use a few-demonstrations to guide the
model to learn to integrate proper evidence chains for rea-
soning.

We show an example below with only one demonstra-
tion.
Demonstration 0
The evidence chains:
chain-0: ...
chain-1: ...
...
chain-t: ...
Question-oriented chain selection: the
question q0 can be inferred based on
the chain-0 and chain-3. Given the
summary that summarize(chain-0) and
summarize(chain-3), the answer should
be office.
Test 1
The evidence chains:
chain-0: ...
chain-1: ...
...
Question-oriented chain selection: the
question q1 can be inferred based on
[Let the model generate]

Here, q0 and q1 are specific questions which are included
in the prompts to guide the model to select proper evidence
chains for covering relevant and complete facts for reason-
ing, and filtering out irrelevant facts.

MindMap enhanced SI We also try to integrate
MindMap with the selection-inference (SI) reasoning frame-
work. SI divides the CoT reasoning framework into two
parts: selection and inference. The selection module picks
the most relevant facts and rules for the given question. The
inference module feeds the selected facts and rules to the
LLMs for deriving new conclusions. These two modules it-
erate, with each iteration adding a new conclusion to the
evolving reasoning.

With MindMap, we select relevant evidence chains in-
stead of choosing isolated facts in the selection stage. For
the newly generated conclusions, we extract subjects from
them. This procedure is similar to that of evichence chain
construction. Then the newly generated conclusions are used
for updating the evidence chains for supporting later SI iter-
ations.

Experimental Settings
In this section, we will introduce the datasets, the baseline
methods, and backbone model settings for evaluation.

Datasets
Our experiments are conducted using two challenging multi-
step logical reasoning datasets.
• bAbI (Weston et al. 2016): Originating from the QA

bAbI task, this dataset comprises a series of 20 tasks de-
signed to evaluate reading comprehension via question
answering. These tasks gauge understanding in various
dimensions, including systems’ ability to deduce answers
through reasoning. We conduct experiments using the
tasks 1-3 of bAbI, where to logically answer a question,
1-3 facts among a set of facts with temporal information
are required.

• ProofWriterOWA (Tafjord, Dalvi, and Clark 2021):
This synthetic dataset serves as a common benchmark
for assessing logical reasoning, particularly when facts
and rules are presented in natural language. The dataset
is divided into subsets based on the steps of infer-
ences, including 0, 1, 2, 3, and 5. Following previous
work (Creswell, Shanahan, and Higgins 2023), we di-
vide this dataset into two parts: ProofWriter-PUD, the
answer set of which include True, False, and Unknown,
and ProofWriter-PD, which excludes data labeled as Un-
known.

Regarding the bAbI dataset, we use the full test set. For
the ProofWriterOWA dataset, due to the heavy inference
cost, we only use the first 1,000 samples in the test set.

Baseline Settings
We use the Vicuna-13B model (Chiang et al. 2023) in a few-
shot setting as the Standard backbone model. We also con-
sider two more advanced reasoning frameworks.
• Chain-of-Thought (CoT) (Wei et al. 2022): We also

consider a CoT inspired baseline. It involves having
LLMs generate a reasoning chain and leveraging its own
reasoning capacity to provide interpretable model gen-
eration. A few examples in the prompt are used as CoT
demonstrations.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19273



proofWriter-PD proofWriter-PUD
Strategy depth-0 depth-1 depth-2 depth-3 depth-5 depth-0 depth-1 depth-2 depth-3 depth-5

standard 0.224 0.192 0.146 0.115 0.086 0.533 0.518 0.497 0.487 0.487

CoT 0.545 0.559 0.552 0.520 0.540 0.417 0.382 0.436 0.396 0.419
CoT+MindMap 0.711 0.700 0.683 0.646 0.589 0.469 0.450 0.476 0.443 0.441

relative impr. 30.5% 25.2% 23.7% 24.2% 9.07% 12.5% 17.8% 9.17% 11.9% 5.25%

SI 0.546 0.535 0.535 0.550 0.553 0.416 0.396 0.406 0.390 0.376
SI+MindMap 0.723 0.694 0.666 0.604 0.537 0.466 0.458 0.465 0.445 0.43

relative impr. 32.4% 29.7% 24.5% 9.82% -2.89% 12.0% 15.7% 14.5% 14.1% 14.4%

Table 1: Prediction accuracy on the proofWriter-PD and proofWriter-PUD datasets.

bAbI
Strategy task-1 task-2 task-3

standard 0.675 0.369 0.181

CoT 0.607 0.467 0.281
CoT+MindMap 0.881 0.473 0.340

relative impr. 45.1% 1.3% 21.0%

SI 0.767 0.356 0.253
SI+MindMap 0.803 0.392 0.318

relative impr. 4.7% 10.1% 25.7%

Table 2: Prediction accuracy on the bAbI dataset.

• Selection-Inference (SI) (Creswell, Shanahan, and Hig-
gins 2023): The SI framework alternates between se-
lection and inference to generate a sequence of inter-
pretable, casual reasoning steps leading to the final an-
swer. During iterations, new conclusions can be gener-
ated and used for updating the fact set. SI runs 3 itera-
tions for bAbI and 5 iterations for proofwriterOWA.

The standard, CoT and SI frameworks all adopt 5-shot set-
ting, and use the same examples for constructing demonstra-
tion prompts. Details about prompt construction for these
frameworks are based on the settings described in the ap-
pendix of the SI paper.

Results and Analysis
Main Results
Results on ProofWriterOWA Table 1 shows the
ProofWriterOWA dataset results. In the ProofWriter-
PD subset, both CoT and SI models did much better
than the usual baseline. MindMap also improved results
compared to many standard CoT and SI baselines. At
depth-5, the benefit of MindMap was not as clear, possibly
because the problems were too complex for the model to
figure out the evidence chain accurately. But, we saw big
improvements from depth-0 to 4. This is mainly because
MindMap can combine and sum up various facts well, help-
ing the model make more direct and precise decisions. The
improvements in CoT and SI with MindMap have shown

significant performance boosts, highlighting MindMap’s
effectiveness.

On the ProofWriter-PUD subset, MindMap also increases
the performance of CoT and SI, but the relative im-
provements become smaller compared with that on the
ProofWriter-PD subset. We can also see that the advanced
reasoning frameworks cannot beat the standard baseline. We
find that the standard baseline prefers to predict the Un-
known label, while the ‘Unknown’ label accounts for about
46% in the ProofWriter-PUD dataset. So the standard base-
line may benefit from the imbalanced label distribution and
outperforms CoT, SI with or without MindMap. Moreover,
predicting Unknown should be more difficult, since in the
ProofWriterOWA dataset, Unknown means it is not possible
to prove something is True or False. For True and False ex-
amples, there would be a reasoning trace leading to the final
answer, while there would be no trace for the Unknown ex-
amples. A model with a larger parameter scale may have a
better ability in handling this complex problem.
Results on bAbI dataset Table 2 illustrates the signifi-
cant performance improvement on the bAbI dataset achieved
through MindMap. Specifically, MindMap facilitated aver-
age relative improvements of 22.5% in CoT and 13.5% in
SI. The notable advancements in both CoT and SI, particu-
larly within the bAbI-3 subset, are particularly impressive,
showing MindMap’s strength in multi-step reasoning. This
highlights how much MindMap helps in improving reason-
ing and understanding skills.

In summary, across both datasets, MindMap has proven to
effectively enhance the performance of existing reasoning
frameworks, such as CoT and SI, particularly in scenarios
involving multi-step reasoning.

Ablation Study
We conduct analyses on the bAbI dataset to quantify the im-
pact of the manipulating evidence chains within MindMap.
Table 3 shows the ablation study results within two reason-
ing framework CoT and SI.

SEC represents the proposed subject-centric evidence
chain construction, which are then directly used for infer-
ence without evidence summarization. MindMap combines
SEC and evidence chain summarization for inference. SEC
shows big improvements in simple reasoning tasks, like
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COT based on the original context:
at t=0 Daniel moved to the office. 
at t=1 Daniel travelled to the bedroom. 
at t=2 John took the milk there. 
at t=3 John travelled to the garden. 
at t=4 Sandra moved to the office. 
at t=5 Daniel went back to the office.
Question:Where is the milk? 
Inference: at t=2 John took the milk there.We know that at 
t=5 Daniel went back to the office.Therefore, milk is in the 
office. 

MindMap based on the evidence chain summaries:
chain-0: Daniel passed through the 
office(t=0),bedroom(t=1) in sequence.
chain-1: John passed through the 
bedroom(t=2),garden(t=3) with milk in sequence.
chain-2: Sandra passed through the office(t=4) in 
sequence.
Question:Where is the milk? 
Inference: According to chain-1: John passed through the 
bedroom(t=2),garden(t=3) with milk in 
sequence.Therefore,milk was in garden(t=3). 

(a) An example from the bAbI dataset.

COT based on the original context:
The bald eagle is cold. The bald eagle sees the bear. 
The dog is rough. The lion likes the bald eagle. The 
lion sees the bear. The bear is big. The bear is rough. 
The dog visits the bear. The lion is young. The lion 
sees the bald eagle. The lion visits the bear. The lion 
visits the dog..
Rule: If something likes the bald eagle and sees the 
bear then it sees the dog. red things are rough. If 
someone sees the bear and visits the bear then it sees 
the tiger.
Question:The bald eagle sees the dog
Inference: The bald eagle sees the bear. We know that 
If someone sees the bear and visits the bear then it 
sees the tiger. Therefore, the bald eagle sees the tiger, 
which means answer is Unknown.
 

MindMap based on the evidence chain summaries:
chain-0: The bald eagle is cold,sees the bear,likes the bald 
eagle,sees the bald eagle.
chain-1: The bear is big,rough,visited by the dog,lion.
chain-2: The dog is rough,visits the bear.
chain-3: The lion is young,likes the bald eagle,sees the bald 
eagle,sees the bear,visits the bear,visits the dog
Rule: If something likes the bald eagle and sees the bear then 
it sees the dog. red things are rough. If someone sees the bear 
and visits the bear then it sees the tiger.
Question:The bald eagle sees the dog
Inference: According to chain-0: The bald eagle is cold,sees 
the bear,likes the bald eagle,sees the bald eagle.And 
according the rules: If something likes the bald eagle and sees 
the bear then it sees the dog.  Therefore, The bald eagle sees 
the dog, which means answer is True.

(b) An example from the ProofWriterOWA dataset.

Figure 3: The traces of CoT and MindMap enhanced CoT for solving examples from the bAbI and ProofWriterOWA dataset
for the qualitative analysis.

bAbI
Strategy task-1 task-2 task-3

standard 0.675 0.369 0.181

CoT 0.607 0.467 0.281
CoT+SEC 0.789 0.462 0.26
CoT+MindMap 0.881 0.473 0.340
CoT+Auto-MindMap 0.372 0.233 0.183

SI 0.767 0.356 0.253
SI+SEC 0.860 0.451 0.269
SI+MindMap 0.803 0.392 0.318
SI+Auto-MindMap 0.364 0.218 0.166

Table 3: The ablation study results. SEC: subject-centric ev-
idence chain construction; Auto-MindMap: using the model
to build and summarize evidence chains via instruction tun-
ing; MindMap: using the summaries of evidence chains for
inference.

task-1, and it’s even more effective in the SI framework. This
means that creating evidence chains helps the SI model pick
better facts for reasoning. Also, MindMap significantly im-
proves complex tasks, like task-3, involving multi-step rea-
soning. This indicates that evidence chain summarization
can enhance inference by compressing information and em-
phasizing important parts in each evidence chain, which is

important for multi-step reasoning, when multiple facts are
involved and both useful and noisy information are mixed.
For simple reasoning tasks under the SI framework, evi-
dence chain summarization seems unnecessary.

We also try to let the model automatically build evidence
chain through instruction learning, called Auto-MindMap.
However, Auto-MindMap often results in a decrease in per-
formance, as this automatic process may add an extra burden
to the model. The comparison between MindMap and Auto-
MindMap also indicates that combining traditional NLP
tools with LLMs is a simple and effective way to incorporate
linguistic motivated structures.

Qualitative Analysis
We further conduct a qualitative analysis by comparing
the behaviors of CoT and MindMap enhanced CoT. Fig-
ure 3 shows two comparison examples on the bAbI and
ProofWriterOWA datasets respectively.

As shown in Figure 3a, the example from the bABI
dataset shows a reasoning problem, requiring to integrate
two facts to infer the correct answer. CoT selects two un-
related facts and one key fact involving John is missed dur-
ing inference. So it makes a wrong prediction. In contrast,
MindMap correctly selects an evidence chain, which sum-
marizes the series of activities of John. This summary leads
the model to make a correct prediction.

Figure 3b shows an example from the ProofWriterOWA
dataset. We can also see that the MindMap can provide con-
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cise summaries for related facts, which have a better match-
ing with the rules and help improve the inference perfor-
mance.

Based on the examples, we can see that one advantage of
evidences is grouping related facts. This advantage can of-
ten avoid missing important and relevant information. We
conduct an analysis of the coverage of supporting facts on
the task-2 and task-3 in bAbI dataset by matching the tem-
poral id, e.g., t = 0, t = 1, between the predictions and
the gold supporting fact reference. MindMap can cover 69%
and 47% supporting facts on task-2 and task-3 resepctively,
while the same statistics for CoT are 48% and 23%. The
analysis confirms that the advantage of MindMap may be
not so important for simple reasoning but should be helpful
for multi-step reasoning.

In this work, we use subjects or entities to group facts.
This is consistent with our intuition, since people also often
infer some conclusions by tracking and analyzing someone’s
behavior or related events.

Error Analysis
In our study, we conducted an error analysis on a sam-
ple of outputs generated by MindMap. The identified errors
broadly fall into the following categories:

• Summarization Errors: These errors originate from the
evidence chain summarization module and manifest in
two forms: the omission of crucial information and the
introduction of inaccurate or fabricated details (halluci-
nations) during the summarization process. In our anal-
ysis of the bAbI dataset following LLMs’ summariza-
tion, correct evidence chains were identified 68.9% of
the time on average, with a reduced accuracy of 63.8%
specifically for task-2. This lower rate of accurate evi-
dence chain identification in task-2 accounts for the less
pronounced improvements observed with our method in
this particular task.

• Evidence Chain Selection Errors: Challenges may
arise in selecting pertinent evidence chains for reason-
ing, even when LLMs produce informative and accurate
summaries. Situations that require consideration of mul-
tiple evidence chains pose a particular challenge, often
leading to errors in chain selection.

• Hallucination errors during inference: When the cor-
rect evidence chain is selected, LLMs may also hallu-
cinate during paraphrasing the summary of an evidence
chain, thereby introducing information bias and inac-
curate inferences. This includes modifying or fabricat-
ing evidence, ignoring key facts, and incorrectly aligning
questions and answers, all of which ultimately lead to in-
correct conclusions. For example, the question in this ex-
ample is the squirrel visits the cow, and the answer given
by LLM is chain-3: The squirrel is big. And according to
the rules: If something is round then it visits the cow. We
know that the squirrel is round . Therefore, the squirrel
visits the cow. LLM selects the correct chain. The model
needs to use two rules to get the final answer. However,
in the subsequent reasoning process, LLMs fabricated the
squirrel is round in order to take shortcuts.

• Model inference errors : The remaining errors can be
attributed to the model’s inference capabilities. These er-
rors still occur despite choosing the correct chain of evi-
dence. Even after the model has reached the correct con-
clusion, errors still occur when obtaining the final an-
swer. For example, Therefore, Dave is nice. The question
is “Dave is nice.”, which means answer is false. This is
due to insufficient capabilities of the model.

In summary, our error analysis identified key factors that
contribute to reasoning errors. To reduce these errors and
improve overall performance, some solutions are proposed.
These include enhancements to evidence chain summariza-
tion to ensure more accurate summaries to significantly re-
duce error rates and using larger models to increase the
LLM’s efficiency in complex reasoning tasks.

Conclusion
In this paper, we explore how structuring available facts
can enhance reasoning capabilities. The proposed MindMap
approach organizes these facts into evidence chains, seam-
lessly integrating with existing reasoning frameworks such
as CoT and SI. Experiments are conducted on two complex
multi-step reasoning datasets. As shown in the results, both
CoT and SI, when augmented with MindMap, can achieve
significant improvements, particularly in multi-step reason-
ing tasks. Underscoring the importance of systematic orga-
nization of available facts, our approach demonstrates su-
perior performance to CoT and SI in recalling supporting
facts. The simplicity of constructing evidence chains sug-
gests that integrating traditional natural language processing
tools with LLMs could effectively tackle complex reasoning
challenges by leveraging linguistically motivated structures.

However, our work still has some limitations. First, due
to computational resource constraints, our evaluation was
conducted using a LLM with 13B parameters. In future re-
search, exploring a diverse range of models with varying
sizes of parameters could prove beneficial. Second, though
intuitive and heuristic, our approach to constructing subject-
centric evidence chains has been successfully used for evalu-
ations on synthetic datasets. Nevertheless, practical applica-
tions could encounter challenges such as pronoun resolution,
which we aim to address by enhancing the model’s capabil-
ities in autonomously constructing evidence chains. Third,
although constructing evidence chains has proven effective
for organizing facts, exploring alternative methods remains a
valuable avenue. Employing semantic information or knowl-
edge graphs could offer a more comprehensive approach to
organizing facts, thereby improving the reasoning and judg-
ment capabilities of LLMs.
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