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Abstract

Post-training quantization (PTQ) has emerged as a promising
technique for mitigating memory consumption and compu-
tational costs in large language models (LLMs). However,
a systematic examination of various quantization schemes,
model families, and quantization bit precision has been absent
from the literature. In this paper, we conduct a comprehensive
analysis of these factors by investigating the effects of PTQ on
weight-only, activation-only, and weight-and-activation quanti-
zation using diverse methods such as round-to-nearest (RTN),
GPTQ, ZeroQuant, and their variants. We apply these meth-
ods to two distinct model families with parameters ranging
from 125M to 176B. Our contributions include: (1) a sensitiv-
ity analysis revealing that activation quantization is generally
more susceptible to weight quantization, with smaller mod-
els often outperforming larger models in terms of activation
quantization; (2) an evaluation and comparison of existing
PTQ methods to optimize model size reduction while min-
imizing the impact on accuracy, revealing that none of the
current methods can achieve the original model quality for
quantization with either INT4-weight or INT4-weight-and-
INT8-activation; (3) based on these insights, we propose an
optimized method called Low-Rank Compensation (LoRC),
which employs low-rank matrices to enhance model quality
recovery with a minimal increase in model size.

Introduction
Large language models (LLMs) like Codex (Copilot 2021)
and ChatGPT (OpenAI 2022) have demonstrated break-
through performance across various benchmarks, such as nat-
ural language understanding and generation, and are now in-
tegrated into everyday applications. However, efficiently serv-
ing LLMs has become a pressing concern due to their signifi-
cant memory consumption and computational demands. Un-
like classification or diffusion models, LLMs present unique
challenges, as they involve two distinct phases: prompt and
generation. The prompt phase is primarily compute-bound,
while the generation phase, with low batch size and KV cache,
is mainly memory-bound (Pope et al. 2022).

As the progression of hardware bandwidth lags behind
that of computational demand (Gholami et al. 2021), the
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Figure 1: The model size and quality trade-off of different
quantization methods on models from OPT families. Here
PTQ (with fine-grained quantization) represents the method
from (Yao et al. 2022; Frantar et al. 2022), RTN means the
naive round-to-nearest baseline (with fine-grained quantiza-
tion as well), and FP16/INT8 is used as the no-accuracy-loss
baseline. LoRC is our proposed method that works seamless
with PTQ. Note that we drop all diverged points for better
visualization.

resource demands of extra-large models such as MT-NLG-
530B (Smith et al. 2022)—which necessitates the deployment
of multiple nodes for operation—escalate, adding to the com-
plexities of cross-node communication. This has emphasized
the urgency to curtail both the size and computational ex-
pense of Large Language Models (LLMs). An increasingly
effective solution to these issues is post-training quantization
(PTQ). This method aids in the reduction of training prereq-
uisites while simultaneously lowering the bit precision of
weights and activations to either INT4 or INT8.

While the effectiveness of post-training quantization (PTQ)
has been underscored in a number of recent studies (Yao et al.
2022; Frantar et al. 2022; Xiao et al. 2022; Dettmers and
Zettlemoyer 2022), a comprehensive, systematic investiga-
tion into several key dimensions of this technique remains to
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be undertaken. Specifically, the extant literature falls short in
providing thorough coverage of the functionality of various
PTQ methods or the sensitivity of disparate models. More-
over, despite current quantization methods demonstrating
promising results in the reduction of model sizes, the ques-
tion persists as to whether these methods are achieving their
optimal potential in minimizing Large Language Models
(LLMs) sizes.

With these observations in mind, our study sets forth to
address two salient questions: (1) When subjected to quanti-
zation, do LLMs of varying sizes and pretraining data exhibit
similar behavior? (2) Are existing quantization methods truly
leveraging their full potential in reducing the sizes of LLMs?

Contribution. To elucidate these queries, we undertake
an exhaustive examination of the impact of PTQ on weight-
only, activation-only, and combined weight-and-activation
quantization. This investigation incorporates a range of PTQ
methods, including round-to-nearest (RTN), GPTQ (Frantar
et al. 2022), ZeroQuant (Yao et al. 2022), and their respective
variants. To broaden the scope of our analysis, we focus on
two distinct model families, OPT (Zhang et al. 2022) and
BLOOM (Scao et al. 2022), spanning model sizes from 125M
to a massive 176B. Our code will be made available for repro-
duction. In summary, we make the following contributions:

(1) We provide a thorough sensitivity analysis to demon-
strate that a) Activation quantization is generally more sen-
sitive to weight quantization; Smaller models usually have
better activation quantization performance than the relative
larger model. b) Different model families show different
INT8 activation quantization behaviors; Particularly for large
models, BLOOM-176B has small accuracy drops (about 1
perplexity or PPL) but OPT-30B and -66B experience worse
performance.

(2) We carry out a detailed evaluation and comparison
of current PTQ methods, utilizing optimal configurations
to maximize model size reduction while minimizing accu-
racy impact. We found that the current existing method can
barely achieve less than 0.1 PPL points degradation for quan-
tization with either INT4-weight or INT4-weight-and-INT8-
activation (W4A8). To recover the 0.1 PPL, we strive to
push the boundaries of employing fine-grained quantiza-
tion (FGQ) techniques. We observe FGQ is able to recovered
points degradation of <0.1 PPL for large models (>13B) for
INT4 weight quantization, but there are still non-negligible
model quality drops.

(3) Based on the above understanding, we further optimize
existing methods and introduce a technique called Low Rank
Compensation (LoRC), which employs low-rank matrix fac-
torization on the quantization error matrix. Complementary
to FGQ, LoRC plays a crucial role in enhancing the full
model quality recovery, while there is little increase of the
model size.

In Figure 1, we provide model size and quality trade-offs
for both OPT families. As can be seen, using LoRC on top of
PTQ methods from (Yao et al. 2022; Frantar et al. 2022) and
fine-grained quantization, we set a new quantization Pareto
frontier for LLMs. Meanwhile, we recommend the following
setting for quantizing LLMs with LoRC (Note that activation

quantization should be only applied if necessary): (1) For
larger models (>10B), fine-grained (block size 64–256) 4-bit
weight quantization plus 8-bit activation quantization (block
size 64–256) with PTQ can be used for real deployment;
(2) For middle-size models (<10B and >1B), per-row INT8
quantization plus fine-grained (block size 64–256) INT8 ac-
tivation quantization can be used with PTQ from (Frantar
et al. 2022; Yao et al. 2022); (3) For smaller models (<1B),
per-row W8A8 (INT8 weight and INT8 activation) RTN is
enough based on (Yao et al. 2022). 1

Related Work
Different quantization methods (Shen et al. 2020; Zafrir et al.
2019; Fan et al. 2020; Zhang et al. 2020; Bai et al. 2020;
Esser et al. 2019; Tao et al. 2022; Kim et al. 2021) for
transformer-based models (Vaswani et al. 2017) have been
explored for a while. However, most of those works need
quantization-aware finetuning or even expensive quantization-
aware knowledge distillation (Hinton, Vinyals, and Dean
2014). Due to the cost of training/finetuning LLMs (Polino,
Pascanu, and Alistarh 2018; Jiao et al. 2019; Tao et al. 2022;
Wu et al. 2022, 2023), it is a challenge for practitioners/re-
searchers to do finetuning/distillation on those LLMs, partic-
ularly for models like GPT-3-175B (Brown et al. 2020) and
BLOOM-176B (Scao et al. 2022).

Post-training quantization (PTQ) (Zadeh et al. 2020; Bon-
darenko, Nagel, and Blankevoort 2021) is an alternative way
to quantize the model with no/minimal finetuning require-
ment. Along this line, several recent works focus on LLMs
(beyond the million-parameter scale). (Yao et al. 2022) pro-
poses vector-based INT8 quantization with layer-by-layer
knowledge distillation to overcome the training cost and quan-
tization error introduced by LLMs. (Dettmers et al. 2022)
uses similar vector-based INT8 quantization weight plus
mixed-precision (INT8/FP16) quantization for activation to
overcome the sensitivity of activation quantization. However,
the inference speed of (Dettmers et al. 2022) is generally
even slower than FP16 baseline (Big-Science 2022) due to
the difficulty of implementing mixed-precision calculation
within a single tensor. More recently, (Frantar et al. 2022)
extends OBQ (Frantar and Alistarh 2022; Hassibi and Stork
1993; LeCun, Denker, and Solla 1990) on LLMs for INT4
weight-only quantization and shows great efficiency on quan-
tization and latency, and (Xiao et al. 2022) shows the outliers
from activations can be smoothed out by migrating the quan-
tization difficulty from activations to its associated weights.
However, (Xiao et al. 2022) can only work for W8A8 quanti-
zation as lower weight precision (INT4) itself already leads
to significant accuracy degradation, and the accuracy drop is
larger than 0.1 PPL points, which as discussed in the later sec-
tion is sub-optimal. (Dettmers and Zettlemoyer 2022) shows
the scaling law of weight-only quantization with the sim-
plest round-to-nearest baseline, but it does not consider the
weight-and-activation quantization and/or the above PTQ
optimization methods. As can be seen from Figure 1, by
using PTQ optimization methods, the model quality can be
significantly improved.

1Full version is in arXiv: 2303.08302.
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Class Class-1 Class-2 Class-3

PPL Degradation ≤0.1 >0.1 & ≤0.5 >0.5

Table 1: Classification of quantization sensitivity (or quantiza-
tion loss). The sensitivity increases from Class-1 to Class-3.

Different than existing works, our paper extensively tests
the effect of (1) different quantization schemes, e.g., symmet-
ric and asymmetric quantization, (2) different PTQ methods,
e.g., (Yao et al. 2022; Frantar et al. 2022), (3) different model
families, e.g., (Scao et al. 2022; Zhang et al. 2022), (4) dif-
ferent quantization coverage, e.g., weight-only and weight-
and-activation quantization, and (5) other discussions, e.g.,
the effect of quantization granularity. As such, we provide
a much more comprehensive understanding of post-training
quantization for large language models compared to the pre-
vious works.

Would Different Model Families Behave
Similarly On Quantization?

There are mainly two categories of PTQ for LLMs, i.e.,
weight-only quantization (Frantar et al. 2022) and weight-
and-activation quantization (Dettmers et al. 2022; Yao et al.
2022; Xiao et al. 2022). In the latter, it is uniformly observed
across all studies that activation quantization demonstrates
greater sensitivity than weight quantization. However, prior
research tends to concentrate on a single (family) model to
emphasize the necessity of their proposed quantization tech-
nique. A comprehensive and systematic evaluation of this
PTQ methodology, particularly the sensitivity of weight/ac-
tivation quantization for varying model sizes and distinct
model families, has yet to be undertaken. Hence, we con-
duct an examination on both the OPT (Zhang et al. 2022)
and BLOOM (Scao et al. 2022) families to elucidate the
quantization sensitivity of weight and activation.

Sensitivity Setting. We use the zero-shot validation per-
plexity (PPL) differential on three datasets, namely, Wikitext-
2 (Merity et al. 2017), PTB (Marcinkiewicz 1994), and
C4 (Raffel et al. 2019), before and after the quantization
of these LLMs to illustrate their sensitivity, as PPL is signif-
icantly correlated to zero-shot/few-shot accuracy measure-
ment (Dettmers and Zettlemoyer 2022). Specifically, a higher
PPL drop indicates enhanced quantization sensitivity. For
simplicity, we also categorize quantization sensitivity (or
quantization loss) into three different classes as depicted
in Table 1. Notably, the threshold is chosen because when the
model size approximately doubles (e.g., 13B vs. 30B, and
30B vs. 66B), the PPL improvement is about 0.5 (see Ta-
ble 2). The sensitivity (or loss) incrementally increases as
the class number ascends. From a practical standpoint, we
favor lower quantization sensitivity (accuracy loss), making
Class-1 the optimal-loss post-training quantization.

Both symmetric and asymmetric quantization are used
to gauge the quantization sensitivity and the advantage of
asymmetric quantization is highlighted. Particularly, we im-
plement per-row quantization (Frantar et al. 2022) for weight
and per-token quantization for activation (Yao et al. 2022).

Robustness of Weight-only Quantization for Large
Models. The results of weight-only quantization in OPT and
BLOOM models are summarized in Table 2. INT8 weight-
only quantization, either symmetric or asymmetric, results in
negligible accuracy loss (less than 0.05, i.e., Class-1). Conse-
quently, for tasks oriented towards generation, FP16 weight
can simply be replaced with INT8 weight to reduce memory
usage. For INT4 quantization, the asymmetric method out-
performs the symmetric approach in accuracy, attributable
to its superior utilization of the quantization range. Interest-
ingly, larger models exhibit better tolerance to low-precision
quantization (i.e., INT4) than smaller models, with a few
exceptions such as OPT-66B.2 Particularly, BLOOM-176B
shows PPL degradation (around 0.3 points) in Class-2, which
could explain why the large GLM-130B (Zeng et al. 2022)
can operate with INT4 weight-only quantization out of the
box with acceptable accuracy impact.

Challenge Encountered in Activation Quantization
for Large Models. Activation quantization has consistently
proven more difficult than weight quantization (Yao et al.
2022; Dettmers et al. 2022), as illustrated in Table 2. When
compared to weight-only quantization, activation-only quan-
tization indicates that asymmetric quantization can signifi-
cantly improved performance over symmetric quantization.
Moreover, contrary to weight-only quantization, smaller mod-
els typically exhibit better tolerance to activation quantization,
as their hidden dimension is smaller and the activation dy-
namic range is also narrower than larger models (Yao et al.
2022). It should be noted that for models larger than 10B, all
fall into Class-3, indicating a degradation of more than 0.5
PPL points.

The last two rows of Table 2 show that different model
families exhibit significantly different behaviors. BLOOM
does not exhibit divergence issues even up to a model size of
176B, whereas OPT displays very poor performance from a
model size of 6.7B (larger models with INT8 activation have
even worse PPL). This could again be attributed to the Layer
Norm issue within the OPT-family2.

Findings 1 on Sensitivity Analysis. (1) INT8 weight-
only quantization can serve as a standard method
for reducing memory costs in LLMs, with negligi-
ble degradation in accuracy. (2) INT4 weight-only
quantization for small models results in substantial
accuracy degradation (Class-3), but this effect lessens
as the model size increases (Class-2). (3) Contrary
to (2), INT8 activation results in minimal accuracy
drops for small models (Class-1) but larger models
exhibit greater drops (Class-3). (4) With INT8 acti-
vation, BLOOM shows no divergence issues up to a
model size of 176B, whereas OPT performs poorly
from ≥ 6.7B model sizes.

2(Frantar et al. 2022) discovered that OPT-66B has a high pro-
portion of dead neurons in the early layers, which might influence
the compression capability. We also identify another potential rea-
son: the Layer Norm of the OPT-family is not well trained (except
OPT-350M), with the weight and the bias being all 1’s and 0’s.
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Precision OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W16-A16 11.90 11.22 10.70 10.33 20.43 17.58 14.96 10.90

W8sym-A16 11.90 11.22 10.70 10.33 20.43 17.59 14.97 10.90
W8asym-A16 11.90 11.22 10.70 10.33 20.45 17.59 14.97 10.90

W4sym-A16 14.36 12.73 11.77 97.05 23.18 19.36 16.27 11.28
W4asym-A16 13.44 12.09 11.52 31.52 22.47 19.01 15.90 11.20

W16-A8sym 26.04 3171.49 2048.21 2638.09 20.68 17.73 15.28 12.10
W16-A8asym 12.62 15.36 23.57 561.35 20.52 17.65 15.14 11.62

Table 2: Average PPL of OPT and BLOOM (BLM).

Are Existing Quantization Methods Optimally
Harnessing the Potential to Minimize Sizes?

Numerous lightweight optimization-based methods have
been proposed, which update the model weights during quan-
tization. These methods such as (Yao et al. 2022; Frantar et al.
2022; Xiao et al. 2022), unlike quantization-aware training,
only require a small portion of the training data and a limited
training time. Particularly, GPTQ (Frantar et al. 2022) and
ZeroQuant (Yao et al. 2022), have proven to be effective and
efficient in terms of GPU resources, time cost, and data usage
for INT4 weight quantization.3 In this work, we focus on the
variants of GPTQ and ZeroQuant as well as the most straight-
forward baseline, round-to-nearest neighborhood (RTN).

RTN directly applies PTQ on the trained data to perform
the quantization. Specifically, for symmetric quantization, we
set S = max(abs(x)) and Z = 0; for asymmetric quantiza-
tion, we set S = max(x)−min(x) and Z = min(x).

GPTQ extends the OBQ (Frantar and Alistarh 2022). It
tries to optimize the following non-linear least square prob-
lem, minŴ ∥Wx − Ŵx∥22 where W is the weight, x is the
activation, and Ŵ is a quantized weight. GPTQ employs
second-order methods to obtain a closed-form solution. In ad-
dition, the quantization for each weight matrix is performed
column-/row-wisely and the quantization errors from previ-
ous columns will be passed to those columns not yet quan-
tized. See(Frantar and Alistarh 2022; Frantar et al. 2022) for
more details.

ZQ-Global is the original method proposed in (Yao et al.
2022), where authors treat each layer as a small neural net-
work (a.k.a., subnetwork) and use the FP16 subnetwork as the
teacher model to distill the quantized one with a few hundred
iterations, i.e., minθ̂ ∥fθ(x) − fθ̂(x)∥

2
2, where θ is a set of

weights, θ̂ is the quantized version, fθ is the subnetwork with
parameters θ, and x is the input. Thus, it can significantly
reduce the GPU resource requirement and time cost.

ZQ-Local is an extension mode of ZQ-Global for further
GPU requirement reduction and training cost reduction. Par-

3We tested the method proposed by (Xiao et al. 2022) but did
not find it better than others for INT4 weight quantization.

ticularly, instead of using each transformer layer as the sub-
network, we treat each linear layer as the subnetwork. This
method can be viewed as an iterative first-order optimization
method (e.g., SGD) to solve minŴ ∥Wx− Ŵx∥22.

Experimental Setup. We compare the four methods men-
tioned above on weight-only and weight-and-activation quan-
tization. As weight quantization is always static (i.e., it does
not change during inference), there is virtually no system
performance difference between symmetric and asymmetric
quantization.4 We use asymmetric quantization for better ac-
curacy, and the conclusions would hold similarly for symmet-
ric quantization. For parameters used for GPTQ, ZQ-Local,
and ZQ-Global, please refer to Appendix in our arxiv paper.
An interesting finding for ZeroQuant is that the hyperparam-
eters (e.g., learning rate and its scheduler) provided in the
original work (Yao et al. 2022) are sub-optimal. In this work,
we find the best configurations for ZQ-Local and ZQ-Global
and denote them as ZQ-Local∗ and ZQ-Global∗, respectively,
with the best tuned results. To ensure consistent and compara-
ble results, we set a fixed random seed for our experiments. In
the context of post-training quantization, varying the random
seed has minimal impact on the final results.

Evaluation of Weight-only Quantization. The results
from weight-only quantization using OPT and Bloom are
presented in Table 3. The findings indicate that the larger
models tend to be less sensitive to INT4 weight-only quanti-
zation. This observation holds true across all methods (RTN,
GPTQ, ZQ-Local∗, and ZQ-Global∗) with the exception of
OPT-66B, which shows greater degradation than OPT-30B.
It is noteworthy that light-weight optimization-based meth-
ods significantly outperform the RTN baseline in terms of
accuracy. For instance, these methods substantially reduce
the degradation in perplexity of OPT-30B/66B compared to
baseline. Most quantized models with parameters greater
than 6.7B fall under Class II, indicating their potential for
real-world applications. For instance, the quality of INT4
OPT-30B (66B) is superior to that of INT8 OPT-13B (30B).

Among the optimization-based methods, ZQ-Global∗ gen-

4The bias term (a.k.a., the zero point) can be simply fused into
the previous activation quantization kernel (Yao et al. 2022).
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erally performs better on smaller models (those with fewer
than 1B parameters), while GPTQ excels on larger models.
ZQ-Local∗ does not outperform GPTQ or ZQ-Global∗-— a
reasonable outcome given that GPTQ employs a closed-form
solution to solve the non-linear quadratic problem and ZQ-
Global∗ optimizes a larger subnetwork. The inferior perfor-
mance of ZQ-Global∗ compared to GPTQ for larger models is
unexpected since ZQ-Global∗ optimizes an entire transformer
layer while GPTQ only optimizes a single linear layer. An
explanation is that larger models are more sensitive to weight
updates, necessitating more advanced fine-tuning methods.

Evaluation of Weight and Activation Quantization. The
evaluation results for existing methods using W4A8 quan-
tization are presented in Table 3. The three light-weight
optimization-based methods outperform RTN significantly,
underscoring their efficacy. However, all of the results fall
into either Class-2 or Class-3. This suggests that for cer-
tain applications, it might be more beneficial to use smaller
models with fewer parameters rather than larger, quantized
models.

Among quantization-based methods, ZQ-Global∗ and ZQ-
Local∗ generally outperform GPTQ, which is anticipated
given that GPTQ was originally designed for weight-only
quantization. ZQ-Global∗ performs better than ZQ-Local∗ in
most cases except for the two largest models, OPT-66B and
Bloom-176B, despite having larger trainable parameters in
one step. This again signifies the need for a more suitable and
advanced optimization method for large language models.

Finding 2 on Comparisons. (1) GPTQ typically per-
forms better for weight-only quantization, while Ze-
roQuant (including both ZQ-Global∗ and ZQ-Local∗)
yields superior results for weight and activation quan-
tization. (2) The tested optimization-based methods
cannot achieve Class-1 quantization error for either
INT4 weight-only or W4A8 quantization with the
exception of GPTQ on OPT-30B with W4A16.

Fine-grained Quantization and Its Evaluation
With PTQ and row-wise quantization, achieving Class-1
quantization error is challenging for both weight-only and
weight-and-activation quantization. Generally, utilizing a
smaller model with INT8 weight is more advantageous than
employing a model that is twice as large with INT4 weight.

One potential solution to this issue is the implementation
of finer-grained quantization schemes (Darvish Rouhani et al.
2020), where every k elements possess their own scaling fac-
tor and/or zero point. This approach can significantly reduce
quantization error. In the extreme case, where every single
element has its own scaling factor, the original FP16 number
can be precisely recovered. Importantly, block-k quantiza-
tion can be implemented on modern GPUs, one of the most
prevalent deep learning architectures, since the compute unit
(streaming multiprocessor) of GPUs processes tiles of data
(e.g., 128 by 128 tiling size) for matrix computation.

Although fine-grained quantization can substantially nar-
row the gap between the quantized tensor and its floating-
point counterpart, the application of RTN still results in a

non-trivial accuracy gap. Consequently, we build upon fine-
grained quantization by employing existing optimization-
based methods to further enhance accuracy. Specifically, we
utilize GPTQ and ZQ-Global for all models and settings and
apply ZQ-Local to OPT-66B and Bloom-176B. For the hy-
perparameters used in ZQ-Global and ZQ-Local, we select
the top three identified in Section for all models, except
for Bloom-176B, for which we only use the top-performing
hyperparameter to reduce training costs.

4-bit Weight Quantization. We hereby present the W4A16
results for OPT and BLOOM, as delineated in Table 4, cor-
responding to an array of quantization block sizes. The per-
formance sees a significant improvement with smaller block
sizes compared to per-row quantization. The point of dimin-
ishing returns, however, varies for different model sizes. For
example, smaller models (such as OPT-6.7B and BLOOM-
1.7b) continue to see substantial gains until the block size
reduces to 32. In contrast, for larger models (those exceeding
10B, with OPT-66B as the exception), the benefits derived
from smaller block sizes wane rapidly around block-256/512.
Most crucially, for models equal to or larger than 13B, a
smaller quantization block size results in quantization error
being classified under Class-1, indicating virtually negligible
degradation in accuracy.

Activation Quantization (W4A8). To comprehend the
benefits of fine-grained quantization on activation, we an-
alyze the quantization between per-row and a block size
of 128, with INT4 weight, as highlighted in Table 3. For
models of considerable size, specifically those equal to or
exceeding 1B, the application of such fine-grained activation
quantization (Case-1) results in a substantial reduction in
quantization error compared to per-row activation (Case-2).
By implementing fine-grained activation quantization with
weight quantization (Case-3), we are able to almost restore
the performance to the level of their W4A16 counterparts.

Furthermore, we detail the impacts of varying activation
quantization block sizes in Table 5 on BLOOM-176B, with
INT4 weight. A trend of superior accuracy is observed with
smaller block sizes in contrast to larger ones. However, the
enhancement in performance reaches a saturation point when
the size smaller or equal to 256, which corresponds to the
range of values INT8 can represent. Despite INT8’s capability
to signify 256 distinct values, activation quantization errors
persist due to the application of uniform quantization.

Finding 3 on FGQ. (1) Larger models (≥10B) are
capable of attaining Class-1 error for 4-bit quantiza-
tion. These models can leverage low-precision quan-
tization as the model size with INT4 is similar to
an INT8 model that is half its size, with improved
accuracy. On the other hand, smaller models (≤10B)
typically reach only Class-2 or Class-3 error levels.
(2) For larger models (>10B), the difference between
fine-grained weight-and-activation quantization and
fine-grained weight-only quantization is insignificant.
(3) The advantage of fine-grained activation quanti-
zation fades when the block size reaches 256.
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Precision Method OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W16A16 11.90 11.22 10.70 10.33 20.43 17.58 14.96 10.90

W4A16

RTN 13.44 12.09 11.52 31.52 22.47 19.01 15.90 11.20
GPTQ 12.28 11.42 10.78 10.52 21.58 18.33 15.50 11.02

ZQ-Local∗ 12.46 11.64 11.05 10.79 21.70 18.50 15.55 11.11
ZQ-Global∗ 12.38 11.62 11.04 10.68 21.38 18.33 15.52 11.05

W4A8

RTN 14.80 26.36 86.26 815.00 22.75 19.17 16.19 12.22
GPTQ 13.88 17.28 20.71 648.69 21.71 18.44 15.75 11.86

ZQ-Local∗ 13.24 14.23 18.53 16.32 21.86 18.66 15.75 11.19
ZQ-Global∗ 13.17 13.07 14.65 37.82 21.43 18.39 15.58 11.49

Table 3: Different PTQ methods on OPT and BLOOM (BLM) with asymmmetric quantization on weight or (and) activation.

Block-size OPT-6.7b OPT-13b OPT-30b

W16A16 11.90 11.22 10.70
1024 12.16 11.36 10.75
512 12.08 11.32 10.73
256 12.05 11.28 10.74
128 12.10 11.28 10.74
32 12.03 11.28 10.72

Table 4: W4asym-A16 quantization out of the best result from
optimization-based methods on OPT and BLOOM. N/A
means that the block size is not divisible by the hidden size.

A8 Block Size 1024 512 256 128 32

PPL 10.98 10.97 10.95 10.95 10.95

Table 5: BLOOM-176B with different quantization block
sizes on activation. Here weight is asymmetrically quantized
with block size 128.

Proposed Method to Further Push the Limit of
Post-training Quantization

Building on the investigation and conclusions drawn from
previous sections, it has become apparent that there is still a
need for an advanced methodology to further refine the exist-
ing methods, with the objective of fully realizing the original
fp16 PPL quality. In this section, we introduce a simple yet
effective method called LoRC (Low Rank Compensation) to
optimize the current existing quantization error and further
bridge the gap between the quality of the original model and
its quantized counterparts. LoRC is inspired by the employ-
ment of low-rank matrix factorization on the quantization
error matrix E := W − Ŵ , where W represents the original
weight and Ŵ is the quantized weight. LoRC approximates
the error E with Ê = Û V̂ by two low-rank Û and V̂ :
Step I: Implement Singular Value Decomposition (SVD)
on the error matrix E = UΣV , where U ∈ Rdin×din and
V ∈ Rdout×dout are unitary matrices, and Σ ∈ Rdin×dout is
a diagonal matrix with its diagonal elements ordered in a
descending manner.

Step II: Let Ê = Û V̂ where Û = Um(Σm)
1
2 and V̂ =

(Σm)
1
2Vm. Here, Um = U:,1:m ∈ Rdin×m, Vm = V1:m,: ∈

Rm×dout , and Σm = Σ1:m,1:m ∈ Rm×m.
The parameters of LoRC added to the existing model. Con-

sider a matrix represented as W + UV : where W has di-
mensions d × d, and the two low-rank matrix U and V are
respectively of dimensions: d× r and r × d. The additional
parameter ratio incorporated into the existing matrix is 2r/d.
For models in the OPT family with sizes of 1.3b, 13b, and
30b, the hidden-size d dimensions are 2048, 5120, and 7168,
respectively. Our findings indicate that a rank r of 8 is ad-
equate (as shown in Table 9), leading to added parameter
ratios of 0.008, 0.003, and 0.002, respectively. For precision
clarity, the W matrix is quantized to 4/3/2 bits in our ap-
proach, while LoRC components (U and V ) are maintained
at 8 bits. Hence, the memory considerations should indeed
reflect this distinction. We provide further details on compu-
tational memory and FLOPs as follows:

• FLOPs Calculation. For the operation WX + UV X ,
with the input X having dimensions d× s (where s is the
sequence length, typically 512, 1024, or 2048 tokens), the
FLOPs for the matrix multiplication WX would be 2sd2.
For UV X , by first computing Y = V X and then UY ,
the FLOPs required are 2rsd for each step. Consequently,
the operation U(V X) necessitates a total of 4rsd FLOPs.

• Memory Impact. For the W+UV configuration, a single
parameter requires either 0.5 byte or 1 byte for 4-bit or
8-bit representation, respectively. Therefore, for a 13b-
model with 4-bit precision, the memory requirement is
6.5GB. Incorporating an 8-dimensional 8-bit LoRC adds
a mere 0.006GB to this 6.5GB model.

Significantly, LoRC can be viewed as a supplementary
feature to existing quantization methodologies such as RTN,
GPTQ, and ZeroQuant-Local/Global, and can be seamlessly
integrated with FGQ. We have conducted experiments to eval-
uate the performance of LoRC on both OPT and BLOOM,
applying 4-bit, 3-bit, and 2-bit weights by setting the acti-
vation to FP16.5 Based on the discoveries in the preceding
sections, we utilize the GPTQ quantization strategy. To gain

5For INT8 Activation, the observation for FP16 holds similarly
for INT8 Activation.
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Precision block-size (W|A) OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-1.7b BLM-3b BLM-7.1b BLM-176b

W4A16 128 | NA 12.10 11.28 10.74 10.44 20.92 17.90 15.17 10.94

W4A8
Case-1: per-row | per-row 13.17 13.07 14.65 16.32 21.43 18.39 15.58 11.19
Case-2: per-row | 128 12.29 11.45 10.80 10.61 21.59 18.31 15.52 11.03
Case-3: 128 | 128 12.04 11.31 10.75 10.45 21.27 17.86 15.19 10.96

Table 6: OPT W4asym-A8 with block-sizes out of the best result from GPTQ, ZQ-Local, and ZQ-Global on OPT and BLOOM.

Bits LoRC
Coarse-grained weight quantization (per-row block-size) Fine-grained quantization on weight (256 block-size )
OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-176b OPT-6.7b OPT-13b OPT-30b OPT-66b BLM-176b

W8A16 11.90 11.22 10.70 10.33 10.90 11.90 11.22 10.70 10.33 10.90

W4A16 ✗ 12.28 11.42 10.78 10.78 11.02 12.05 11.28 10.74 10.50 10.95
✓ 12.10 11.36 10.76 10.34 10.98 11.99 11.29 10.70 10.29 10.93

W3A16 ✗ 14.18 12.43 11.28 17.77 49.46 12.79 11.63 10.9 11.34 11.13
✓ 13.00 11.90 11.14 10.63 11.30 12.40 11.57 10.83 10.42 11.08

W2A16 ✗ 120.56 40.17 25.74 225.45 Explode 23.13 15.55 12.68 308.49 12.64
✓ 24.17 18.53 14.39 13.01 14.15 16.27 14.30 12.37 11.54 12.21

Table 7: W#asym-A16 quantization with # being 4-bit, 3-bit and 2-bit on OPT and BLOOM (BLM).

LoRC Coarse-grained weight quantization
Û , V̂ 6.7b 13b 30b 66b

FP16 12.08 11.35 10.76 10.31
INT8 12.10 11.36 10.76 10.34

Table 8: Results of W4asym A16 quantization with LoRC
approximating Ê = Û V̂ on OPT model family. Û and V̂ can
be represented with FP16 or INT8, of which the performance
are represented below.

a comprehensive understanding of LoRC, we include the re-
sults with and without the application of FGQ. The datasets
and hyperparameters are consistent with those detailed in
earlier sections.

Evaluation Results. The findings are showcased in Ta-
ble 7, split into two sections: coarse-grained weight quan-
tization (per-row) and fine-grained quantization (block-size
256). Notably, we observe that the two low-rank matrices, Û
and V̂ , can be quantized to 8-bit without any performance
discrepancy (Table 8). Thus, the two low-rank matrices for
LoRC in Table 7 are INT8 with m = 8.

Several key observations can be made. Firstly, LoRC con-
sistently boosts performance across all bit sizes and block
sizes, as indicated by the lower perplexity scores when LoRC
is activated. Secondly, the enhancement brought about by
LoRC becomes more substantial as the bit size diminishes,
especially noticeable for W2A16, which displays a markedly
greater impact compared to W4A16 and W3A16 in most sce-
narios. Lastly, the combination of fine-grained quantization
with LoRC yields the most impressive results, underscoring
the efficacy of LoRC when integrated with FGQ. Notably,
recovering the last 0.05-0.1 perplexity can be challenging,

LoRC-dim m OPT-1.3b OPT-6.7b OPT-30b

m = 0 basline 15.95 12.06 10.73

m = 4 15.73 12.00 10.72
m = 8 15.76 11.99 10.70
m = 16 15.74 12.00 10.69

Table 9: W4A16 quantization with LoRC by varying m.

but with LoRC, we are able to nearly recover the original
model quality for INT4 quantization.

Ablation Study on the Low Rank Dimension m. An es-
sential aspect of the LoRC method is on the optimal low-rank
dimension, denoted as m, explained in Step II. To explore
this, we varied m in the range of 1, 4, 8, 16, and 32 for OPT-
1.3b/6.7b/30b models, and applied W4A16 GPTQ quantiza-
tion. The outcomes are depicted in Table 9, indicating that
the enhancements achieved through LoRC begin to plateau as
the dimension m surpasses 4. The most optimal performance
for OPT-6.7b is realized when m = 8.

Conclusion
In this work, we provide a comprehensive study of post-
training quantization (PTQ) on large language models with
different PTQ methods (e.g., RTN, GPTQ, ZeroQuant), and
with different quantization coverage (weight-only and weight-
and-activation quantization), etc. We find that PTQ methods
are critical to improving the quantized model quality, and
that fine-grained quantization (FGQ) can bring acceptable
accuracy and model size trade-off. Finally, we introduced
an optimization technique called Low Rank Compensation
(LoRC), which works synergistically with PTQ and FGQ,
playing a crucial role in enhancing full model quality recov-
ery with a minimal increase in model size.
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