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Abstract

Effectively and efficiently adapting a pre-trained lan-
guage model (PLM) for human-centered text understanding
(HCTU) is challenging since user tokens are million-level
in most personalized applications and do not have concrete
explicit semantics. A standard and parameter-efficient ap-
proach (e.g., LoRA) necessitates memorizing numerous suits
of adapters for each user. In this work, we introduce a per-
sonalized LoRA (PLoRA) with a plug-and-play (PnP) frame-
work for the HCTU task. PLoRA is effective, parameter-
efficient, and dynamically deploying in PLMs. Moreover, a
personalized dropout and a mutual information maximizing
strategies are adopted and hence the proposed PLoRA can
be well adapted to few/zero-shot learning scenarios for the
cold-start issue. Experiments conducted on four benchmark
datasets show that the proposed method outperforms exist-
ing methods in full/few/zero-shot learning scenarios for the
HCTU task, even though it has fewer trainable parameters.
For reproducibility, the code for this paper is available at:
https://github.com/yoyo-yun/PLoRA.

Introduction
Human-centered text understanding (HCTU) aims to cap-
ture potential mental states in texts according to user pref-
erences where user historical written texts are informative
sources for user understanding (Crisan et al. 2022; Lynn
et al. 2017; Capel and Brereton 2023). For users with dif-
ferent preferences and unique needs, similar texts might ex-
press various and diverse understandings, e.g., in person-
alized sentiment analysis (Zhang et al. 2021; Tang, Qin,
and Liu 2015; Chen et al. 2016). With the thriving of pre-
trained language models (PLMs) in natural language pro-
cessing (NLP), the importance of personalization has been
highlighted in recent works (Wu et al. 2023; Min et al. 2021;
Liu, Zhang, and Gulla 2023).

Traditional personalized sentiment analysis methods typi-
cally use personalized knowledge injection (PKI) techniques
(Zhong et al. 2021; Houlsby et al. 2019; Hu et al. 2021) to
embed user attributes/preferences into dense representations
and then inject them into neural networks, as shown in Fig.
1(a). However, these models require full-model fine-tuning
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(FFT) and sophisticated structures to couple task-specific
transferring and personalized injecting, which is not suit-
able for adapting large-scale PLMs to personalized senti-
ment analysis.

To address the problem, parameter-efficient fine-tuning
(PEFT) techniques such as the adapter, prompt-tuning, and
low-rank adaptation (LoRA) (Wu et al. 2018; Zhang, Wang,
and Zhang 2021) have been proposed. These techniques
only require adding and fine-tuning a few parameters in
PLMs, and thus can effectively and efficiently fine-tune
large-scale PLMs for downstream tasks. To use PEFT for
personalized sentiment analysis, as shown in Fig. 1(b), the
user attributes/preferences can be considered as an adapter
(dashed rectangles) to fine-tune large-scale PLMs through,
for example, LoRA, thus avoiding fine-tuning the whole
model parameters. However, each user is associated with
an adapter and a full model copy is not practicable because
user tokens are always million-level in real-world applica-
tions (e.g., Amazon). In addition, this may also suffer from
the under-fitting problem due to limited training examples
for each user. To leverage the advantage of both PKI and
PEFT, this study proposes a personalized low-rank adapta-
tion (PLoRA) mechanism by combining PKI and LoRA, as
shown in Fig. 1(c). The PKI is used to embed all user at-
tributes/preferences into a unified embedding, followed by
LoRA to adapt large-scale PLMs to the HCTU task without
FFT.

Moreover, we further use the Plug-and-Play (PnP) frame-
work (Sun et al. 2022; Zhang et al. 2023b) to extend the
proposed PLoRA mechanism so that it can be more flexible
and easier to be deployed for the cold-start issue including
both zero-shot and few-shot learning scenarios (Wu et al.
2023; Dathathri et al. 2020), as shown in Fig. 1(d). The
zero-shot learning scenario occurs when new and anony-
mous users due to privacy considerations request a service.
In this circumstance, directly applying personalized mod-
els to such a zero-shot learning scenario may degrade the
prediction performance because the models have no idea
about the new users (Zhang et al. 2023a). Conversely, the
extended PLoRA can use personalized dropout (PDropout)
(Srivastava et al. 2014) and mutual information maximiza-
tion (MIM) (Krause, Perona, and Gomes 2010) to remove
personalized information such that the model’s generaliza-
tion ability can be increased to handle anonymous new users.
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Figure 1: Different methods for human-centered text understanding.

The few-shot learning scenario occurs when a new user with
a few samples requests a service. Unlike traditional meth-
ods that need to retrain the model, both PLoRA and PLMs
parameters are frozen. The extended PLoRA is used as a
knowledge extractor to produce personalized information
for each new user via a backpropagation optimization, and
then perform the PnP to complete online training and pre-
diction.

Similar to LoRA, the proposed PLoRA does not increase
additional sequence lengths when it handles text input and
has no additional inference latency in comparison to other
PEFT methods such as adapter (Pfeiffer et al. 2020), pre-
fix tuning (Li and Liang 2021), Prompt-tuning (Lester, Al-
Rfou, and Constant 2021), and P-tuning (Liu et al. 2021).
Moreover, PLoRA is agnostic to neural networks and or-
thogonal to many prior methods, hence it can be easily de-
ployed in various PLMs and combined with other technolo-
gies such as prompt-tuning and prefix-tuning (Houlsby et al.
2019; Guo, Rush, and Kim 2021). Experiments conducted
on four benchmark datasets show that the proposed method
outperforms existing methods in full/few/zero-shot learning
scenarios for the HCTU task. The main contributions in this
work are as follows.

• We proposed the PLoRA mechanism by combining the
PKI and LoRA to inject personalized information into
PLMs without full-model fine-tuning.

• We further extend PLoRA using the PnP framework to
increase the model’s generalization ability and enable on-
line training and prediction for the code-start scenario.

• Experimental results show that PLoRA is effective,
lightweight, easy-to-deploy in PLMs for HCTU tasks.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the details of the proposed method. Exten-
sive experiments are analyzed in Section 3 and conclusions
are finally drawn in Section 4. What’s more, the technical
appendix provided related work, further proofs, detailed set-
tings and additional experiments.

Methodology
Problem Formulation
The HCTU task considers every text data sample belonging
to a certain user and captures textual representations accord-
ing to the user preferences where a collection of written text
records is associated with each user. These records facilitate
models to understand user preferences and provide person-
alization services. Consequently, HCTU can be formulated
as follows. Given an input text x = [x1, x2, ..., xN ], the
goal of human-centered models is to generate an output y
for the user u, where N represents the input length and y
associates task targets such as sentiment scores. These tasks
can be modeled as argmax q(y|x, u). For each user u, a col-
lection of data is denoted as Du =

∑
i (xi, yi, u) on which

user preference can be generated.
To simulate cold-start issues including zero-shot and few-

shot learning scenarios, a couple of data (DA and DB)
are provided for each dataset D =

∑
u

∑
i (xi, yi, u) =

DA + DB where (∀uA ∈ DA) ∩ (∀uB ∈ DB) = ∅. DA
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Figure 2: An illustration of PLoRA.

is used for full-shot learning and DB is provided for cold-
start evaluation. For zero-shot learning, it requires models
q(y|x, u) learned from DA to show superior generalization
performance q(y|x) on (x, y) ∈ DB without user uB as in-
put. For few-shot learning, the user preference p = f(u) is
learned from a few data Du and then used for personaliza-
tion services q(y|x, u) where (x, y, u) ∈ Du and Du ∈ DB.

Personalized LoRA
In this section, we elaborate on PLoRA for personalization
in PLMs, as illustrated in Figure 2, which combines task-
specific LoRA and user-specific PKI.

Task-specific LoRA A neural network such as PLMs con-
tains many matrix multiplications. LoRA provides a PEFT
that facilitates weight matrices to capture intrinsic rank for
downstream tasks adaptation. For a weight matrix W ∈
Rdin×dout in PLM, lightweight matrices of W in

task ∈ Rdin×r

andW out
task ∈ Rr×dout with a low rank of r � min(din, dout)

are additionally applied to update W as W +W in
taskW

out
task.

Given h ∈ Rdin as input textual representation, the output
h′ ∈ Rdout is calculated with task-specific LoRA via:

h′ = hW + hW in
taskW

out
task . (1)

In the training phase, W is fixed and only W in
task and W out

task
are learned.

Personalization-specific PKI To adapt a generic model
to personalization, most of the existing works are dedicated
to incorporating personalized knowledge p = f(u) ∈ Rdp

with textual representation via:

h′ = hW + pWperson , (2)

where f(u) means user preferences or embeddings of u. Un-
fortunately, such methods require an optimization of both
W and Wperson in an FFT method so as to coordinate with
personalization and downstream tasks, making their deploy-
ment cumbersome in practice.

PLoRA To compose a parameter-efficient and personal-
ized adapter in PLMs, PLoRA takes h and p as inputs and

Pretrained 
Weight

Pretrained 
Weight

p

h

MIM
'h h

Figure 3: A diagram of MIM on PLoRA for zero-shot learn-
ing.

outputs h′ via:

h′ = hW + hW in
taskW

out
task + pWperson

= hW + hW in
taskW

out
task + pW in

personW
out
person

= hW + (hW in
task + pW in

person)W
out
task

. (3)

Initially, a low-rank hypothesis is applied to PKI with
Wperson = W in

personW
out
person for capture intrinsic rank fea-

tures of injection weights. To further facilitate the couples
with task-specific adaptation and personalization, we share
W out

task with W out
person. Similar to LoRA, only W in

task, W out
task

(or W out
person), and W in

person are trainable parameters that re-
ceive gradient updates.

Plug-and-Play for Cold Start
Large-scale PLMs trained on a large number of corpora
show excellent text-understanding capabilities. Instead of
FFT or modifying model architecture for task-specific do-
mains, the LoRA module can be regarded as a PnP module
that guides PLMs to be adapted to target domains such as
sentiment analysis. Similarly, PKI can also be considered
as a PnP module that guides PLMs to serve different users.
Note that, when PnP modules are applied, PLMs will not be
trained and thus their architecture will not be modified and
their pre-training power will not be deteriorated.

To build a PnP framework and apply PLoRA for com-
plex cold-start issues, a reparameterization strategy is pro-
posed. Especially, W in

task and W in
person are randomly in

Gaussian distributions; W out
task and p are zeros. Hence,

W in
taskW

out
task is zero at the beginning of the training phase

and pW in
personW

out
person is zero when PLMs first meet a user

u. As a result, PLoRA is a PnP module that is orthogonal
to PLMs and gradually grows with capabilities of guiding
PLMs to be adapted to task-specific and human-centered do-
mains.

Although high-performance PLoRA gains, it is still diffi-
cult for zero-shot learning and few-shot learning scenarios
(See Section Experiments).

Zero-shot learning scenarios It is challenging in zero-
shot learning since poor decomposition of generic and
human-centered features makes PLoRA degrading perfor-
mance for unseen or anonymous users. To address this
problem, we propose PDropout and MIM methods to help
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PLoRA to remain its generalization performance for zero-
shot learning scenarios.
• PDropout. During the training, we randomly mask out

users in a batch of samples with a dropout ratio of ω ∈
[0, 1]. Consequently, with the capability of adapting to
personalization, the PLoRA framework remains accessi-
ble to generic task performance.

• Mutual Information Maximization. Inspired by
(Zhang et al. 2023a), we introduce an MIM method to
align the distance between task-specific and human-
centered representations (h̃′ and h′), as shown in Figure
3. During the training, human-centered representation
regarded as a teacher states guides better generic task-
specific performance where MIM can be considered as
a knowledge distillation mechanism. By contrast, MIM
is also a regularization term to leverage generalization
performance on human-centered representation. In
practice, both mean square error (MSE) and Kullback-
Leibler (KL) divergence (Kullback and Leibler 1951)
are prevalent for instantiating MIM.

Few-shot learning scenarios For few-shot learning as
shown in Figure 4, we fix all model parameters and inject
a zeroed embedding p referring to a new user u. With a few
samples associated with the user, HCTU models update the
user preference p through a backpropagation mechanism so
that the user could participate in personalized service with
updated p as an access token.

Train and Inference
In principle, the proposed PLoRA can be applied to any sub-
set of linear projectors in neural networks to provide PEFT
and personalization. In this work, we limit our method to
multi-head attention mechanisms (i.e., query and value pro-
jectors) in the Transformer structure for downstream tasks,
following LoRA study (Hu et al. 2021).

For optimization in the training phase, the loss function of
full-shot learning is defined as follows:

LFullshot = LCE + αLMIM

LCE = CE(q(ỹ|x,PDropout(u, ω); θ), y)

LMIM =
∑

(h̃′,h′)∈q(ỹ|x,u)

MIM(h̃′, h′)
, (4)

where (x, y, u) ∈ DA refers to each sample; PDropout(·)
and MIM(·) are the proposed PDropout and MIM methods;

θ presents lightweight trainable parameters; α is balance ra-
tio for MIM term.

For few-shot learning, the training objective is formulated
as:

f(u) = argmin
p=f(u)

LFewshot

LFewshot =
∑

(x,y,u)∈DB

CE(q(ỹ|x, u; θ̂), y) , (5)

where θ̂ presents well-trained parameters in full-shot learn-
ing scenarios and updated f(u) stand for the semantics of
user u.

Similar to LoRA, the proposed PLoRA still has no ad-
ditional inference latency in deployment. We can explic-
itly compute W = W + W in

taskW
out
task and b = b + f(u) ·

W in
personW

out
person to update a linear projector for personalized

services for the user u where the linear projector contains
weight matrixW and bias vector b. When we need to switch
to pure (or generic) task-specific tasks or anonymous users,
we can recover b by subtracting f(u) ·W in

personW
out
person. Fur-

thermore, we can also add different f(u′) ·W in
personW

out
person

terms to switch services for the user u′. As a consequence,
PLoRA can also switch to other tasks with very little mem-
ory overhead.

Experiments
To investigate the effectiveness and efficiency of the pro-
posed methods for HCTU, extensive experiments were con-
ducted and analyzed on personalized sentiment analysis.

Datasets and Evaluation
Datasets We took personalized sentiment analysis as a test
bed since sentiment is a critical and sensitive evaluation
for human subjective expression. The used datasets include
IMDB, YELP, GDRD, and PPR, where a collection of data
is associated with different users. To simulate complex and
practical situations in real-world applications, all datasets
are individually divided into two parts DA and DB where
DA contains much larger samples than DB and DB aims
to simulate cold-start scenarios, as formulated in Section
Methodology. Either DA or DB, it splits into train, dev, and
test data for experiments. More detailed statistics of datasets
were listed in Appendices.

Evaluation To measure the effectiveness, Accuracy
(Acc), mean squared error (MSE), and macro F1 (F1) were
adopted as evaluation metrics. Note that, higher F1 and Acc
(%) and lower MSE mean better results.

Experimental Setup
To perform personalized sentiment analysis using PLMs,
we applied PLoRA to multi-head attention including query
and value projectors, following (Hu et al. 2021), where in-
troduced PLMs involved BERT (B) (Devlin et al. 2019),
RoBERT (R) (Liu et al. 2019), and Flan-T5 (FT 5) (Chung
et al. 2022). For the reproduction of experiments, more im-
plementation details of hyperparameters were reported in
Appendices.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19591



Datasets IMDB-A YELP-A GDRD-A PPR-A TP(%)
Acc MSE F1 Acc MSE F1 Acc MSE F1 Acc MSE F1

Generic sentiment analysis
NSC 47.7 1.729 44.7 65.2 0.452 62.6 - - - - - - 100x

BERT 51.7 1.398 50.3 67.6 0.390 65.1 57.0 0.582 53.7 83.1 0.192 45.7 100x
B-LoRA 51.0 1.349 48.9 67.8 0.400 66.2 56.8 0.590 53.2 82.6 0.198 47.8 2.1x
R-LoRA 52.5 1.252 50.5 69.6 0.354 68.9 58.4 0.566 56.0 83.6 0.188 55.5 2.3x

FT 5-LoRA 52.5 1.218 50.8 70.0 0.352 69.3 58.1 0.553 55.9 84.5 0.168 53.8 2.7x
Human-centered sentiment analysis

NSC+U 51.1 1.460 47.1 67.3 0.444 64.9 - - - - - - 100x
B-MAA 55.4 1.129 53.4 71.6 0.352 69.8 63.6 0.427 58.3 84.5 0.173 41.5 150x
B-PKI 55.6 1.200 53.2 70.1 0.377 68.5 64.8 0.470 60.8 84.7 0.173 48.3 2.1x

B-UserAdapter 55.7 1.131 53.5 70.8 0.357 68.5 64.7 0.465 60.0 84.4 0.175 48.0 100x
B-PLoRA2S 54.5 1.246 52.0 70.7 0.362 68.9 63.9 0.493 59.9 84.5 0.174 47.8 3.1x
B-PLoRA 57.0 1.151 54.9 72.1 0.338 70.3 65.0 0.463 61.4 85.1 0.168 49.8 3.1x
R-PLoRA 58.0 1.008 55.8 72.9 0.318 71.3 65.8 0.457 61.8 85.5 0.158 64.1 3.2x

FT 5-PLoRA 58.7 0.980 56.1 73.3 0.314 71.5 66.7 0.447 63.3 86.7 0.144 60.4 3.8x

Table 1: Comparative test results on full-shot learning scenarios. TP presents a trainable parameter (including user embeddings)
ratio during the optimization. All figures are averaged over five runs. The underscored and black-face figures mean the best
scores for only B and all experiments in each group, respectively.

Datasets IMDB-B YELP-B GDRD-B PPR-B TP(%)
Acc MSE F1 Acc MSE F1 Acc MSE F1 Acc MSE F1

Few-shot learning
B-PLoRA* 50.2 1.722 47.3 67.1 0.479 64.8 58.5 0.632 54.8 83.7 0.188 44.3 2.9x
B-MAA (FS) 54.0 1.652 51.8 71.0 0.379 68.9 63.8 0.535 59.4 84.0 0.188 40.2 0.2x

B-UserAdapter (FS) 52.9 1.471 50.9 70.9 0.383 69.2 65.2 0.502 60.0 83.8 0.168 44.8 0.2x
B-PLoRA2S (FS) 54.2 1.641 52.1 70.1 0.410 68.1 61.6 0.611 57.1 84.1 0.168 42.6 0.1x
B-PLoRA (FS) 55.1 1.559 53.5 71.2 0.362 69.3 64.0 0.536 60.5 84.5 0.164 43.7 0.1x
R-PLoRA (FS) 56.5 1.541 54.7 72.6 0.355 71.3 63.9 0.528 59.8 84.7 0.171 57.8 0.1x

FT 5-PLoRA (FS) 58.0 1.396 55.8 73.2 0.338 72.3 63.1 0.514 59.6 86.1 0.148 59.4 0.1x
Zero-shot learning

B-LoRA* 47.2 2.232 44.4 65.0 0.497 62.7 52.3 0.687 48.3 81.4 0.218 34.5 2.1x
B-UserAdapter 44.3 2.123 41.9 65.6 0.418 65.1 53.2 0.681 51.5 82.1 0.185 43.6 -
B-PLoRA2S 44.1 1.889 41.6 67.3 0.416 65.4 53.5 0.676 51.5 82.3 0.183 41.5 -

B-PLoRA (ZS) 46.9 1.632 45.1 67.3 0.412 65.8 56.2 0.640 53.7 83.3 0.180 42.8 -
R-PLoRA (ZS) 47.6 1.553 46.0 68.6 0.383 67.5 56.6 0.630 55.4 83.1 0.187 53.7 -

FT 5-PLoRA (ZS) 48.1 1.521 46.5 70.7 0.352 68.8 54.3 0.618 52.8 84.7 0.159 57.4 -

Table 2: Comparative test results on few/zero-shot learning scenarios. * presents corresponding models optimized only from
DB. FS means corresponding models are first learned in DA and are then adapted to DB in a few-shot learning strategy, i.e., Eq
(5). ZS denotes corresponding models optimized with PDropout or MIM inDA are directly applied forDB without user inputs.

We compare our methods with the previous high-
performance models, including neural sentiment classifi-
cation (NSC) (Chen et al. 2016), multi-attribute attention
(MAA) from MA-BERT (Zhang et al. 2021), and UserA-
datper (Zhong et al. 2021). Moreover, several comparative
methods derived from our motivations were adopted, includ-
ing PKI (only PKI tuned in optimization), LoRA, and two-
stage (2S). Note that 2S means human-centered models were
learned from generic data in advance and then adapted to
various users via the few-shot learning strategy in Eq. (5) so
that updated models were well capable of providing generic
and personalized services.

Comparative Results and Analysis

Full-shot learning Table 1 reported comparative results
for both generic (the first group) and human-centered (the

second group) scenarios in DA. From the first group, ap-
plying the LoRA method to PLMs facilitated general lan-
guage knowledge learned from large corpora to be adapted
to sentiment analysis tasks with a few trainable parameters.
Accordingly, LoRA-based PLMs achieved comparable per-
formance in comparison to FFT models.

Against the first group, models in the second group gained
better results on three metrics. This is because the intro-
duction of personalized knowledge helps these models to
accurately locate users’ implicate sentiments where senti-
ment preferences from different users might differ. Based
on the same PLMs, i.e., BERT, the proposed method of B-
PLoRA was on par with previous best-performance mod-
els, i.e., B-MAA and B-UserAdapter concerning their effec-
tiveness. However, MAA and UserAdapter necessitate FFT
optimization for task adaptations. Moreover, B-PKI showed
relatively lower scores, indicating FFT is essential for PLM
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Models IMDB-A IMDB-B YELP-A YELP-B
Full-shot Few-shot Zero-shot Full-shot Few-shot Zero-shot

B-PLoRA 54.9 53.5 45.1 70.3 69.3 66.1
w/o PKI 48.9 - 41.6 66.2 - 65.4
w/o LoRA 53.2 52.0 - 68.5 67.7 -
w/o PDropout 54.2 51.4 45.0 69.8 68.9 65.7
w/o MIM 53.9 51.7 44.0 69.4 68.6 65.8
w/o PDropout & MIM 54.2 51.7 41.9 69.2 68.1 59.9

Table 3: Ablation study of test F1 scores on IMDB and YELP with respect to full/few/zero-shot learning scenarios.

adapted to downstream tasks. By contrast, the proposed
model is more efficient due to the dynamic combination be-
tween LoRA and PKI. Not only encoder-based PLMs, but
decoder-based T5 can load PLoRA for downstream tasks,
revealing an easy-to-deploy capability of PLoRA on wide
applications.

In real-world applications, cold-start issues are serious in
personalized services due to user-specific domain adaptation
and data sparsity. We simulated cold-start issues as few-shot
learning and zero-shot learning scenarios and conducted cor-
responding experiments, as reported in Table 2.

Few-shot Learning To make human-centered models ca-
pable of serving on unseen users where the users were from
DB while out of DA, we tested the proposed PLoRA and
previous works via the introduced few-shot learning strat-
egy from Eq. (5). From the table, it can be found that these
models outperformed B-LoRA* that was directly optimized
on datasets DB in a full-shot way since these models up-
dated from DA in advance could store robust performance
and then be easily deployed to unseen users with a few sam-
ples.

Zero-shot Learning Theoretically, PKI-based methods
with sophisticated structures, i.e., NSC+U and B-MAA,
were hard to directly handled pure textual data as they were
difficult to distill pure textual representation from human-
centered features (Zhang et al. 2023a). Fortunately, UserA-
datper could directly discard user tokens at input layer and
performed well when they met unseen users in zero-shot
learning scenarios. B-PLoRA2S separately and step-by-step
optimized task-specific and use-specific plugins so that it
competitively performed in both zero-shot learning and few-
shot learning scenarios. However, lacking mutual learning
between LoRA (for task adaptation) and PKI (for personal-
ization) made B-PLoRA2S method underperform our pro-
posed PLoRA (ZS) that applies PDropout and MIM strate-
gies to decouple task-specific and user-specific knowledge
in the full-shot learning scenarios.

Model Analysis
Ablation study Results of an ablation study on IMDB and
YELP were reported in Table 3, where the ablation target
included: 1) PKI and LoRA to investigate the effectiveness
of PLoRA in task-specific and user-specific knowledge fu-
sion; 2) PDropout and MIM to validate the PnP performance
of knowledge decoupling. From the first group in the table,
the performance of PLoRA degraded with the elimination

Figure 5: Effect of PLoRA with different data sparsity.
FuS, FS, and ZS in figures (including the following fig-
ures) means using full/few/zero-shot learning methods, re-
spectively. {M}-PLoRA {A/B}-{FuS/ZS/FS} corresponds
dev figures of PLM M-based PLoRA applied for datasets
(A or B) with FuS/ZS/FS methods. ≈ 100% means almost
the full training dataset in DB is used and also presents no
data sparsity for every user in DB.

of PKI or LoRA, demonstrating that both task-specific and
user-specific adaptations were crucial for the deployment of
PLMs in HCTU applications.

From the last group, it can be found that, without
PDropout or MIM, PLoRA slightly dropped F1 score in
all three scenarios; while it performed catastrophic descents
in zero-shot learning scenarios when neither PDropout nor
MIM was adopted. This is because PLoRA have cou-
pled task-specific and user-specific knowledge in the full-
shot learning procedure, leading to inferior performance of
uncoupling task-specific knowledge for generic sentiment
analysis if without zero-shot learning strategies. This phe-
nomenon also indicated that either PDropout or MIM could
facilitate the proposed PLoRA effectively adapted to generic
scenarios. Note that, a dynamic combination of PDropout
and MIM is beneficial for better adaptation.

Sparsity To reveal the robustness of PLoRA, we explored
its dataset B-dev Acc in few-shot learning scenarios with
different degrees of data sparsity or the number of few-
shot samples in B-training sets, as shown in Figure 5. It
can be found that the improvements of PLoRA increased
with the number of shot samples increasing or the data spar-
sity degrees decreasing. For both our used IMDB and YELP
datasets, 15-shot learning relatively gained competitive dev
performance. It indicated that, with sufficient user-oriented
data, the proposed method could extract user-specific knowl-
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Figure 6: Performance on dev datasets with diverse parame-
ters of PLoRA.

edge which then helps sentiment models to be adapted to
such users in turn. Even in a few samples used (such as 1,
5, and 10), PLoRAs with the few-shot learning strategy (i.e.,
B-PLoRA B-FS) still outperformed those (i.e., B-PLoRA B-
ZS) that were directly applied to zero-shot learning scenar-
ios, indicating the effect of the few-shot learning strategy.

The sensitivity of hyperparameters. To further investi-
gate how each component of PLoRA affects the final perfor-
mance, we conducted several experiments on the sensitivity
of hyperparameters, as shown in Figure 6-7.

Among the four subfigures in Figure 6, lower rank di-
mensionalities of applied weights and lower user embed-
dings for user semantics would not support complete perfor-
mance in all scenarios. By contrast, larger figures of PLoRA
configuration might saturate model performance and desire
exponential-enlarged trainable parameters. It indicated that,
in practice, empirical explorations of an appropriate PLoRA
configuration and considerations of limited compute budget
were critical for satisfactory services.

To further investigate how PDropout and MIM affect the
effectiveness in zero-shot learning scenarios, we conducted
analytical experiments in Figure 7. From the figure, it can be
first found that, without PDropout nor MIM (ω = α = 0),
B-PLoRA B-ZS did not perform well in zero-shot scenarios,
even worse than B-LoRA B-ZS (green dashed lines or ω =
1) that was learned from dataset DA without PKI and was
then directed applied for dataset DB in zero-shot scenarios.
Secondly, with appropriate configurations of ω and α, B-
PLoRA could effectively mitigate the above degradation, in
consistent with the analysis in Table 3.

Discussions
In summary, the priority of the proposed PLoRA was lo-
cated at 1) a dynamic combination of PEFT-based LoRA
and knowledge-injected PKI for task-specific and human-
centered adaptation; 2) an introduction of the few-shot learn-

Figure 7: Performance on dev datasets with diverse parame-
ters of PDropout and MIM. Note that, one of them is investi-
gated with the other being not applied.

ing strategy to adapt well-trained PLMs to unseen users in
the training phase; 3) a PnP framework that couples and
decouples task-specific and human-centered knowledge for
cold-start issues.

We conducted experiments with PLMs including BERT,
RoBERTa, and Flan-T5, which does not rashly verify that
PLoRA could be only applied to these models. As dis-
cussed in Section Methodology, the proposed PLoRA can
be adapted to a broader range of neural networks as long
as containing linear projectors. Note that we do not want
to limit the capability of our work to only sentiment anal-
ysis. Instead, our explorations could be extended to text-
generative tasks and much broader applications as we in-
troduced the text-generative paradigm of Flan-T5 to handle
classification tasks. It sheds light on the promising future
direction of PEFT and human-centered reasoning in large-
scale language models.

Conclusions

We proposed PLoRA, a human-centered PEFT approach
that successfully demonstrated the effectiveness in enhanc-
ing transfer learning from pre-training to downstream tasks
for PLMs. By adopting a PnP framework, PLoRA signifi-
cantly improves its adaptative ability to the cold-start issues
in real-world applications. The experiments conducted on
diverse personalized sentiment analysis tasks validated the
effectiveness and efficiency of our method. Moreover, this
work not only contributes to the improvements of the perfor-
mance of PLMs on text understanding tasks but also sheds
light on future works, including the explorations of PLoRA
on LayerNorm layer, CNN, and other hybrid components,
and the service extension of applications.
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Pfeiffer, J.; Rücklé, A.; Poth, C.; Kamath, A.; Vulić, I.;
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