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Abstract

In text classification models, while the unsupervised atten-
tion mechanism can enhance performance, it often produces
attention distributions that are puzzling to humans, such as as-
signing high weight to seemingly insignificant conjunctions.
Recently, numerous studies have explored Attention Super-
vision (AS) to guide the model toward more interpretable
attention distributions. However, such AS can impact clas-
sification performance, especially in specialized domains. In
this paper, we address this issue from a causality perspective.
Firstly, we leverage the causal graph to reveal two biases in
the AS: 1) Bias caused by the label distribution of the dataset.
2) Bias caused by the words’ different occurrence ranges that
some words can occur across labels while others only oc-
cur in a particular label. We then propose a novel De-biased
Attention Supervision (DAS) method to eliminate these bi-
ases with causal techniques. Specifically, we adopt backdoor
adjustment on the label-caused bias and reduce the word-
caused bias by subtracting the direct causal effect of the word.
Through extensive experiments on two professional text clas-
sification datasets (e.g., medicine and law), we demonstrate
that our method achieves improved classification accuracy
along with more coherent attention distributions.

Introduction
Text classification stands as a fundamental task in Natural
Language Processing (NLP) (Kowsari et al. 2019). When
presented with a text, the classification model’s objective
is to predict the appropriate label. Owing to the prosperity
of deep learning, the performance of text classification has
been improved significantly (Gasparetto et al. 2022). Within
deep learning-based text classification models, the attention
mechanism has gained popularity due to its remarkable ef-
fectiveness (Du and Huang 2018; Sun and Lu 2020). The
attention mechanism intends to give high weight to impor-
tant information when aggregating the input information,
which imitates the way humans make decisions. However,
despite its contributions to performance improvement (Hu
2019), the unsupervised training of the attention mecha-
nism frequently produces peculiar outcomes (e.g., assigning
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Method Legal Dataset
Acc Ma-P Ma-R Ma-F

BiLSTM+Attention 85.50 81.68 80.48 80.59
+AS(TF-IDF) 85.36 80.13 80.30 79.76
+AS(YAKE) 84.31 79.21 78.13 78.16
+AS(AdaKeyBERT) 85.55 81.16 79.89 80.07
+AS(VMask) 84.83 78.91 79.50 78.83

Method Medical Dataset
Acc Ma-P Ma-R Ma-F

BiLSTM+Attention 77.05 67.56 62.54 63.88
+AS(TF-IDF) 76.83 67.18 62.03 63.51
+AS(YAKE) 76.10 64.32 60.42 61.38
+AS(AdaKeyBERT) 76.25 63.06 60.83 61.01
+AS(VMask) 75.86 62.16 60.12 60.18

Table 1: Pilot study on two professional datasets. The le-
gal (medical) datasets aim to predict the charge (depart-
ment) given the criminal fact (patient’s question). BiL-
STM+Attention is a common classification method that
uses an unsupervised attention mechanism. TF-IDF, YAKE,
AdaKeyBERT, and VMask are four common keyword se-
lection methods.

high weights to inconsequential connections or nouns). Such
outcomes make it incomprehensible to humans and lead it
astray from its original purpose (Jain and Wallace 2019).

Recently, several research on Attention Supervision (AS)
are conducted to instill a sense of rationality into attention
weights across various tasks such as Event Detection (Zhao
et al. 2018), VQA (Qiao, Dong, and Xu 2018), and so on. In
text classification, the most intuitive AS method is to impart
the model the precise attention weight of each token within
every sample (Barrett et al. 2018). Such a method necessi-
tates meticulous attention annotation and proves impractical
in real-world scenarios. A prevalent and adaptable strategy
is to leverage keywords as supervision signals (e.g., con-
struct a keyword vocabulary tailored to the task and assign
high weights to these keywords) (Bao et al. 2018; Choi et al.
2020). However, as Fig. 1 and Tab. 1 show, though the atten-
tion distribution appears reasonable with AS, the classifica-
tion performance drops in the professional domains where
similar words can lead to different labels1.

1We use AS(TF-IDF) to represent the AS in the following since
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Dataset: Legal | Label: Intentional injury

The Procuratorate alleges that on March 25, 2014, at 9:00 a.m., the defendant A had a dispute with B in his village for some reason and caused
a fight. During the fight, the defendant A injured B and his sons C and D. According to the identification of the physical evidence identification 
office of Public Security Bureau, the injury of B is Grade II minor injury, and the injury of C and D is minor injury.

w/o AS

The Procuratorate alleges that on March 25, 2014, at 9:00 a.m., the defendant A had a dispute with B in his village for some reason and caused 
a fight. During the fight, the defendant A injured B and his sons C and D. According to the identification of the physical evidence identification 
office of Public Security Bureau, the injury of B is Grade II minor injury, and the injury of C and D is minor injury.

w/ AS

Dataset: Medical | Label: Thoracic Surgery

I am a patient with bronchiectasis. I cough when I have a cold. Can I drink tea made from mulberry leaves?w/o AS

I am a patient with bronchiectasis. I cough when I have a cold. Can I drink tea made from mulberry leaves?w/ AS

Figure 1: The visualization of attention distribution. w/o AS means the attention mechanism is trained without supervision, and
w/ AS means the attention supervision. The color is simplified into four levels, the darker the color, the higher the weight. With
attention supervision, the attention distribution become reasonable.

In this paper, we delve into this intriguing phenomenon
from the perspective of causality (Pearl, Glymour, and Jew-
ell 2016; Imbens and Rubin 2015). By constructing the cor-
responding causal graph, we reveal two biases in the AS that
can affect the performance: 1) Label-caused bias: The im-
balanced distribution of labels will lead to the imbalance of
keywords. For instance, if a keyword often co-occurs with
high-frequency labels in training, once the keyword occurs
in the inference time, the model will be inclined to predict
the high-frequency label and thus ignore the low-frequency
labels. 2) Word-caused bias: Some words can occur across
different labels, while some words only occur in a particular
label. The different occurrence ranges can lead to different
attention weights, downplaying the meaning of the word it-
self. The above two biases are difficult to separate and often
ignored in the conventional attention mechanism.

In causal inference, such data-driven biases have been
studied for years and several effective methods have been
proposed (Pearl, Glymour, and Jewell 2016; Imbens and Ru-
bin 2015). Notwithstanding, how to apply these casual tools
within AS for text classification is still an open problem.

To counteract these biases, we propose a novel De-bias
Attention Supervision (DAS) method. Specifically, there are
two main de-bias operations: 1) Use the backdoor adjust-
ment to cut the edges related to label-caused bias in the
causal graph. Besides, the word-caused bias is thus sepa-
rated out. 2) Capture the direct causal effect of the word on
the attention weights as the word-caused bias, and reduce it
by subtracting the direct causal effect from the total causal
effect. Extensive experiments on two professional text clas-
sification datasets prove the effectiveness of our DAS.

The contributions of this paper can be summarized as:
• We investigate the problem of Attention Supervision (AS)

for the text classification task from the perspective of
causality, and use the causal graph to reveal two biases
(e.g., label-caused bias and word-caused bias) behind the
AS, which affect the classification performance.

• We propose an end-to-end De-bias Attention Supervision
(DAS) method to counteract these biases. DAS first adopts

the four keyword selection methods have similar effects for AS.

the backdoor adjustment to eliminate the label-caused
bias, then it reduces the word-caused bias by subtracting
the word’s direct causal effect from its total causal effect.

• Experiments on two professional datasets (e.g., medicine
and law) show that our method achieves more reasonable
attention distribution and better classification accuracy.

• To motivate other scholars to investigate this problem, we
make the code and data publicly available 2.

Related Work
Text Classification
Text classification aims to assign the correct label to the in-
put text, which has been widely studied (Hu 2019). With
breakthroughs in Natural Language Processing (NLP), the
text classification technique has been applied in many appli-
cations like spam detection (Tida and Hsu 2022), and com-
ment filtering (J et al. 2021). The methods in the early years
are rule-based that require manually extracted features. In
recent years, deep learning has been proven to be effective
in many domains (Shen et al. 2021, 2022, 2023; Zhou et al.
2022; Wu et al. 2022b, 2023; Liu et al. 2023; Zhang et al.
2023a,b, 2022; Lv et al. 2023b,a, 2022; Li et al. 2022).
Thus, deep-learning text classification methods have also
been proposed, which require far less labor and achieve bet-
ter performance (Gasparetto et al. 2022). In this paper, we
focus on deep-learning text classification methods that lever-
age the attention mechanism.

Attention Mechanism
The attention mechanism, as introduced by (Bahdanau, Cho,
and Bengio 2015), has found broad utilization within a di-
verse array of NLP models. Typically, an attention layer pro-
duces a distribution over input text(Sun and Lu 2020). This
distribution subsequently serves as the foundation for creat-
ing a weighted combination of the input. The intention of
the attention mechanism is to give high weights to important
words, which mimic the process of human decision-making.
In the domain of text classification, the attention mechanism
is also widely used (Du and Huang 2018).

2https://github.com/6666ev/DAS
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Figure 2: The illustration of the causal graph.

Despite facilitating the performance, unsupervised atten-
tion usually shows perplexing distributions (Jiang et al.
2018). To tackle this issue, an intuitive way is to make At-
tention Supervision (AS). In event detection, (Zhao et al.
2018) takes trigger words as the annotation of AS. In neu-
ral machine translation, (Mi, Wang, and Ittycheriah 2016)
takes the target sentence as the guidance of AS. In text clas-
sification, however, there is no ready-made annotation. Bao
et al. (2018) uses human annotated rationales to supervise
the attention, which is high-cost and difficult to migrate the
method to a new dataset. Choi et al. (2020) derive word im-
portance by modifying its original weight and assessing the
resultant impact on predicted output. However, this method
is highly dependent on the quality of the original model. A
more prevalent and pragmatic AS method is to construct
a keyword vocabulary and subsequently utilize these key-
words as supervision signals (Nguyen and Nguyen 2018).
In this paper, we mainly focus on keyword-based AS.

Causal Inference
Causal Inference (Pearl 2009) is a powerful statistical mod-
eling technique to remove bias in data (Wu et al. 2022a).
That bias might bring a spurious correlation or confounding
effect among variables. Recently, many methods have been
proposed to remove bias in the literature of causal inference,
including counterfactual outcome prediction based on po-
tential outcome framework (Imbens and Rubin 2015) and
do-operation based on structure causal model (Pearl 2009;
Wu et al. 2020). With do-operation, the backdoor adjust-
ment (Pearl, Glymour, and Jewell 2016) has been proposed
for data de-bias. In this paper, we investigate the biases in
the AS from the perspective of causal inference and use ef-
fective casual methods to reduce these biases.

Preliminaries
In this section, to be self-contained, we introduce the related
concepts of causal inference (Pearl, Glymour, and Jewell
2016; Imbens and Rubin 2015).

Causal graph is a directed acyclic graph, where each
node denotes a variable and each edge denotes a cause-and-
effect relationship. For example, in Fig. 2a, X → Y means
X has an effect on Y .

Confounding bias occurs when a common cause affects
both the explanatory X and outcome variables Y . This path
X ← Z → Y is called a “backdoor” because it provides
an indirect route for bias, confounding the true causal rela-
tionship.

Potential outcomes. In accordance with the Neyman-
Rubin causal model (Rubin 2005), an assignment of a vari-
able is termed as “treatment”. This framework introduces
the concept of potential outcomes. As illustrated in Fig.
2a, for a given Z = z, the potential outcome of Y can
be written as y = Yz,x = Y (X = x, Z = z) where
x = Xz = X(Z = z). A notable situation is when the
variable is subject to “no treatment” (e.g., the absence of
drug administration in a drug trial). In these scenarios, it is
denoted as Z = z∗.

Causal effect reflects the differences between two poten-
tial outcomes of the same variable under two different treat-
ments. The total effect (TE) of Z = z on Y can be defined
as the difference between Yz,Xz

and Yz∗,Xz∗ :
TE = Yz,Xz

− Yz∗,Xz∗ . (1)
TE can be decomposed into natural direct effect Z → Y
(NDE) and total indirect effect Z → X → Y (TIE). The
NDE of Z is the effect of Z on Y when X is blocked. For
example, in Fig. 2b, X is kept as Xz∗ no matter what Z is.
The NDE is expressed as:

NDE = Yz,Xz∗ − Yz∗,Xz∗ . (2)
The TIE is the difference between TE and NDE:

TIE = TE −NDE = Yz,Xz
− Yz,Xz∗ . (3)

do operation is used to see ‘what will happen if we do
something’. In Fig. 2a), X is caused by Z, but we can do(X)
by assigning a value to the X directly to cut off all the edges
pointing to X (e.g., Z → X), which means X is not caused
by Z here. The passive observation P (Y |X) is thus changed
to active intervention P (Y |do(X)), and we can obtain the
true causal effect of X on Y .

Methodology
In this section, we first introduce the conventional text clas-
sification method with attention mechanism and Attention
Supervision (AS). We then analyze the biases behind AS and
propose the De-biased Attention Supervision (DAS).

Text Classification with Attention
Fig. 3 shows the architecture of the conventional text classi-
fication model with the attention mechanism, which consists
of an encoder, an attention layer, and a predictor.

Encoder Given the input text Input = {wt}nt=1, where n
is the number of words, the encoder aims to transform it into
a sequence of hidden states H = {ht}nt=1 ∈ Rn×d:

H = Encode(Input), (4)
where d is the dimension of the hidden state.

Attention Mechanism The attention mechanism aims to
assign a weight to each token according to the query q. Given
the hidden states H , the attention distribution a ∈ Rn×1 is
calculated as follow:

ei = tanh(hiWq + battn), (5)
a = softmax(e), (6)

where Wq ∈ Rd×1, battn ∈ Rn×1 are learnable parame-
ters, and Wq is the implementation of the query q. Next,
the final representation of input R ∈ Rd is produced as
R =

∑
i aihi.
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Figure 3: The architecture of conventional text classification
model with the attention mechanism.

Predictor For the predictor, given the representation of the
input R, it will output the predicted probability ŷ ∈ Rm,
where m is the number of labels. ŷ is calculated as follow:

ŷ = softmax(WpR+ bp), (7)

where Wp ∈ Rm×d and bp ∈ Rm×1 are the trainable param-
eters of the fully connected layer that calculates the logits of
each label, and the softmax operation is used to transfer the
logits into probability.

Training and Inference The cross-entropy loss has been
proved suitable for text classification, which is calculated as:

Lc = −
m∑
i=1

(yi log (ŷi) + (1− yi) log (1− ŷi)), (8)

where ŷi ∈ [0, 1] is the predicted probability, and yi ∈ {0, 1}
indicates the ground truth.

In the inference, the label with the highest predicted prob-
ability will be chosen as the output.

Attention Supervision (AS)
As Fig. 1 shows, without supervision, attention will produce
confusing distribution, and attention supervision is used to
alleviate this phenomenon. Since the attention annotation of
each token in every sample is hard to access, keyword-based
supervision is a more practical method.

Keyword Selection The keyword is the word that has an
impact on the results for a certain task. To obtain the key-
words, there are several methods including TF-IDF, YAKE
(Campos et al. 2020), AdaKeyBERT (Priyanshu and Vijay
2022), VMask (Chen and Ji 2020), and so on. With the pi-
lot study shown in Tab. 1, these keyword selection methods
have similar effects in AS, so we use take TF-IDF as the key-
word selection method due to its simplicity and robustness.

The TF-IDF algorithm depends on two factors: term fre-
quency (TF) and inverse document frequency (IDF). For
the word w, given the sample Si, the TF of the w is de-
fined as TFw

i =
nw
i

ni
, where nw

i is the number of occur-
rences of the w in Si and ni is the number of words in
Si. The inverse document frequency (IDF) is defined as
IDFw = log |S|

|{i:w∈Si}| , where |S| is the total number of
samples and |{i : w ∈ Si}| is the number of samples that w

D

I YR

D

I YR

a) b)

q

Figure 4: Causal graphs that illustrate label-caused bias.

appears. The TF-IDF score of the word w for sample Si is
then obtained:

TF -IDFw
i = TFw

i ∗ IDFw. (9)

The importance score of the word w is
∑

i TF -IDFw
i , and

the keyword vocabulary V can be obtained by selecting the
high-score words.

Supervision Signal Next, we need to translate the key-
word vocabulary V to the supervision signals. Given the in-
put text I , we check whether each word appears in V and ob-
tain the indication sequence A ∈ Rn×1, where Ai ∈ {0, 1}
indicates the appearance of i-th word. The loss of attention
supervision is calculated as:

LAS = −
n∑

i=1

((Ai log (ai) + (1−Ai) log (1− ai)). (10)

The final loss L is the weighted sum of Lc and LAS :

L = Lc + λ ∗ LAS , (11)

where λ is the preference weight.

De-biased Attention Supervision (DAS)
As analyzed above, there exist biases in the AS, which can
affect the performance of classification. In this section, we
introduce how to address these biases from the view of
causality and propose our DAS method.

Label-caused Bias

Causal Look Fig. 4a models the label-caused bias. D de-
notes the label distribution in the dataset. I and Y are the
representation of input text and predicted labels, and R is
the representation of input after the attention mechanism.3
From the figure, we can find a backdoor path: R← D → Y ,
which hinders the attainment of accurate results. To fully re-
solve the confounding bias, we have to block the edge from
D → R. Such dependence is difficult to cut off directly, but
thanks to the query of attention mechanism, we find a han-
dle. Taking the query q into consideration, the causal graph
is changed to Fig. 4b, where the cut off of D → R can be
achieved by cutting off D → q.

The query q can be interpreted as the assumption of the
model before classification. If we directly adopt AS, the as-
sumption will favor labels with high frequency thus affecting

3The token embeddings are pre-trained from a task-independent
corpus, so the label distribution D does not influence the embed-
ding of the input text I .
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Figure 6: The implementation of the Equation 15.

the attention distribution through q. To remove such label-
caused bias in AS, we make a backdoor adjustment, which is
a main de-confounding technique (Pearl, Glymour, and Jew-
ell 2016). Specifically, a do operation is taken on R through
q by computing the interventional posterior:

P (Y |do(R)) =
∑
q∈Q

P (Y |R, q)P (q), (12)

where Q ∈ {q1, q2, ..., qm} represents the assumptions for
each label. P (q) is assigned to 1

m for each q.

Implementation The implementation of Equation 12 is
depicted in Figure 5. Since R is computed based on atten-
tion distributions, we utilize q1 to qm to concurrently gen-
erate m attention distributions {aq1 , aq2 , ..., aqm} ∈ Rn×m.
Consequently, P (Y |R, q) can be derived from the predictor.
During training, in order to link each q with a specific label
in the context of AS, for a sample with label y, the model
computes its attention supervision loss LAS only through
aqy and masks the remaining m− 1 attention distributions.

Word-caused Bias

Causal Look For a word w in I , the total effect (TE) of
the w on the Y can be written as (I is omitted here for the
writing simplicity):

TE = Yw,aw
− Yw∗,a∗

w
, (13)

where aw is the attention weight of w.
Since the word-caused bias is produced by word fre-

quency, it is precisely represented by the natural direct effect
(NDE) of w:

NDE = Yw,a∗
w
− Yw∗,a∗

w
, (14)

which can be viewed as the effect of w on Y when the
attention is fixed. With the help of backdoor adjustment,
we get the attention weight of w for each label. To ob-
tain Yw,a∗

w
we can take a meanpooling on a(w), where

a ∈ {aq1 , aq2 , ..., aqm}. The reduction of the word-caused
bias is represented as:

TIE = TE −NDE = Yw,aw
− Yw,a∗

w
. (15)

Algorithm 1: The pseudocode of DAS.
Input : Training dataset D, Keyword vocabulary V ,

Hyperparameter λ.
Output: Model parameters θ.

1 for (I, y) ∈ D do
2 Initialize attention signal A from V ;
3 H = Encode(I) ;
4 for i = 1 to m do ▷ Equ. 12
5 eqi = tanh(HWqi + bqi)
6 aqi = softmax(eqi)
7 end
8 ā = MeanPooling({aq1 , aq2 , ..., aqm});
9 for i = 1 to m do ▷ Equ. 15

10 ãqi = aqi − ā
11 ãqi = softmax(ãqi );
12 R̃i =

∑n
j=1 hj ∗ ãqi(j);

13 end
14 R̃ = {R̃1, R̃2, ..., R̃m} ;
15 ŷ = softmax(FC(R)) ▷ Equ. 7;
16 θ =argminθL(y, ŷ, A, aqy ; θ) ▷ Equ. 11;
17 end

Type Legal Verdict Medical Triage
# of Samples 164,194 1,773,497
# of Labels 138 185
Gini coefficient of Labels 0.47 0.77
Avg. Tokens in Input 239.18 41.41

Table 2: Statistics of the two datasets.

Implementation As Fig. 6 shows, we implement Equ. 15
by subtracting the average attention weight ā ∈ Rn×1 from
original attention weight. In other words, each value is sub-
tracted from the average value of its column. After this sub-
traction, words that have high attention weights across all
labels become less significant, while words with high atten-
tion weights for only a few labels retain their importance.

The pseudocode of DAS is shown in Alg. 1.

Experiments
Datasets
Legal Verdict4. This dataset is released by Chinese AI and
Law Challenge (CAIL2018) (Zhong et al. 2018), and it has
been widely used in LegalAI research. Each sample consists
of a factual description and a corresponding charge. The fact
description serves as the input, while the charge is output.

Medical Triage5. This dataset collects medical conversa-
tions. The input is patients’ questions and the output is the
corresponding department.

The statistics of the two datasets are presented in Tab. 2.
The Gini coefficient shows the imbalance of label distribu-
tions within each dataset. To ensure fair evaluations, we par-
tition each dataset randomly into training, validation, and
test sets, maintaining an 80%:10%:10% ratio.

4https://github.com/thunlp/CAIL
5https://github.com/liangsbin/Chinese-medical-dialogue-data
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Methods Legal Verdict Medical Triage

Acc Ma-P Ma-R Ma-F Ma-F
low25% Acc Ma-P Ma-R Ma-F Ma-F

low25%
BOW 80.27 73.96 69.59 70.57 50.99 74.83 67.24 58.78 61.62 56.04
SVM 80.10 81.87 76.16 76.47 66.94 74.17 71.73 57.36 61.07 54.53
Transformer 82.29 79.64 76.87 77.41 67.30 75.88 67.89 63.20 64.32 57.42
Transformer+ATT 84.66 79.87 78.87 78.73 68.69 75.99 68.15 61.76 63.79 57.29
Transformer+AS 84.50 81.77 77.40 78.08 65.12 76.43 67.41 61.73 63.14 57.48
Transformer+DAS 85.92 82.36 80.50 80.84 70.68 77.04 68.26 64.54 65.14 60.16
BiLSTM 83.89 76.85 77.20 76.41 61.76 76.55 66.38 61.58 62.87 53.65
BiLSTM+ATT 85.50 81.68 80.48 80.59 69.37 77.05 67.56 62.54 63.88 55.54
BiLSTM+AS 85.36 80.13 80.30 79.76 67.76 77.33 67.18 62.03 63.51 54.97
BiLSTM+DAS 86.33 82.97 81.83 82.22 73.26 77.34 67.56 64.40 65.17 58.84

Table 3: Results of classification on two datasets, and ATT denotes unsupervised attention mechanism.

Baselines
We implement the following baselines:

BoW is a simplifying representation, the text is repre-
sented as the bag (multiset) of its words, disregarding gram-
mar and even word order but keeping multiplicity. SVM
is a robust prediction methods based on statistical learn-
ing frameworks. Transformer (Vaswani et al. 2017) is a
deep learning model that adopts the mechanism of self-
attention (distinct from the attention mechanism in this pa-
per) to process sequential input data. BiLSTM (Hochreiter
and Schmidhuber 1997) is an artificial neural network used
in deep learning, featuring feedback connections.

To mitigate the encoder’s impact and effectively evalu-
ate the performance of our De-biased Attention Supervision
(DAS), we have applied the attention mechanisms (ATT),
attention supervision (AS), and de-biased attention supervi-
sion (DAS) on both the Transformer and BiLSTM models.

Evaluation Metric
Automatic Evaluation To evaluate the performance of
classification, we calculate the Accuracy (Acc), Macro-
P(Ma-P), Macro-R(Ma-R), and Macro-F1(Ma-F).

Human Evaluation For evaluating the rationality of at-
tention distributions, we carry out human evaluations. We
randomly select 500 test cases from each dataset. For each
case, we visualize the attention distributions, as shown in
Figure 1, generated by different methods (e.g., ATT, AS,
DAS). We present these visualizations to 5 human annota-
tors6, who are then asked to identify the distribution that ap-
pears most reasonable as the ‘better one’. A case is consid-
ered valid only if at least 3 annotators select the same dis-
tribution. Then, we calculate the proportion of each method
being selected as the ‘better one’ to make the comparison.

Implementation Details
We conducted our experiments using two V100 GPUs. We
use Gensim (Řehůřek and Sojka 2010) with a large generic
corpus to initialize the word embeddings of deep-learning
models, which is in the dimension of 300. The size of the
keyword vocabulary is set to 1000. The setting for λ is 0.15.

6To ensure fairness, we randomize the order of results.

3.24%

26.13%

70.63%

ATT AS DAS
Legal Verdict

2.71%

32.71%

64.58%

ATT AS DAS
Medical Triage

Figure 7: Results of human evaluation.

Experimental Results
We analyze the experimental results in this section.

Performance of classification: Examining Tab. 3, we can
derive the following conclusions: 1) In both datasets, the
performance of AS drops compared to ATT (e.g., Ma-P for
BiLSTM+AS declines from 81.68% to 80.13% in the legal
verdict dataset). This decline underscores the impact of bi-
ases within AS on classification accuracy. 2) The applica-
tion of DAS leads to enhanced performance by the models
(e.g., Transformer and BiLSTM) compared to other atten-
tion mechanisms (e.g., ATT, AS) on both datasets. This ob-
servation suggests that the de-bias operations in DAS con-
tribute to improved classification performance. 3) Notably,
the improvement in performance is more pronounced on
low-frequency labels (e.g., Ma-F for Transformer+DAS in-
creases from 65.12% to 70.68% on legal dataset and from
57.48% to 60.16% on medical dataset), which proves that
DAS has the ability to make the models more robust. 4) The
medical triage is a more challenging dataset, possibly due
to its larger label set. 5) The performance of deep-learning
models surpasses that of classic models.

Rationality of attention distribution: After certification,
there remain 463 samples for Legal Verdict and 480 samples
for Medical Triage, and the results are depicted in Fig. 7. In
the majority, the attention distributions of DAS are picked
as the better ones (e.g., 70.63% for the legal verdict dataset
and 64.58% for the medical triage dataset). This provides
evidence that DAS generates more coherent attention distri-
butions than ATT and AS. Compared to ATT, AS enhances
the rationality of attention distribution, however, it brings no
benefit to the classification performance as Tab. 3 shows.
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Predicted LabelDataset: Legal Verdict | Label: False Accusation

False Accusation✅

On May 6, defendant A pretended to be injured in the waist by B because of a dispute over arable land with B. He also
accused B of injuring himself to the public security organ with the intention of falsely accusing B. Appraised by the
Physical Evidence Appraisal Center of the Public Security Department, the fracture of the left transverse process of A's
2nd to 4th lumbar vertebrae was old and it was not suitable to assess the degree of injury.

ATT 

Intentional Injury❌

On May 6, defendant A pretended to be injured in the waist by B because of a dispute over arable land with B. He also
accused B of injuring himself to the public security organ with the intention of falsely accusing B. Appraised by the
Physical Evidence Appraisal Center of the Public Security Department, the fracture of the left transverse process of A's
2nd to 4th lumbar vertebrae was old and it was not suitable to assess the degree of injury.

AS

False Accusation✅

On May 6, defendant A pretended to be injured in the waist by B because of a dispute over arable land with B. He also
accused B of injuring himself to the public security organ with the intention of falsely accusing B. Appraised by the
Physical Evidence Appraisal Center of the Public Security Department, the fracture of the left transverse process of A's
2nd to 4th lumbar vertebrae was old and it was not suitable to assess the degree of injury.

DAS

Figure 8: Case study. The attention weight is simplified into four levels.

Methods Legal Verdict Medical Triage
Acc Ma-F Acc Ma-F

AS 85.36 80.30 77.33 63.51
DAS 86.33 82.22 77.34 65.17
w/o wb 85.81 80.98 77.25 64.04

Table 4: Results of ablation experiment.

Analysis Study
We conducted an ablation experiment as follows7:

- w/o wb removes the operation on the word-caused bias,
and only employs the adjustment on the label-caused bias.

The results presents in Tab. 4 reveal the following in-
sights: 1) The performance gap between DAS and w/o wb
underscores that the eliminating word-caused bias in atten-
tion supervision can contribute positively to the classifica-
tion. 2) In comparison to AS, w/o wb proves the effective-
ness of backdoor adjustment in mitigating label-caused bias.

Fig. 8 shows an intuitive comparison among the methods.
In this case, we can observe the following: 1) ATT correctly
predicts the label but generates an inadequate attention dis-
tribution. For instance, it assigns high weights to the word
“himself”. 2) AS improves the attention distribution quality,
but the predicted label is incorrect. In this dataset, the label
Intentional Injury is high-frequency, and the word ”injury”
is distributed across multiple labels. This introduces biases
into AS and hampers accurate prediction. 3) DAS, by miti-
gating biases (both label-caused and word-caused) achieves
a weight distribution that prioritizes the word “falsely accus-
ing”, leading to the correct label prediction. This case study
underscores the effectiveness of DAS in enhancing both at-
tention distribution quality and classification accuracy.

Fig. 9 depicts the relationship between the classification
performance (e.g., Ma-F1) and the size of the keyword vo-
cabulary. From it, we have the following observations: 1)
DAS consistently outperforms AS across varying sizes. 2)
With the size grows, the performance tends to imporve. 3)
Notably, there are dips in performance for both datasets.
This phenomenon may be because the quality of keywords
can vary with the size of the vocabulary.

7Unless specified otherwise, we utilize BiLSTM as the encoder
for DAS in the subsequent sections.
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Figure 9: The relevance of the Ma-F1 and the size of key-
word vocabulary in two datasets.
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Figure 10: The relevance of Ma-F1 and training set size.

Turning to Fig. 10, we find that DAS gains a higher train-
ing efficiency for both datasets, which proves the effective-
ness of DAS from an alternative perspective.

Conclusion and Future Work
In this paper, our investigation centers on attention super-
vision (AS) for text classification. We conduct a series of
experiments on two professional datasets (e.g., medicine
and law). We identify two biases behind the AS: label-
caused bias and word-caused bias. To eliminate these two
biases, we propose a novel De-biased Attention Supervision
(DAS) algorithm for text classification. Extensive experi-
ments demonstrate that DAS achieves better classification
accuracy alongside more reasonable attention distributions.
In the future, besides attention supervision, we intend to ad-
dress other types of bias, such as biases in the pretraining
corpus, to further enhance the efficacy of text classification.
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