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Abstract

Large language models (LLMs) have recently demonstrated
remarkable performance across various Natual Language
Processing tasks. In the field of multi-hop reasoning, the
Chain-of-thought (CoT) prompt method has emerged as a
paradigm, using curated stepwise reasoning demonstrations
to enhance LLM’s ability to reason and produce coherent
rational pathways. To ensure the accuracy, reliability, and
traceability of the generated answers, many studies have in-
corporated information retrieval (IR) to provide LLMs with
external knowledge. However, existing CoT with IR meth-
ods decomposes questions into sub-questions based on a sin-
gle compositionality type, which limits their effectiveness for
questions involving multiple compositionality types. Addi-
tionally, these methods suffer from inefficient retrieval, as
complex questions often contain abundant information, lead-
ing to the retrieval of irrelevant information inconsistent with
the query’s intent. In this work, we propose a novel question
decomposition framework called TRQA for multi-hop ques-
tion answering, which addresses these limitations. Our frame-
work introduces a reasoning tree (RT) to represent the struc-
ture of complex questions. It consists of four components:
the Reasoning Tree Constructor (RTC), the Question Genera-
tor (QG), the Retrieval and LLM Interaction Module (RAIL),
and the Answer Aggregation Module (AAM). Specifically,
the RTC predicts diverse sub-question structures to construct
the reasoning tree, allowing a more comprehensive represen-
tation of complex questions. The QG generates sub-questions
for leaf-node in the reasoning tree, and we explore two meth-
ods for QG: prompt-based and T5-based approaches. The
IR module retrieves documents aligned with sub-questions,
while the LLM formulates answers based on the retrieved in-
formation. Finally, the AAM aggregates answers along the
reason tree, producing a definitive response from bottom to
top. We evaluate our proposed framework on four bench-
mark datasets. The experimental results demonstrate that our
proposed methods consistently outperform baseline methods
outperform strong baselines by a substantial margin across all
datasets.
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Introduction
Recently, Large Language Models (LLMs) have exhibited
an impressive capability for question-answering tasks, par-
ticularly in scenarios where resolving complex questions re-
quires a multi-hop reasoning process (Touvron et al. 2023;
OpenAI 2023). For example, Wei et al. (2022) proposes
few-shot chain-of-thought (CoT) prompting, which enables
LLMs to generate intermediate reasoning steps explicitly be-
fore predicting the final answer with a few manual step-by-
step reasoning demonstration examples. However, the intri-
cate nature of complex questions remains a significant chal-
lenge. To address this, Kojima et al. (2022) introduces zero-
shot CoT, which eliminates the need for manually crafted
examples in prompts by appending “Let’s think step by step”
to the target problem fed to LLMs. This simple prompt-
ing strategy surprisingly yields performance similar to few-
shot CoT without requiring any manual clues. To mitigate
the issue of generating incorrect information (i.e., halluci-
nation) while retaining real-time knowledge, several studies
have incorporated information retrieval (IR) techniques into
LLM reasoning (Press et al. 2022; Khattab et al. 2022; Wang
et al. 2023; Kandpal et al. 2023; Azamfirei, Kudchadkar, and
Fackler 2023). This integration of IR significantly improves
the quality of LLM-generated answers.

Although COT with IR methods has achieved great suc-
cess in solving complex questions, they still face two chal-
lenges. Challenge 1: Multi-compositional Types of Sub-
questions. The interrelations among the sub-questions of
complex questions can be categorized into two distinct
classes (Pan et al. 2020): 1) nest-type: the solution of the
sub-question depends on the answers of the previous sub-
question; 2) branch-type: the solution needs to summarize
or compare the answers of other sub-questions. As shown
in Figure, previous methods mainly consider single com-
positional type questions,i.e., nested-type questions through
the formulation of a sequence of prompt strategies. How-
ever, they tend to disregard branch-type questions and multi-
compositional type questions, resulting in diminished effi-
cacy when tackling such questions. The hallucinations en-
countered during decomposition also exacerbate this disad-
vantage. Challenge 2: Inefficient Retrieval. Complex ques-
tions are often lengthy and contain abundant information,
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Prompt: Please decompose the question into sub-
questions.Let’s think step by step.
Answer:To find the answer to your question,we can 
decompose into three sub-questions.
Q1:What is the Four Falls Border Crossing?
Q2:Is the Four Falls Border Crossing located in a specific 
city in the United States?
Q3:  What was the population of that city according to 
the 2010 census?

Example 1

Example 2

According to the 2010 census, what was the population of 
the city on the United States side of the Four Falls Border 
Crossing?

CoT

User

Prompt: Please decompose the question into sub-
questions.Let’s think step by step.
Answer: To find the answer to your question,we can 
decompose into three sub-questions.
Q1: Who is Scott Allen Miller?
Q2: What radio station does he work for?
Q3:  Who owns that radio station?

Who owns the radio station where Scott Allen Miller has 
recently been the morning drive host and program 
director? User

Prompt: Please retrieve the paragraph(s) relevant to 
these sub-questions from the support facts.
Answer:Pembina is a city in Pembina County, North 
Dakota, United States., The population was 592 at the 
2010 census.... 

CoT

CoT

Figure 1: Example 1 and 2 are two bad instances in LLM
with IR methods.

which can inadvertently result in the retrieval of irrelevant
information inconsistent with the query’s intent. When such
inappropriate information is fed to the QA model, it intro-
duces noise into the generated answer. Some efforts (Press
et al. 2022) have been made to tackle this problem by inte-
grating verification modules. However, it’s notable that the
increased frequency of application programming interface
(API) calls leads to a rapid increase in time consumption.

To address the above challenges, we focus on improv-
ing the question decomposition process. We propose an in-
novative structure, named Reasoning Tree (RT), to better
model the complex question’s structure. The RT contains
three types of nodes: root node, middle node, and leaf node.
As shown in Figure 3, the root node is a question node that
represents the whole question. The middle node represents
the intermediate dependency parse subtree decomposed by
the nest and branch relation, while the leaf node represents
the inseparable question substructure.

To generate the reasoning tree and formulate the answer,
we propose a novel framework called TRQA. This frame-
work is a composite of four integral components, namely the
Reasoning Tree Constructor (RTC), the Question Generator

(QG), the Retrieval And LLM Interaction Module (RAIL),
and the Answer Aggregation Module (AAM). To train RTC,
we use T5 as the basis model and train it to predict the loca-
tion of labels [NEST] and [BRANCH]. For each leaf node in
the reasoning tree, QG is designed to translate the substruc-
ture into a complete sub-question. To realize QG, we explore
two methods: prompt-based and T5-based. RAIL retrieves
similar documents align with each sub-question, and LLM
formulates answers by combining retrieval documents and
questions. Finally, AAM aggregates answers along the rea-
soning tree to produce the definitive response from bottom
to top.

In general, our main contributions are listed as follows:

• We propose a novel framework named TRQA, which
leverages question decomposition to construct a global
reasoning structure and generates reliable answers
through interaction with LLM and IR.

• We design a novel approach, the structure-driven ques-
tion decomposition model, which employs dependency
parse trees to augment the process of reasoning structure
generation.

• We verify the effectiveness of the proposed framework
on four widely-used datasets and the experimental results
show that our proposed methods consistently outperform
baseline methods across all benchmarks by a large mar-
gin.

Preiliminary
In this section, we propose the reasoning tree(RT), a tree-
based structure, to model the decomposition structure of
complex questions. The detail of the definition is shown be-
low.

Definition
Given a question Q, the RT of Q is a tree containing two
types of nodes: the middle node and the leaf node. As shown
in the example in the right part of Figure 2, the root question
node indicates the original question, whose answer is con-
strained by the middle node M1. Note that M1 contains a
placeholder “#1”, indicating the answer of the subtree M2.
Meanwhile, the middle node M2 points to two leaf nodes,
L1 and L2. The structure of RT enables it to represent the
combinations of multiple compositionality types. We also
provide an equivalent linear representation of RT under the
tree illustration by introducing two separators, i.e., [NEST],
and [BRANCH]. [NEST] means that the placeholder of the
current question is the answer of the subtree. [BRANCH]
means that the placeholder of the current question needs to
conduct some function to aggregate the answers of each sub-
tree, including intersection, union, comparison, etc.

Methodology
As shown in Figure 2, we present the design of our frame-
work, denoted as TRQA, which comprises four main com-
ponents: reasoning tree constructor, question generator, re-
trieval and interaction with LLM, and answer aggregation
module. RTC decomposes a question into the reasoning
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Question: 
Who owns the radio station where Scott Allen 
Miller has recently been the morning drive host 
and program director?
Dependency Pase Tree: 

M2:[BRANCH]#1 where Scott Allen Miller 
has been the morning drive host? 

L1: #1 where Scott Allen Miller 
has been the morning drive host? 

L1’: which ration station where 
Scott Allen Miller has been the 
morning drive host? 

L2’: which ration station 
where Scott Allen Miller has 
been the program director?

Retrieval And Interaction with LLM

Input

Answer Aggeragation Module

A1’: BBC Radio 1, KEXP A2’:  BBC Radio 1,  NPR

A4’:  [NEST_AGGREGATION]
Who owns BBC Radio 1?

A0:  UK government

BBC Radio 1, A popular 
British radio station …

S22
S21 S31

S32 NPR (National Public Radio): 
A US-based network of…

L2:#1 where Scott Allen Miller 
has been the program director?

Question Generator

Generate answer by LLM

M1:[NEST] Who owns #1? 

ROOT:Who owns the radio station where Scott Allen Miller has 
recently been the morning drive host and program director?

A3’: [BRANCH_AGGREGATION] 
BBC Radio 1

Reasoning Tree Constructor

Figure 2: The overall architecture of our framework TRQA.

tree devised by a dependency parse tree. QG translates the
leaf-node substructure of the reasoning tree into a question.
RAIL retrieval similar documents and generate the answer.
AAM aggregates answers following the reasoning Tree.

Reasoning Tree Constructor
As mentioned above, there are mainly two types of rela-
tions between sub-questions, i.e., nest and branch, which is
also the basis relation in the reasoning tree. The dependency
parse tree reveals the dependency relation between tokens
in the relation, which can assist us to predict the relation
between different sub-structures. Thus, we introduce the de-
pendency parse tree to decompose the question and generate
the reasoning tree. We collect some labeled data according
to the dependency parse tree and train it with T5.

Data Collection To train a model for constructing the
reasoning tree, we construct a dataset called RTrees, with
7,00 samples from existing muti-hop question-answering
datasets. During the annotation process, we ask annotators
to insert [NEST] and [BRANCH] into the dependency parse
tree, divide them into different subtrees, and then use a
depth-first search algorithm to flatten them into sequences.
We take some examples in the appendix file.

Training We used T5 as our basic model and trained a
model to predict the location of separators. After obtaining
the position of the separator, we divide the dependency parse
tree into different substructures based on its position in the
tree. Finally

Question Generator After obtaining the inference tree,
we rewrite the substructure into a natural language question

Algorithm 1: Processing a Complex Question
Question: q; Dependency Parse Tree: dpt;
procedure PROCESS(complex question)

RT← RTC.ConstructTree(q, dpt)
leaf substructures← RTC.GetLeafNode(RT)
for each substructure in leaf substructures do

question← QG.GenerateQuestion(substructure)
similar documents← RAIL.Retrieve(question)
answer← RAIL.GenerateAnswer(similar documents)
reasoning tree.PlaceAnswer(substructure, answer)

end for
aggregated answers← AAM(reasoning tree)
return aggregated answers

end procedure

based on the substructures of the leaf nodes, including ques-
tions and corresponding analysis tree subtrees. Given the de-
pendency sub-tree Ci, and part of question Si, we design two
methods to translate the Ci into corresponding question qi.

Prompt-based Question Generator We have designed a
prompt to rewrite the dependency analysis tree subtree and
corresponding question section into a natural language ques-
tion, which is shown as follows,

”This is a question Q, and there is a part of question.
Its dependency parse is Ci, and the corresponding token in
question is Si, please convert it into a complete question”

In this way, we can transform the substructure into a ques-
tion.
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T5-based Question Generator We collect a few human-
labeled datasets and train a T5-based model to generate the
question. The input is the dependency parse subtree and
part-of-question and the output is the complete question. The
detail is shown below.

Data Collection To train a model for question generation,
we construct a dataset called D2Q, with 4,00 samples. Dur-
ing the annotation process, we ask annotators to write the
question according to the substructure. We take some exam-
ples in the appendix file.

Training We take the linearized dependency parse sub-
tree and corresponding question sequence as input and the
annotated question as output.

qi = T5(Ci) (1)

where qi is denoted as the ith sub question.

Retrieval And Interactive with LLM
In the context of each individual question, the operational
workflow encompasses the relay of generated sub-questions
from the Large Language Model (LLM) to the Information
Retrieval (IR) system. In this component, the IR mecha-
nism assumes a dual function encompassing confirmation
and augmentation. Concretely, for each sub-question qi, the
IR module assumes the role of verification, furnishing per-
tinent and complementary data. This serves not only to cor-
roborate the sub-question but also to enrich its content. Then
the retrieval information incorporated with the question is
subsequently fed back to the LLM, effectively facilitating
the production of accurate and reliable sub-answers.

Furthermore, this interaction can contribute to the com-
pleteness of the content generation process within LLM.
Owing to the correlation between IR and LLM, the for-
mer evolves into a repository of collated documents, metic-
ulously documenting the records acquired from every node
within the reasoning tree architecture. This approach height-
ens both the traceability and reliability of the content gener-
ated from LLM. Through the retrieval interaction between
each sub-question and the IR system, the most pertinent
document for each sub-question, denoted as di, can be
sourced as the supporting document for the corresponding
sub-question qi.

Answers Aggregation Module In AAM, we aggregate
the answers of leaf nodes along the reasoning tree from
bottom to top. When the answer is aggregated from
the child node to the parent node, we designed two
aggregation functions, i.e. NEST AGGREGATION and
BRANCH AGGREGATION. They correspond to nest and
branch tags in the reasoning tree. We will introduce these
two operations in detail below.

NEST AGGREGATION We use the answer of the child
node of this node directly as the placeholder. For example
in Figure 2, in the answer aggregation module, the answer
of A3’ is directly used to replace the value of placeholder in
M1. Then we use QG to translate the current node substruc-
ture into a question. RAIL is used to generate the answer of
the current node.

BRANCH AGGREGATION We collect answers from
different child nodes and replace them with the position in
the current substructure. We design a prompt and directly
use LLM to generate the answer. The prompt is shown be-
low,

Prompt: We have several answers, I want to get the fi-
nal answer from “Answer 1 [operation] Answer 2 [opera-
tion]”, [operation] represents aggregation functions, like in-
tersection, cooperation, etc. In this way, we get the final an-
swer for the current node.

We follow the reasoning tree from bottom to top and grad-
ually aggregate the answers based on these two aggregation
methods to obtain the final answer

Experiment
In this section, we present a comprehensive evaluation of
our proposed framework, TRQA, using four extensively uti-
lized benchmark datasets. The obtained results validate the
effectiveness of our method.

Datasets and Preprocessing
We select four complex multi-hop question-answering
datasets, HotpotQA(Yang et al. 2018), HyBridQA(Chen
et al. 2020), Musique(Trivedi et al. 2022), and WikiMulti-
HopQA (WMHQA)(Ho et al. 2020). The details are shown
below.

HotpotQA The HotpotQA dataset stands as a pivotal
benchmark within the field of Natural Language Processing
(NLP), designed to evaluate models’ capabilities in reason-
ing and multi-hop question-answering tasks. It boasts an im-
pressive repository of over 110,000 diverse question-answer
pairs, meticulously crafted to span a wide spectrum of do-
mains and topics. We focus on its full wiki setting.

HyBridQA is an extensive question-answering dataset,
integrating structured Wikipedia tables and related free-form
text corpora, designed to necessitate reasoning over both
forms of information. It includes around 70,000 question-
answer pairs aligned with 13,000 unique Wikipedia tables.

Musique is a challenging multi-hop question answering
dataset comprising 25,000 questions with 2-4 hops, devel-
oped via a systematic bottom-up approach of selecting in-
terconnected single-hop questions.

WikiMultiHopQA is an extensive and high-quality
multi-hop question-answering dataset created utilizing
Wikipedia and Wikidata, with an emphasis on providing ex-
haustive explanations from question to answer that enrich
the understanding of predictions. The dataset introduces nat-
ural questions that demand multi-hop reasoning, crafted us-
ing logical rules embedded within the knowledge base (KB).

Baselines
The baseline models can be categorized into two classes.
The first class focuses on designing prompts to improve the
reasoning ability of LLM (CoT (Wei et al. 2022), Auto-
CoT(Zhang et al. 2022b), Recite-and-answer(Sun et al.
2022), and Least-to-Most(Zhou et al. 2022)). And the sec-
ond class introduces IR to LLM (Self-Ask(Press et al. 2022),
Plan-And-Solve(Wang et al. 2023), React(Yao et al. 2022)

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19563



Approach HotpotQA HyBridQA Musique WMHQA
EM Recall EM Recall EM Recall EM Recall

Direct prompting 25.4 36.2 12.8 19.2 6.0 8.2 25.8 28.4
AUTO-COT 36.8 45.8 18.2 25.6 10.6 13.2 29.2 32.2
COT 38.2 48.6 16.2 21.8 9.4 11.0 30.4 34.2
Recite-and-answer 36.6 38.8 16.6 19.8 11.0 13.6 32.6 36.2
Self-Ask w/o IR 34.4 36.2 17.4 22.2 11.2 14.4 35.8 39.6
Least-to-Most 34.2 38.6 26.4 32.6 11.6 13.4 32.8 36.6
Plan-And-Solve 37.4 41.6 27.8 30.2 13.4 16.8 34.8 37.8
Least-to-Most w/ IR 42.6 44.2 30.2 35.4 15.2 18.2 32.8 36.6
Self-Ask 40.4 49.8 24.4 30.2 14.4 15.6 39.6 42.6
Plan-And-Solve w/ IR 41.6 45.6 29.2 33.6 15.0 17.8 42.4 46.2
React 44.6 48.2 32.6 35.6 15.6 18.4 40.4 43.6
DSP 53.0 56.8 33.2 34.8 16.2 20.8 43.2 46.8
TRQA 61.2 62.4 35.2 42.4 24.2 26.8 52.6 54.8
TRQA w/o IR 55.4 60.2 28.6 37.2 18.6 20.4 44.8 46.8
TRQA w/o AAM 59.2 69.2 31.8 38.4 22.4 25.2 49.2 50.6
TRQA w/ PQG 60.3 66.8 33.2 39.6 20.2 24.6 48.2 50.2

Table 1: EM and Recall results on four benchmark datasets (%).

Approach HotpotQA HyBridQA Musique
EM Recall EM Recall EM Recall

TRQA 64.2 72.2 35.2 42.4 24.2 26.8
TRQA w/ cluenet 58.2 67.4 27.8 36.4 17.8 18.8
TRQA w/ HSP 56.8 66.2 26.2 34.8 16.4 19.2
TRQA w/ DecompRC 52.6 64.8 24.4 30.2 14.2 17.2

Table 2: EM and Recall results on HotpotQA, HyBridQA adn Musique dataset (%).

and DSP (Khattab et al. 2022)), aims at retaining real-time
knowledge and alleviating hallucination in the generated an-
swer.

Metrics
We employ two key metrics to evaluate the performance of
our large model’s generated responses: Cover-EM (EM) and
Recall. The Cover-EM metric evaluates the percentage of
correct answers that appear as substrings within the model’s
generated responses. This metric effectively measures the
model’s ability to generate comprehensive answers by deter-
mining if the correct answer is present in its output. On the
other hand, Recall is a commonly used metric to evaluate the
model’s ability to retrieve relevant information. Specifically,
it quantifies the ratio of correctly identified relevant items by
the model to the total number of relevant items.

Human Annotation
We invite four graduate students, who majored in Computer
Science and are familiar with natural language processing,
to annotate the dataset. Before annotation, they are informed
of the detailed instructions with clear examples. For the RTC
task, the inter-annotator agreement score is 0.87, and for the
QG task, the inter-annotator agreement score is 0.76.

Implementation Details
We harnessed the gpt-3.5-turbo, a prominent large language
model accessible through OpenAI’s API, for our experimen-
tation. Additionally, we employed ColBERTv2 as our re-
trieval model, following (Xu et al. 2023). Our baselines,
which incorporate information retrieval, were subjected to
identical experimental settings as our proposed framework.
Given that the majority of baseline methods were tested us-
ing the text-davinci-002 model, we reenacted their experi-
ments on the gpt-3.5-turbo model, adhering to the configura-
tions outlined in their respective publications, consequently
yielding enhanced performance.

Main Results
The performance of and baselines on the multi-hop
question-answering task are shown in Table 1. We compare
it with recent competitive baselines in the setting without
IR. TRQA w/o IR outperforms all baselines based on CoT
methods, including CoT, Auto-CoT, CoT-SC, and Recite-
and-answer, which indicates that constructing the reasoning
tree, i.e., a global reasoning process(Xu et al. 2023), is better
than just giving intermediate reasoning results. The results
of Self-Ask, Plan-And-Solve w/IR, React, and DSP outper-
form CoT methods, which indicates that IR can introduce
external knowledge to assist reasoning and answer complex
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HyBridQA HotpotQA Musique

Self-Ask 4.28 4.32 5.68
DSP 4.02 4.26 5.36
Least-to-Most 3.66 3.88 4.26
TRQA 2.68 3.22 3.42

Table 3: Efficiency analysis.

questions. Besides, TRQA w/o IR outperforms Self-Ask w/o
IR and Plan And Solve, which indicates that it is more ef-
fective to construct the reasoning tree and generate answers
along it than generate an inference chain and answer sub-
questions step by step. TRQA outperforms TRQA w/ PQG,
which shows that our T5-based question generator is more
effective in translating substructure into the complete ques-
tion than LLM-based.

Ablation Study To evaluate the effectiveness of each
model module, we perform ablation studies where we re-
move the IR module and AAM. The results are shown in
Table ??.

After removing each module, the performance of the
model deteriorated. In Table ??, the results of (TRQA w/o
IR) denote the model that removes the IR module. This in-
dicates that IR interacting with each node of the reasoning
tree ensures the reliability and accuracy of LLM-generated
answers. The results of (TRQA w/o AAM) denote the model
that removes the AAM module. We directly use a prompt to
combine answers from leaf nodes and generate the final an-
swer by LLM. The result shows the effectiveness of AAM,
which can aggregate the answers in a reasonable way.

The Effectiveness of Different QDT Method To demon-
strate the effectiveness of our question decomposition
method, we perform an ablation study by removing QDT
and replacing it with different question decomposition meth-
ods. We choose cluenet(Huang et al. 2023), HSP(Zhang
et al. 2019), and DecompRC(Min et al. 2019) as the con-
trastive question decomposition model. Results show that
QDT is superior to other methods on EM. This suggests
that our proposed QDT can further promote the generative
method. Besides, we also find that none of the examples be-
come worse after the incorporation of IR, which means IR
is stable and safe as an external module for the generative
decomposition method.

Efficiency Analysis We further analyze the difference in
running efficiency between TRQA and baselines from the
perspective of the average number of interactions between
IR and LLM per question. Table ?? shows the results of
the analysis on four multi-hop QA datasets. Based on Ta-
ble ?? and Table ??, TRQA not only exhibits superior task
performance but also has the least number of interactions
with API, consequently entailing the least time cost.

Case Study: TRQA vs New Bing in Tracing Following
(Xu et al. 2023), we conduct a comparative analysis between
the performance of TRQA and New Bing in the task of at-
tributing references to generated content, as illustrated in our

case study (Figure 3). Notably, TRQA shows a finer-grained
ability to attribute references to each segment of knowledge
engaged in the reasoning process, which corresponds to each
correct node within the TRQA framework. In contrast, the
referencing provided by New Bing exhibits gaps, failing to
encompass the entirety of the relevant knowledge. There are
also some instances where New Bing is unable to locate cer-
tain knowledge segments.

Related Work
Chain-of-Thought Prompting (Wei et al. 2022) introduces
a method termed Chain-of-Thought (CoT), aiming to en-
hance the reasoning capabilities of large language mod-
els (LLMs). CoT employs a few-shot paradigm to enable
LLMs to generate intermediate reasoning outcomes during
the solution of intricate problems, thereby ameliorating their
reasoning aptitude. By utilizing the guiding prompt ”Let’s
do it step by step,” CoT achieves promising zero-shot per-
formance. A derivative of this approach, Auto-CoT, lever-
ages language models to automatically craft few-shot learn-
ing examples for the CoT framework (Wei et al. 2022).
Various studies have delved into diverse facets of CoT,
encompassing concerns like self-consistency (Wang et al.
2022), utilization of moderate-sized models (Zelikman et al.
2022), and selection (Fu et al. 2022). Additionally, certain
methodologies iteratively employ LLMs to break down in-
tricate queries into manageable sub-questions, systemati-
cally addressing them. Notable instances include Least-to-
Most (Drozdov et al. 2022), Dynamic Least-to-Most, Self-
Ask (Press et al. 2022), and DSP (Khattab et al. 2022).
This body of work serves as a catalyst for our proposed
approach, namely the Tree of Reasoning. Preceding studies
have predominantly concentrated on furnishing intermediate
reasoning outputs, segmenting intricate queries, and step-
wise resolution of sub-questions. These efforts largely focus
on local sub-questions resolution, without adequate atten-
tion to the planning of a global reasoning chain. Approaches
like AgentGPT and PS initially formulate sub-questions
and subsequently address them, revealing their limitations
when subsequent sub-question solutions hinge on insights
garnered from preceding ones. Such a scenario commonly
arises in knowledge-intensive tasks like multi-hop question-
answering (Wang et al. 2023; Zhang et al. 2023b,a).

Question Decomposition Question decomposition plays
a pivotal role in generating an ungrounded query graph,
serving as a valuable aid in structure disambiguation. Such
structural clarity aids in steering the QA system away from
inefficient path traversal within relations (Chen et al. 2021).
The realm of question decomposition encompasses three pri-
mary methodologies:

(1) Splitting-based Methods: Strategies like SplitQA (Tal-
mor and Berant 2018) and DecompRC (Min et al. 2019) har-
ness pointer networks to bifurcate a question into two seg-
ments. While effectively preserving the core essence of the
original inquiries, these approaches exhibit a need for in-
creased flexibility when dealing with intricate structures.

(2) Generative Methods(Zhang et al. 2019, 2022a): These
methodologies introduce heightened adaptability and ex-
pansibility, amenable to a wide range of target formats.
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The band that released Women and Children First had 
how many number ones ?

The band that released Women and Children First is Van 
Halen[1].Van Halen had thirteen number ones on the 
Billboard Mainstream Rock chart.[2]

[1] Women and Children First is the third studio album by 
American hard rock band Van Halen, released on March 26, 
1980 on Warner Bros....
[2] As of 2007, Van Halen has sold 75 million albums 

worldwide and have had thirteen No. 1 hits on the 
Billboard Mainstream Rock chart. ....

Question
Method

Which country contains Conran in the residence state 
of the author of Little Gidding ?

The author of Little Gidding is T.S. Eliot [1]. Eliot was born in St. 
Louis, Missouri, United States. However, he later moved to 
England and became a British citizen [2].Conran is located about 
ten miles southwest of New Madrid on U.S. the country that 
contains Conran in the residence state of T.S. Eliot is the United 
States.

[1] Little Gidding is the fourth and final poem of T. S. Eliot's Four 
Quartets, a series of poems that discuss time, perspective, 
humanity, and salvation...
[2] Conran is an unincorporated community in eastern New 
Madrid County, Missouri, United States.It is located 
approximately ten miles southwest of New Madrid on U.S. Route 
61. ....

What group of languages includes the old version of 
the language that the Quran was first translated in ?

The specific language that the Quran was first translated 
into is Persian [1]. The group of languages that includes the 
old version of the language that the Quran was first 
translated in is the Western Iranian languages [2].

[1] The first fully attested complete translations of the 
Quran were done between the 10th and 12th centuries in 
Persian. ...
[2] The Western Iranian languages are a branch of the 
Iranian languages, attested from the time of Old Persian (6th 
century BC) and Median. ....

TRQA

New Bing

The band that released the album “Women and Children 
First” is Van Halen. According to my sources, Van Halen 
had one number one hit on the Billboard Hot 100 chart with 
their song “Jump” in 1984 [1]. Is there anything else you 
would like to know?

[1] Eddie Van Halen rode the top of the Billboard charts 
alongside his namesake band Van Halen, scoring five No. 1 
albums on the Billboard 200 chart, and more than 20 hits 
on the Billboard Hot 100 songs…

I’m sorry but I couldn’t find any information about Conran. 
However, Little Gidding is a poem by T.S. Eliot. It is the 
fourth and final poem of his Four Quartets series [1]. The 
poem refers to a small Anglican community in Little Gidding 
in Huntingdonshire, England [2]. I hope this helps.

[1] Little Gidding is the fourth and final poem of T. S. Eliot's 
Four Quartets, a series of poems that discuss time, 
perspective, humanity, and salvation...
[2] The title refers to a small Anglican community in Little 
Gidding in Huntingdonshire, established by Nicholas Ferrar ....

The first complete translation of the Quran was into Persian, 
which is a member of the Iranian branch of the Indo-Iranian 
language family [1]. The first chapter of the Quran, Al-Fatiha, 
was translated from Arabic to Persian by Salman the Persian in 
the 7th-10th centuries [2]. Is there anything else you would like to 
know? 

[1] Persian, also known by its endonym Farsi, is a Western Iranian 
language belonging to the Iranian branch of the Indo-Iranian 
subdivision of the Indo-European languages. 
[2] Salman the Persian translated the first chapter of the Qur'an, 
Al-Fatiha, from Arabic to Persian ....

Figure 3: Case study of TRQA and New Bing in marking references to supporting documents.

HSP (Zhang et al. 2019) employs a Seq2Seq model inte-
grated with a copy mechanism to engender sub-questions.
However, these approaches remain confined to decompos-
ing questions into two segments, thereby failing to assure the
unchanged retention of sentence semantics. Consequently, a
potential exists for token loss or unexpected token genera-
tion, which in turn could compromise the semantic coher-
ence of the input question, complicating performance evalu-
ation.

(3) Rule-based Methods: Notably, EDG (Hu et al. 2021)
exemplifies this category. EDG undertakes an iterative trans-
formation of the constituency tree into an entity-centric
graph, propelled by meticulously designed rules. While pro-
ficient in handling multiple forms of compositional diversity,
this approach tends to rely heavily on constituency parsing,
thus potentially limiting its coverage.

Conclustion
In this study, our focus centers on the utilization of question
decomposition as a potent mechanism for addressing the
challenge of answering complex questions through Large
Language Models (LLMs). To achieve this goal, we intro-
duce a novel structure, named the Reasoning Tree (RT),
which represents the global reasoning structure of the ques-
tion reasoning process. To construct the reasoning tree, we
propose a novel framework named TRQA, which leverages
question decomposition to construct the reasoning tree and
generates reliable answers through interaction with LLM

and IR. We design a novel approach, the structure-driven
question decomposition model, which employs dependency
parse trees to augment the process of reasoning structure
generation. We verify the effectiveness of the proposed
framework on four widely-used datasets and the experimen-
tal results show that our proposed methods consistently out-
perform baseline methods across all benchmarks by a large
margin.
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Drozdov, A.; Schärli, N.; Akyürek, E.; Scales, N.; Song, X.;
Chen, X.; Bousquet, O.; and Zhou, D. 2022. Compositional
semantic parsing with large language models. arXiv preprint
arXiv:2209.15003.
Fu, Y.; Peng, H.; Sabharwal, A.; Clark, P.; and Khot, T.
2022. Complexity-based prompting for multi-step reason-
ing. arXiv preprint arXiv:2210.00720.
Ho, X.; Nguyen, A.-K. D.; Sugawara, S.; and Aizawa,
A. 2020. Constructing a multi-hop QA dataset for com-
prehensive evaluation of reasoning steps. arXiv preprint
arXiv:2011.01060.
Hu, X.; Shu, Y.; Huang, X.; and Qu, Y. 2021. EDG-Based
Question Decomposition for Complex Question Answering
over Knowledge Bases. In Hotho, A.; Blomqvist, E.; Dietze,
S.; Fokoue, A.; Ding, Y.; Barnaghi, P.; Haller, A.; Dragoni,
M.; and Alani, H., eds., The Semantic Web – ISWC 2021,
128–145. Cham: Springer International Publishing. ISBN
978-3-030-88361-4.
Huang, X.; Cheng, S.; Shu, Y.; Bao, Y.; and Qu, Y.
2023. Question Decomposition Tree for Answering Com-
plex Questions over Knowledge Bases. arXiv preprint
arXiv:2306.07597.
Kandpal, N.; Deng, H.; Roberts, A.; Wallace, E.; and Raffel,
C. 2023. Large language models struggle to learn long-tail
knowledge. In International Conference on Machine Learn-
ing, 15696–15707. PMLR.
Khattab, O.; Santhanam, K.; Li, X. L.; Hall, D.; Liang,
P.; Potts, C.; and Zaharia, M. 2022. Demonstrate-
Search-Predict: Composing retrieval and language mod-
els for knowledge-intensive NLP. arXiv preprint
arXiv:2212.14024.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large language models are zero-shot reason-
ers. Advances in neural information processing systems, 35:
22199–22213.
Min, S.; Zhong, V.; Zettlemoyer, L.; and Hajishirzi, H. 2019.
Multi-hop reading comprehension through question decom-
position and rescoring. arXiv preprint arXiv:1906.02916.
OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774.
Pan, L.; Chen, W.; Xiong, W.; Kan, M.-Y.; and Wang, W. Y.
2020. Unsupervised multi-hop question answering by ques-
tion generation. arXiv preprint arXiv:2010.12623.
Press, O.; Zhang, M.; Min, S.; Schmidt, L.; Smith, N. A.;
and Lewis, M. 2022. Measuring and narrowing the com-
positionality gap in language models. arXiv preprint
arXiv:2210.03350.
Sun, Z.; Wang, X.; Tay, Y.; Yang, Y.; and Zhou, D. 2022.
Recitation-augmented language models. arXiv preprint
arXiv:2210.01296.
Talmor, A.; and Berant, J. 2018. The web as a knowledge-
base for answering complex questions. arXiv preprint
arXiv:1803.06643.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.
Trivedi, H.; Balasubramanian, N.; Khot, T.; and Sabharwal,
A. 2022. MuSiQue: Multihop Questions via Single-hop
Question Composition. Transactions of the Association for
Computational Linguistics, 10: 539–554.
Wang, L.; Xu, W.; Lan, Y.; Hu, Z.; Lan, Y.; Lee, R. K.-W.;
and Lim, E.-P. 2023. Plan-and-solve prompting: Improv-
ing zero-shot chain-of-thought reasoning by large language
models. arXiv preprint arXiv:2305.04091.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang,
S.; Chowdhery, A.; and Zhou, D. 2022. Self-consistency
improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in Neural Information Processing Systems,
35: 24824–24837.
Xu, S.; Pang, L.; Shen, H.; Cheng, X.; and Chua, T.-s.
2023. Search-in-the-Chain: Towards the Accurate, Credible
and Traceable Content Generation for Complex Knowledge-
intensive Tasks. arXiv preprint arXiv:2304.14732.
Yang, Z.; Qi, P.; Zhang, S.; Bengio, Y.; Cohen, W. W.;
Salakhutdinov, R.; and Manning, C. D. 2018. HotpotQA: A
dataset for diverse, explainable multi-hop question answer-
ing. arXiv preprint arXiv:1809.09600.
Yao, S.; Zhao, J.; Yu, D.; Du, N.; Shafran, I.; Narasimhan,
K.; and Cao, Y. 2022. React: Synergizing reasoning and act-
ing in language models. arXiv preprint arXiv:2210.03629.
Zelikman, E.; Wu, Y.; Mu, J.; and Goodman, N. 2022. Star:
Bootstrapping reasoning with reasoning. Advances in Neu-
ral Information Processing Systems, 35: 15476–15488.
Zhang, H.; Cai, J.; Xu, J.; and Wang, J. 2019. Complex
Question Decomposition for Semantic Parsing. In Proceed-
ings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, 4477–4486. Florence, Italy: Associ-
ation for Computational Linguistics.
Zhang, K.; Chen, C.; Wang, Y.; Tian, Q.; and Bai, L. 2023a.
CFGL-LCR: A Counterfactual Graph Learning Framework
for Legal Case Retrieval. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data
Mining, 3332–3341.
Zhang, K.; Lin, X.; Wang, Y.; Zhang, X.; Sun, F.; Jianhe,
C.; Tan, H.; Jiang, X.; and Shen, H. 2023b. ReFSQL: A
Retrieval-Augmentation Framework for Text-to-SQL Gen-
eration. In Findings of the Association for Computational
Linguistics: EMNLP 2023, 664–673.
Zhang, K.; Qiu, Y.; Wang, Y.; Bai, L.; Li, W.; Jiang, X.;
Shen, H.; and Cheng, X. 2022a. Meta-CQG: A Meta-
Learning Framework for Complex Question Generation
over Knowledge Bases. In Proceedings of the 29th Inter-
national Conference on Computational Linguistics, 6105–
6114.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19567



Zhang, Z.; Zhang, A.; Li, M.; and Smola, A. 2022b. Auto-
matic chain of thought prompting in large language models.
arXiv preprint arXiv:2210.03493.
Zhou, D.; Schärli, N.; Hou, L.; Wei, J.; Scales, N.; Wang,
X.; Schuurmans, D.; Cui, C.; Bousquet, O.; Le, Q.; et al.
2022. Least-to-most prompting enables complex reasoning
in large language models. arXiv preprint arXiv:2205.10625.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19568


