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Abstract

Few-shot named entity recognition (NER) aims to recognize
novel named entities in low-resource domains utilizing exist-
ing knowledge. However, the present few-shot NER models
assume that the labeled data are all clean without noise or
outliers, and there are few works focusing on the robustness
of the cross-domain transfer learning ability to textual ad-
versarial attacks in few-shot NER. In this work, we compre-
hensively explore and assess the robustness of few-shot NER
models under textual adversarial attack scenario, and found
the vulnerability of existing few-shot NER models. Further-
more, we propose a robust two-stage few-shot NER method
with Boundary Discrimination and Correlation Purification
(BDCP). Specifically, in the span detection stage, the entity
boundary discriminative module is introduced to provide a
highly distinguishing boundary representation space to detect
entity spans. In the entity typing stage, the correlations be-
tween entities and contexts are purified by minimizing the
interference information and facilitating correlation general-
ization to alleviate the perturbations caused by textual ad-
versarial attacks. In addition, we construct adversarial exam-
ples for few-shot NER based on public datasets Few-NERD
and Cross-Dataset. Comprehensive evaluations on those two
groups of few-shot NER datasets containing adversarial ex-
amples demonstrate the robustness and superiority of the pro-
posed method.

Introduction
Few-shot named entity recognition (NER) aims to locate and
classify new named entities in the target domain where there
are only a few labeled examples (Lample et al. 2016; Kato
et al. 2020; Li et al. 2022b; Ma et al. 2023), which is trained
using the present data within the source domain. Recently,
few-shot NER has attracted increasing attention, largely due
to the fact that it reduces the dependence on labeled data
in NER (Yang and Katiyar 2020; Li et al. 2022a). Few-shot
NER can reflect the generalized learning and cross-domain
knowledge transfer abilities of humans (Lake, Salakhutdi-
nov, and Tenenbaum 2013; Lu et al. 2021), who can in-
fer new knowledge from a few examples based on existing
knowledge.
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Examples in Source Domain
Pease Park [park] was the site of a popular disc golf course 
running along shoal creek.

Examples in Target Domain
The gift makes the Bibliotheca Alexandrina [library] the 
sixth-largest francophone library.

Adversarial Examples in Target Domain
The gift makes the Edifice Alexandrina [hotel] the sixth-
largest francophone library.

Cross-domain Transfer Learning

Textual Adversarial Attack

Figure 1: Vulnerabilities exhibited in few-shot NER un-
der textual adversarial attack (i.e. synonym substitution) sce-
nario. The subscripts indicate entity types.

Present few-shot NER methods are usually developed on
token-level metric learning (Fritzler, Logacheva, and Kretov
2019; Hou et al. 2020; Yang and Katiyar 2020) and span
level metric learning (Yu et al. 2021; Wang et al. 2022a). In
the former family, novel entities in target domain are recog-
nized by measuring the distance between each query token
and the prototype of each entity category or each token of
support examples (Snell, Swersky, and Zemel 2017). In con-
trast, the latter family bypasses the token-wise label depen-
dency issue by measuring the distance between spans (Ma
et al. 2022). However, existing few-shot NER methods typ-
ically assume that the examples are all clean without noise
or outliers (Lu et al. 2021), which is overly idealistic in the
real world. Thus, it is essential to maintain robust cross-
domain transfer learning ability when handling adversarial
examples with interferences for few-shot NER. In addition,
at present, some works have investigated the robustness of
NER task (Lin et al. 2021; Wang et al. 2022b), emphasiz-
ing the context-based reasoning. Different from NER task,
few-shot NER focuses on learning the correlation transfer
between entity and contexts from source domain to target
domain. Our deep investigation on literature reveals that this
particular topic has not gained enough attention.

Therefore, in this paper, we explore and assess the adver-
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sarial robustness of the cross-domain transfer learning abil-
ity in few-shot NER. For textual adversarial attack, synonym
substitution is a widely used method, where the words in
original texts are replaced by their synonyms (Li et al. 2020,
2021; Zeng et al. 2023). The substituted words are impercep-
tible to humans, while they can “fool” the neural networks to
make wrong predictions. In this work, synonym substitution
attack is performed on clean samples in few-shot NER. We
have observed that synonym substitution attack misleads the
existing few-shot NER models, as shown in Figure 1, and re-
sulting in a significant drop in recognition performance for
unseen entity types (detailed in Experiments section). Typi-
cally, the cross-domain transfer learning ability in few-shot
NER is vulnerable when handling adversarial examples.

Motivated by the above observations, we proposed a ro-
bust two-stage few-shot NER method with Boundary Dis-
crimination and Correlation Purification (BDCP). Overall,
the span detection stage is to detect the entity spans in the
input text, then the entity typing stage is to classify the
detected entity spans to the corresponding unseen entity
types. First, in the span detection stage, the entity bound-
ary discriminative module is introduced to provide a highly
distinguishing boundary representation space to detect en-
tity spans, which contains multiple components assigned to
all boundary classes. The span detection is regarded as a
boundary classification task (e.g. BIOES (Ma et al. 2022)),
and the token representations are diversely assigned to the
corresponding closest components in the entity boundary
discriminative module. The backbone model (i.e. encoder
layer) and the boundary discriminative module are simul-
taneously learned by utilizing two mutually complementary
losses, which can improve the adversarial robustness of span
detection. Second, in the entity typing stage, the correlations
between entities and contexts are purified to alleviate the
perturbations caused by adversarial attacks. The correlations
are purified by minimizing the interference information in
correlations and facilitating correlation generalization from
an information theoretic perspective, which can alleviate the
perturbations caused by textual adversarial attacks.

The contributions of this paper are summarized as fol-
lows:

• We explore and assess the adversarial robustness of the
cross-domain transfer learning ability in few-shot NER.
A robust two-stage few-shot NER method with Bound-
ary Discrimination and Correlation Purification (BDCP)
is proposed to defend against the textual adversarial at-
tacks. The codes are publicly available1.

• Entity boundary discriminative module is introduced to
provide a highly distinguishing boundary representa-
tion space, thereby improving the adversarial robustness
of entity span detection. Two mutually complementary
losses are utilized to diversely assign each token repre-
sentation to corresponding component.

• Aiming at improving the adversarial robustness of entity
typing, we implement correlation purification between
entities and contexts by minimizing the interference in-

1https://github.com/ckgconstruction/bdcp

formation in correlations and facilitating correlation gen-
eralization. Correlation purification can alleviate the per-
turbations caused by textual adversarial attacks.

Related Work

Few-Shot Named Entity Recognition

Current works about few-shot named entity recognition
(NER) mainly focus on metric learning methods at token-
level (Fritzler, Logacheva, and Kretov 2019; Yang and Kati-
yar 2020) and span-level (Ma et al. 2022; Wang et al. 2022a).
The token-level approaches recognize novel entities in query
samples by measuring the distance between each query to-
ken and the prototype of each entity category or each to-
ken of support examples (Snell, Swersky, and Zemel 2017),
while the span-level methods bypass the token-wise label
dependency issue by measuring the distance between spans.

In the first family, Fang et al. (2023) designed an addi-
tional memory module that stored token representations of
entity types to adaptively learn cross-domain entities. In the
second family, Ma et al. (2022) introduced a decomposed
meta-learning approach to decompose the few-shot NER
task into span detection and entity typing, which enabled the
few-shot NER model to learn suitable initial parameters and
embedding space.

However, the existing few-shot NER methods suffer a sig-
nificant drop in recognition performance for unseen entity
types when handling adversarial examples. It demonstrates
the vulnerability of the cross-domain transfer learning abili-
ties of present methods under textual adversarial attack sce-
narios.

Adversarial Robustness on Texts

Recently, a magnitude of adversarial attacks have been in-
troduced for texts (Zhou et al. 2019; Liu et al. 2022; Zeng
et al. 2023), such as synonym substitution (Lin et al. 2021),
adversarial perturbation generating (Wang et al. 2021; Zhu
et al. 2020), which can maintain human understanding of
sentences but “fool” the deep neural networks. Textual ad-
versarial attacks make deep neural networks output incorrect
predictions and point out the vulnerability of current models
regarding textual adversarial attacks. Aiming at verifying the
robustness of the NER models, Lin et al. (2021) generated
entities substitutions using the other entities of the same se-
mantics in Wikidata, and utilized pre-trained language mod-
els (Devlin et al. 2019) to replace the words in context. Zeng
et al. (2023) generated a set of copies for input texts by ran-
domly masking words to improve robustness.

Current adversarial robustness tasks on text mainly focus
on learning ability in the same domain, such as text classi-
fication (Li et al. 2020; Liu et al. 2023), sentiment analy-
sis (Li et al. 2021) and named entity recognition (Lin et al.
2021). However, there are few works about the robustness of
cross-domain transfer learning ability for texts. In this work,
we focus on the effect of textual adversarial attacks on the
cross-domain transfer learning ability in few-shot NER task.
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Figure 2: Overview of the robust two-stage few-shot NER method with Boundary Discrimination and Correlation Purification
(BDCP). In the span detection stage, we introduce entity boundary discriminative module G to provide a highly distinguishing
boundary representation space. Each token representation hi is diversely assigned to the closest component u∗

i through two
mutually complementary assignment loss La and diversity loss Ld. The blue dashed lines represent backpropagation. In the
entity typing stage, the correlations between entities and contexts are purified to alleviate the perturbations caused by textual
adversarial attacks. Correlation purification is implemented by minimizing interference information in correlations (i.e. Lr) and
facilitating correlation generalization (i.e. Lp).

Preliminaries

Few-Shot Named Entity Recognition. Given a sequence
x = {xi}ni=1 containing n tokens, named entity recognition
(NER) task aims to output the entity sequences e = {ej}j≥0

and assign the corresponding entity type yj to each en-
tity sequence ej . The few-shot NER model is trained in a
source domain εsource = {(Ss,Qs,Ys)}, where Ss,Qs,Ys

represent the support set, query set, and the entity types
in the training data, respectively. Then the few-shot NER
model is transferred to a data-scarce target domain εtarget =
{(St,Qt,Yt)} with the similar data construction for testing.
A few-shot NER model learned in the source domain εsource
is expected to leverage the support set St of the target do-
main to predict novel entities in the query set Qt. Since
Ys ∩ Yt = ∅, the few-shot NER model needs to learn cross-
domain transfer knowledge to be generalized to unseen en-
tity types in few-shot NER. In the N -way K-shot setting,
there are N entity types in the target domain (i.e. |Yt| = N ),
and each entity type is associated with K examples in the
support set St.
Adversarial Attack on Few-Shot NER. The entities and
corresponding entity types recognized by the few-shot NER
model in the target domain are denoted as the set {Ci},
where Ci = (ep, yp), ep and yp are the entity and cor-
responding entity type. The adversarial attack on few-shot
NER aims to construct adversarial examples to “fool” the
neural network based few-shot NER models. An adversarial
example x′ makes the few-shot NER model that correctly
recognizes entities and corresponding entity types to predict

incorrect entity-type pairs {C ′
i}, i.e.

{Ci} ̸= {C ′
i}. (1)

In this work, the adversarial example x′ is constructed by
replacing the original tokens with synonyms w′

i in the syn-
onym set.
Information Bottleneck (IB) principle utilizes the idea of
mutual information to analyze the training and inference of
deep neural networks (Shwartz-Ziv and Tishby 2017; Tishby
and Zaslavsky 2015). Given the input data X and the la-
bel Y , it attempts to learn an internal representation T that
makes an information trade-off between predictive accuracy
and representation compression:

LIB = −I(T ;Y ) + β ∗ I(T ;X), (2)

where I stands for mutual information (MI), aiming to mea-
sure the interdependence between two variables. β is the La-
grange multiplier that controls the trade-off between two MI
terms. By optimizing the loss LIB , the IB principle com-
presses the noise data in X while retaining enough features
in X to predict Y .

Methodology
Overview of the Proposed Method
Technically, we found that the decline in cross-domain trans-
fer learning ability for few-shot NER is reflected in: 1) en-
tity span detection errors; 2) inaccurate unseen entity type
classification. To solve the above problems, we propose a
robust two-stage few-shot NER method with Boundary Dis-
crimination and Correlation Purification (BDCP). Figure 2
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illustrates the architecture of the proposed BDCP method.
Following Ma et al. (2022), the few-shot NER task is de-
composed into span detection and entity typing. Overall, the
span detection stage is designed to detect the entity spans
in the input text, then those entity spans are classified into
corresponding unseen entity types in the entity typing stage.

Different from Ma et al. (2022), in the span detection
stage, for the purpose of improving the adversarial robust-
ness of entity span detection, entity boundary discrimina-
tive module is introduced to provide a highly discriminative
boundary representation space. In the entity typing stage,
aiming at improving the adversarial robustness of entity typ-
ing, the correlations between entities and contexts are puri-
fied by minimizing the interference information and facili-
tating correlation generalization. Note that, the span detec-
tion stage and the entity typing stage are learned serially.
The proposed BDCP method does not introduce additional
computational cost like adversarial training and data aug-
mentation.

Adversarial Examples Generating
Textual adversarial attack is conducted on the examples in
the support set St and the query set Qt of the target do-
main. The textual adversarial attack algorithm BERT-Attack
(Li et al. 2020) is used to perform synonym substitution and
generate adversarial examples2. The cross-domain transfer
learning ability is reflected through the performance of the
few-shot NER model in the query set Qt of the target do-
main. Textual adversarial attacks in the real world usually
exist randomly in textual data, hence we generate adversarial
examples against the entire original examples without distin-
guishing entities and contexts (Lin et al. 2021).

Boundary Discriminative Span Detection
Span detection is regarded as a token-level label classifica-
tion process. The entity boundary discriminative module G
is introduced to alleviate the problem of entity boundary de-
tection errors, which provides an additional robust represen-
tation space for entity span boundaries. Entity boundary dis-
criminative module G contains Nb components blocks Gk,
where Nb denotes the number of entity boundary classes.
Gk = {ui}Nc

i=1 is the set of components ui ∈ RC assigned to
boundary class k, where Nc represents the number of com-
ponents assigned to each boundary class.
Boundary Assignment. First, the adversarial example x′ =
{wi}ni=1 is input into an encoder fθ to generate token repre-
sentations h = {hi}ni=1:

h = fθ(x
′). (3)

Each token representation hi is matched amongst the
components in each block Gk according to the cosine simi-
larity, thus obtaining the closest component u∗

i correspond-
ing to hi:

u∗
i = argmax

uj∈Gk

hi � uj

||hi|| ||uj ||
, (4)

2More details about the attack algorithm and generation im-
plementation are listed in Appendix, which can be available at
http://arxiv.org/abs/2312.07961

where � represents dot product. Inspired by the mixture
based feature space (Afrasiyabi, Lalonde, and Gagné 2021),
we improve the angular margin-based softmax function
(Deng et al. 2019) with a temperature variable τ :

pθ(vj |hi,G) =
ecos(∠(hi,uj)+m)/τ

ecos(∠(hi,uj)+m)/τ +
∑

ul∈{G\uj}
ecos(∠(hi,ul))/τ

, (5)

where ∠(hi, uj) = arccos(h⊤
i ui/(||hi||||uj ||)), vj denotes

the pseudo-label associated to uj , and m represents a mar-
gin.

Next, every token representation hi is assigned to the clos-
est component u∗

i in G utilizing the assignment loss La:

La = − 1

L

L∑
i=1

log pθ(v
∗
i |hi,G), (6)

where L represents the number of all tokens in a batch, and
v∗i denotes the one-hot pseudo-label corresponding to u∗

i .
Diverse Assignment. Each entity boundary class is sup-
posed to be mapped to multiple components rather than a
single one in Gk, which can improve the adversarial robust-
ness. Because in this way, more generalized boundary repre-
sentation space can be leveraged to detect the entity bound-
aries. Training the backbone model and the entity boundary
augmentation matrix only on the assignment loss La usu-
ally results in that the tokens of the entity boundary class k
are assigned to a single component ui ∈ Gk. To avoid this,
the diversity loss Ld is designed to facilitate the diversity of
component selection for every entity boundary class.

The diversity loss Ld pushes the token representation hi

towards the centroid of components associated with its entity
boundary class. The centroid ck for entity boundary class k
is defined as:

ck = (1/|Gk|)
∑

uj∈Gk

uj , (7)

where |Gk| denotes the number of components for each en-
tity boundary labels yi. For the centroids set C = {ck}Le

k=1,
the diversity loss Ld is calculated as:

Ld = − 1

L

L∑
i=1

log pθ(yi|hi, sg[C]), (8)

where sg denotes stopgradient that protects specific vari-
ables from backpropagation. It prevents the components of
each boundary class from collapsing into a single point.

Following Ma et al. (2022), we also use averaged cross-
entropy loss with a maximum term as training loss:

Lc =
1

L

L∑
i=1

CrossEntropy(yi, p(wi))

+ α max
i∈{1,2,...,L}

CrossEntropy(yi, p(wi)),

(9)

where the maximum term is leveraged to alleviate insuffi-
cient learning for tokens with higher loss. p represents the
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fully connected layer with softmax activation function. α
is the weighting factor.
Final Objective. Overall, the training loss in boundary dis-
criminative span detection stage is the combination of Eq.
(6), Eq. (8) and Eq. (9):

Lsp = Lc + γ1La + γ2Ld, (10)
where γ1 and γ2 are weighting factors for assignment loss
and diversity loss, respectively.

Correlation Purified Entity Typing
In the entity typing stage, the entity spans obtained in the
span detection stage are classified into corresponding entity
types. In this paper, the correlations refer to the correlations
between entities and contexts for simplicity.

Textual adversarial attacks bring interferences to the cor-
relations, which has an adverse effect on cross-domain trans-
fer learning. Therefore, we design correlation purified en-
tity typing to filter the interference information existing in
the correlations and facilitate the correlation generalization,
which can alleviate the perturbations caused by textual ad-
versarial attacks. Inspired by Tishby and Zaslavsky (2015)
and Wang et al. (2022b), we explicitly minimize the interfer-
ence information and maximize the interactive information
between entities and contexts.

For entity typing, the adversarial example x′ is input into
another encoder gθ to generate token representations h̃ =
{h̃i}ni=1:

h̃ = gθ(x
′). (11)

The positions of the entity spans can be obtained from the
span detection stage. Subsequently, the entity span represen-
tation h̃s is computed by averaging all token representations
inside the entity span. The context representation h̃c is com-
puted by averaging the rest of the token representations in x′

other than the entity spans.
Intuitively, for few-shot NER in the textual adversarial

scenarios, the correlations between entities and contexts are
essential to predict unseen entities, and the interferences
in adversarial examples are interfering features. Motivated
by the chain rule of mutual information and the contrastive
strategy (Federici et al. 2020; Wang et al. 2022b), the mutual
information I(x; h̃s) between entity span h̃s and original ex-
ample x can be decomposed into two parts:

I(x; h̃s) = I(h̃s;x
′)︸ ︷︷ ︸

predictable

+ I(x; h̃s|x′)︸ ︷︷ ︸
specific

, (12)

where x′ denotes to the adversarial example. I(h̃s;x
′) refers

to the information in h̃s that is predictable for x′, i.e. non-
entity-specific information. I(x; h̃s|x′) indicates the infor-
mation in h̃s that is unique to x but is unpredictable for x′,
i.e. entity-specific information.

Consequently, the entity-specific information is interfer-
ing, and any token representation h that encompasses the in-
formation jointly shared by x and x′ would also contain the
requisite label information. Then Eq. (12) can be approxi-
mated as follows:

maximize I(h̃s; y) ∼ I(h̃s;x
′), (13)

minimize I(x; h̃s|y) ∼ I(x; h̃s|x′), (14)

Correlation Facilitating. To facilitate correlation general-
ization between entities and contexts, Eq. (13) is utilized
to maximize the generalization information of textual rep-
resentations. Similar to Wang et al. (2022b), it has been
proved that I(h̃s, h̃c) is a lower bound of I(h̃s, x

′) (proof
is detailed in Appendix). InfoNCE (van den Oord, Li, and
Vinyals 2018) can be leveraged to approximate I(h̃s, h̃c),
which is a lower bound of mutual information. It can be
known from previous work (van den Oord, Li, and Vinyals
2018) that when the number of tokens is lager, the lower
bound is closer to InfoNCE. During training, minimizing the
InfoNCE loss can maximize the lower bound of mutual in-
formation. Thus, the goal of facilitating correlation general-
ization is optimized by:

Lp = −E1

gp(h̃s, h̃c)− E2(log
∑

h̃i∈h̃c

exp(gp(h̃s, h̃c)))

 ,

(15)
where E1 and E2 are two different activation functions. gp is
the compatibility scoring function implemented by a linear
neural network.
Correlation Purification. Aiming at alleviating the adverse
effects of interferences in adversarial examples, Eq. (14) is
exploited to minimize the interference information. To this
end, we minimize an upper bound of I(x; h̃s|x′) (proof is
detailed in Appendix), which is formulated as:

pib(t|h) = N (t|fµ
ib(h), f

M
ib (h)) (16)

Lr = DKL[pib(ts|h̃s)||pib(tc|h̃c))] (17)

where pib denotes the information bottleneck layer, t refers
to internal representation, fµ

ib and fv
ib are multilayer percep-

trons (MLP) that compute the mean µ and the covariance
matrix M of t, respectively, and N stands for the reparam-
eterization trick (Kingma and Welling 2014). DKL refers to
Kullback-Leibler divergence.
Final Objective. We utilize ProtoNet (Snell, Swersky, and
Zemel 2017) to calculate class prototypes and use cross-
entropy loss to compute prototype loss Lt, same as Ma et al.
(2022). Due to space limitation, the calculation processes
are listed in Appendix. Finally, the training loss in correla-
tion purified entity typing stage is the combination of Lt, Lp

and Lr:
Lsp = Lt + γ3Lp + γ4Lr, (18)

where γ3 and γ4 are weighting factors for the correlation
facilitation loss and interference information filtering loss.
In addition, we adopt the same meta-learning strategy as Ma
et al. (2022) to train and evaluate the model in two stages.

Experiments
Experimental Settings
Datasets. Comprehensive experiments are conducted on two
groups of datasets to evaluate the adversarial robustness of
the proposed method: (1) Few-NERD (Ding et al. 2021)
contains 8 coarse-grained and 66 fine-grained entity types
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Models
INTRA INTER

5-1 10-5 5-1 10-5
Clean Attack Clean Attack Clean Attack Clean Attack

ProtoBERT (Fritzler et al. 2019) 23.45 12.45 34.61 29.08 44.44 38.30 53.97 45.23
StructShot (Yang et al. 2020) 35.92 21.62 26.39 19.71 57.33 42.78 49.39 42.75
CONTAINER (Das et al. 2022) 40.43 24.58 47.49 40.15 55.95 41.45 57.12 48.19
Decomposed (Ma et al. 2022) 52.04 33.73 56.84 45.16 68.77 49.36 68.32 54.68

RockNER (Lin et al. 2021) 52.17 35.29 57.25 46.50 68.92 51.54 68.43 57.64
RanMASK (Zeng et al. 2023) 52.33 36.16 56.79 44.18 67.58 52.37 68.61 58.86

Our BDCP 52.63 40.76 57.46 50.71 69.59 56.84 68.87 64.97

Table 1: Performance on Few-NERD.

Models
5-shot

News Wiki Social Mixed
Clean Attack Clean Attack Clean Attack Clean Attack

MatchingNet (Vinyals et al. 2016) 19.85 13.95 5.58 4.52 6.61 5.13 8.08 6.58
SimBERT (Hou et al. 2020) 32.01 25.56 10.63 8.27 8.20 6.74 21.14 14.62
L-TapNet+CDT (Hou et al. 2020) 45.35 31.23 11.65 9.69 23.30 15.38 20.95 13.44
Decomposed (Ma et al. 2022) 58.18 42.87 31.36 23.39 31.02 22.46 45.55 34.19

RockNER (Lin et al. 2021) 58.32 44.51 31.63 24.45 31.52 24.18 45.78 36.48
RanMASK (Zeng et al. 2023) 58.54 45.19 32.06 22.64 31.67 24.69 44.35 37.51

Our BDCP 58.76 51.36 32.17 27.91 31.84 27.29 46.29 40.73

Table 2: Performance on Cross-Dataset.

with hierarchical structure for few-shot NER3, addressing
two tasks named INTRA and INTER. Specifically, entities
in the train/dev/test splits belong to different coarse-grained
entity types in INTRA, while fine-grained entity types are
mutually disjoint and the coarse-grained entity types are
shared in INTER. (2) four sub-datasets from four domains
are used in Cross-Dataset (Hou et al. 2020): News (CoNLL-
2003) (Sang 2002), Wiki (GUM) (Zeldes 2017), Social
(WNUT-2017) (Derczynski et al. 2017), Mixed (Ontonotes)
(Pradhan et al. 2013)4.

For the Few-NERD dataset, the episodes in Ma et al.
(2022) are used, where each episode contains one N-
way K-shot few-shot NER task. Totally, 20,000/1,000/5,000
episodes are employed for training/validation/testing. Ac-
cordingly, 5-way 1-shot and 10-way 5-shot setups are
utilized for INTRA and INTER. For the Cross-Dataset,
two sub-datasets are used to construct training episodes.
One sub-dataset and one of the remaining sub-datasets
are utilized to construct validation episodes and test
episodes, respectively. In the 5-shot setup on Cross-Dataset,
200/100/100 episodes are used for training/validation/test-
ing, as in Hou et al. (2020). The sub-datasets for training,
validation and test are mutually disjoint from each other, so
that all the models can be tested in cross-domain scenarios.
Baselines. The typical metric-learning based baselines are
considered first. For Few-NERD, the proposed method is

3https://github.com/thunlp/Few-NERD
4https://github.com/AtmaHou/FewShotTagging

compared with typical few-shot NER methods ProtoBERT
(Fritzler, Logacheva, and Kretov 2019), StructShot (Yang
and Katiyar 2020), CONTAINER (Das et al. 2022) and De-
composed (Ma et al. 2022). For Cross-Dataset, the proposed
method is compared with SimBERT (Hou et al. 2020), L-
TapNet+CDT (Hou et al. 2020) and Decomposed (Ma et al.
2022). Second, since there are currently few robust few-shot
NER methods, the direct adaptations of the following textual
defense methods are also compared with our BDCP model:
RockNER (Lin et al. 2021), RanMASK (Zeng et al. 2023)
for both Few-NERD and Cross-Dataset. More details about
the baselines are listed in Appendix. We report the F1 scores
of the models handling clean and adversarial examples.

Implementation Details. Two separate BERT-base-uncased
models (Devlin et al. 2019) are used to implement encoders
fθ and gθ. The batch size, dropout probability and maximum
sequence length are set to 64, 0.2, 128, respectively. The
model is trained using the AdamW optimizer (Loshchilov
and Hutter 2019), and the initial learning rates for two stages
are set to 3e-5 and 1e-4, respectively. The temperature vari-
able τ and the margin m are 0.025 and 0.01. The number of
components for each entity boundary class in G is 15. The
weighting factors γ1, γ2, γ3 and γ4 are set to 0.1, 0.1, 1e-
3,1e-5, respectively. For clean examples, the results of typi-
cal few-shot NER models are reported from Ma et al. (2022),
and we reproduce the rest of the models to report results. For
adversarial examples, we reproduce all the baseline models
to obtain results.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19346



Experimental Results
Performance Comparison. Table 1 and Table 2 report
the overall comparison results of different models on Few-
NERD and Cross-Dataset datasets, under both Clean and At-
tack scenarios. Here we can observe that:

1) All baseline models suffer from a significant drop in per-
formance under textual adversarial attack, indicating the
vulnerability of the cross-domain transfer learning abil-
ity for existing few-shot NER methods. For example, the
typical Decomposed model (Ma et al. 2022) dramatically
drops an average of 15.76 and 10.80 points on the Few-
NERD and Cross-Dataset datasets, respectively. The rea-
son lies in that those models learn the preferences and
usage patterns for specific words during training, and are
fooled by the interferences brought by textual adversarial
attacks.

2) RockNER and RanMASK improve robustness through
data augmentation and random masking respectively.
Compared with the typical Decomposed model, the
performance of RockNER is slightly improved, which
shows that increasing data scale is conducive to improv-
ing the robustness of few-shot NER. However, random
masking may reduce the useful information where there
is a lack of labeled samples. Hence RanMASK cannot
improve the cross-domain transfer learning ability in that
case (e.g. 10-way 5-shot setting in INTRA).

3) By utilizing entity boundary discrimination and correla-
tion purification, the proposed BDCP model outperforms
all the baseline methods in both Clean and Attack sce-
narios. Under textual adversarial attack scenario, com-
pared with the typical Decomposed model, the perfor-
mance of our BDCP model is improved by 7.59% and
6.10% in terms of F1 on the Few-NERD and Cross-
Dataset datasets, respectively. The advantages of the
BDCP model in adversarial robustness lie in that: (a) the
boundary discrimination module improves the robust-
ness of span detection by providing highly distinguish-
ing and diverse entity boundary representation space; (b)
the correlation purification module mitigates the interfer-
ence of attacks by restraining unpredictable information
and the KL divergence of the internal representations, en-
tities and contexts.

Models INTRA INTER
5-1 10-5 5-1 10-5

Base 33.73 45.16 49.36 54.68

+ assignment 34.86 45.87 51.03 55.67
+ components 36.25 47.24 52.58 57.26

+ facilitating 33.81 46.20 50.95 55.53
+ filter 35.38 47.66 53.42 58.70
+ purify 37.41 48.12 54.34 60.19

BDCP 40.76 50.71 56.84 64.97

Table 3: Ablation study results on Few-NERD dataset.

Ablation Study. We design ablation studies to analyze the
effects of different modules on adversarial robustness in the
BDCP method. Table 3 shows the results in different set-
tings, taking the Few-NERD dataset containing adversarial
examples as an example. “Base” model refers to Decom-
posed model (Ma et al. 2022). “+components” indicates that
both assignment loss and diversity loss are added. “+purify”
means simultaneously using correlation facilitation loss and
interference information filtering loss. It can be observed
that the “+components” model outperforms the “+assign-
ment” model, indicating that diverse assignment for bound-
ary discrimination can effectively improve the robustness
of entity span detection. Moreover, for correlation purifica-
tion, adding both correlation facilitation loss and interfer-
ence information filtering loss to the base model performs
better than adding any single module, which demonstrates
that those two modules are beneficial to improve the adver-
sarial robustness and can boost each other.

Furthermore, the adversarial robustness is significantly
improved after adding all the above modules, that is, our
BDCP model performs best. It illustrates that when handling
adversarial examples in few-shot NER, our BDCP model
can prevent the cross-domain transfer learning from rote
memorizing the surface features of entities and exploiting
preferences in the data.

Visualization
In order to intuitively illustrate the effectiveness of boundary
discrimination and correlation purification, t-SNE (Van der
Maaten and Hinton 2008) is used to reduce the dimensional-
ity of the span representations from the BDCP model and the
Decomposed model, and visualize the span representations
of different entity types, as shown in Figure 3.

It can be observed that when handling textual adversar-
ial examples in few-shot NER, the span representations of
different entity types generated by the Decomposed model
are less discriminative than the BDCP model. Additionally,
there are more outlier span representations for entity typing.
In contrast, the BDCP model can better disperse the span
representations of different entity types, and has a clearer
decision boundary than Decomposed model. Therefore, the
BDCP model can provide textual representation space with
better adversarial robustness and generalization for few-shot
NER through boundary discrimination and correlation pu-
rification, under textual adversarial attack scenario.

Conclusion
In this paper, we have explored and evaluated the adversarial
robustness of cross-domain transfer learning ability in few-
shot NER for the first time. Extensive experiments indicate
that existing few-shot NER methods are vulnerable when
handling textual adversarial examples. To address this issue,
we propose a robust few-Shot NER method with boundary
discrimination and correlation purification. Specifically, in
the span detection stage, the entity boundary discriminative
module is introduced to diversify the assignment of token
representations to corresponding closest components, thus
providing a highly discriminative boundary representation
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(a) Decomposed (b) Our BDCP

Figure 3: t-SNE Visualization of span representations on
Few-NERD INTER 5-way 1-shot query set that containing
adversarial examples. The representations are obtained from
Decomposed (Ma et al. 2022) model and our BDCP model,
respectively. Different colors represent different entity types.

space. In the entity typing stage, correlation purification is
performed by minimizing interference information and fa-
cilitating correlation generalization to alleviate the pertur-
bations caused by textual adversarial attacks. Experiments
on various few-shot NER datasets containing adversarial ex-
amples demonstrate the adversarial robustness of the BDCP
model. In future work, we will explore the robustness of ad-
versarial training in few-shot NER.
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