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Abstract

Augmenting Language Models (LMs) with structured knowl-
edge graphs (KGs) aims to leverage structured world
knowledge to enhance the capability of LMs to complete
knowledge-intensive tasks. However, existing methods are
unable to effectively utilize the structured knowledge in a KG
due to their inability to capture the rich relational semantics
of knowledge triplets. Moreover, the modality gap between
natural language text and KGs has become a challenging ob-
stacle when aligning and fusing cross-modal information. To
address these challenges, we propose a novel knowledge-
augmented question answering (QA) model, namely, Graph
Reasoning Transformers (GRT). Different from conventional
node-level methods, the GRT serves knowledge triplets as
atomic knowledge and utilize a triplet-level graph encoder to
capture triplet-level graph features. Furthermore, to alleviate
the negative effect of the modality gap on joint reasoning, we
propose a representation alignment pretraining to align the
cross-modal representations and introduce a cross-modal in-
formation fusion module with attention bias to enable cross-
modal information fusion. Extensive experiments conducted
on three knowledge-intensive QA benchmarks show that the
GRT outperforms the state-of-the-art KG-augmented QA sys-
tems, demonstrating the effectiveness and adaptation of our
proposed model.

Introduction
Pretrained language models (LMs) have been widely applied
to various downstream natural language processing (NLP)
tasks due to their impressive natural language understanding
and generation performance (Radford et al. 2018a,b). How-
ever, the reliance on parametric knowledge leads LMs to
generate answers with factual errors when addressing ques-
tions that demand current or domain-specific knowledge, as
LMs are based on occasionally obsolete or inaccurate para-
metric knowledge for reasoning. This leads to the fact that
large LMs (LLMs) (Chowdhery et al. 2022; Brown et al.
2020) with few-shot prompting still lag behind small fine-
tuned state-of-the-art models on knowledge-aware question
answering (QA) tasks such as CommonsenseQA and Open-
bookQA, even when using elaborate prompting strategies
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If it is not used for hair, a round brush is used for what?
(a) QA Context Example

(c) Triplet-level Reasoning

A. hair brush  B. bathroom C. art supplies  D. shower  

(b) Retrieved KG
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painting

NOT(hair brush, used for, hair)

art supply… … 

(round brush, used for painting)  
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… … 

…

Figure 1: (a) An example of QA context from a knowledge-
aware QA dataset. (b) We follow the procedure of Yasunaga
et al. (2021) to retrieve the relevant KG. (c) Knowledge-
aware QA places emphasis on aggregating knowledge
triplets that support the answer.

(Wei et al. 2022). Moreover, LLM hallucination greatly af-
fects their performance in knowledge-intensive QA tasks
that require high accuracy and interpretability, as they usu-
ally generate answers that sound reasonable but lack in-
terpretability (Ji et al. 2023). In this context, the augmen-
tation of LMs with knowledge graphs (KGs) has gained
widespread attention.

Since vanilla LMs are “blind” to other modalities in nat-
ural language text, previous works (Yasunaga et al. 2021;
Zhang et al. 2022) tended to use graph neural networks
(GNNs) to encode KGs. These methods use the GNN mes-
sage passing method to aggregate information from the
neighbours of each node and combine node and language
features for answer prediction. While GNNs have been
widely used to handle graph structures in downstream tasks
such as node classification, node clustering, and link predic-
tion, recent works have shown that GNNs are unable to fully
utilize external knowledge graphs in knowledge-aware QA
tasks. Jiang et al. (2022) surprisingly found that even when
reducing the dimensionality of the GNN node embeddings
from 1024 to 1, the performance of KG-augmented QA
systems was still unchanged. Wang et al. (2022) leveraged
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SpareVD to detect which ingredients of a GNN are crucial
for knowledge augmentation and found that even by ablating
the node embedding and message passing methods, the per-
formance of KG-augmented QA systems could surprisingly
be improved. Although these works have investigated these
phenomena in knowledge-aware QA tasks, they did not pro-
vide reasonable explanations or solutions to address these
limitations. As shown in Figure 1, the knowledge-aware QA
task is not a node-level classification task. Before model-
ing KGs using GNNs, traditional rule-based KG-augmented
QA systems (Galárraga et al. 2013; Ortona, Meduri, and
Papotti 2018) regard knowledge triplets as atomic formu-
lae and view the graph reasoning process as a combination
of multiple atomic formulae. They are more concerned with
designing rules to aggregate the knowledge triplets that sup-
port the answer, while the node information is replaced by
serial numbers to distinguish between different entities. In
other words, knowledge-aware QA tasks focus on retrieving
triplet-level relational facts as evidence to support the rea-
soning process rather than node-level features.

In addition, some challenges related to the modality gap
between text and KGs still exist. Due to the differences be-
tween various data structures and encoding methods, a dis-
tribution gap can be observed for the same entity between
natural language text and a KG, which greatly limits the
model’s ability to align and utilize both sources of data (Ye
et al. 2023). Furthermore, recently proposed KG-augmented
QA systems (Yasunaga et al. 2021; Wang et al. 2022) simply
concatenate the language and pooled node representations
and use a classifier to directly perform answer prediction,
without deep interaction and fusion between the two modal-
ities. This results in the graph reasoning module being in-
sensitive to linguistic features such as ’negation’ that play
important roles in QA.

To address the above challenges, we propose a novel
KG-augmented QA system called Graph Reasoning Trans-
formers (GRT), which can be applied to knowledge-aware
QA tasks. The structure of the GRT consists of two sepa-
rate uni-modal encoders for natural language text and KGs,
followed by a cross-modal information fusion module. To
address the challenge of node-level graph modeling, we
serve knowledge triplets as atomic knowledge and utilize a
triplet-level graph encoder to capture relational knowledge
features for joint reasoning. To address the challenge of the
modality gap, we propose a representation alignment pre-
training, which consists of text-triplet matching (TTM) and
masked language modeling (MLM), to pretrain uni-modal
encoders for aligning the representations across modalities.
Furthermore, we propose a information fusion module with
elaborate attention bias to establish connections across dif-
ferent modalities, enabling cross-modal information fusion
between the QA contexts and KGs.

In summary, the contributions of our work are as follows.

• We propose a novel KG-augmented QA model GRT,
which provide a new perspective that utilizes triplets as
atomic knowledge for augmenting LMs with structured
world knowledge for knowledge-aware QA.

• We propose a triplet-level graph encoder to capture “re-

lational” knowledge features for joint reasoning, thus al-
lowing the given relational knowledge to be fully utilized
for knowledge-aware QA tasks.

• We propose a representation alignment pretraining to
align the cross-modal representations during pretraining
and introduce a information fusion layer with elaborate
attention bias to enable cross-modal information fusion
between the language and KG during fine-tuning.

• We achieve state-of-the-art results on two commonsense
QA benchmarks and a biomedical QA benchmark that
heavily rely on knowledge-aware reasoning, demonstrat-
ing the ability of the GRT to capture uni-modal features
and utilize cross-modal information for joint reasoning.

Related Works
LM-Based QA Systems. Pretrained LMs have been
shown to learn a substantial amount of in-depth knowl-
edge from a wide variety of sources during pretraining
(Petroni et al. 2019). Roberts, Raffel, and Shazeer (2020)
directly fine-tuned an LM on downstream tasks and demon-
strated that LMs can answer questions with high accuracy
in closed-book settings. In addition, some works aim to en-
hance the parametric knowledge of LMs. Sun et al. (2020a)
and Sun et al. (2020b) proposed a knowledge-enhanced pre-
training method to inject world knowledge into the parame-
ters of LMs during pretraining. Other works aim to activate
parametric knowledge for downstream tasks. Gardner et al.
(2021); Hwang et al. (2021) fine-tuned LMs on link pre-
diction tasks to activate the world knowledge stored in the
LMs. Huang et al. (2022) utilized QA contexts to generate
topic-related clues, which served as prompts for activating
parametric knowledge. However, the reliance on parametric
knowledge limits their performance on knowledge-intensive
tasks that require up-to-date or domain-specific knowledge.

KG-Augmented QA Systems. GNNs are commonly used
to model external KGs for conducting joint reasoning with
LMs. Some works (Feng et al. 2020; Yasunaga et al. 2021;
Jiang et al. 2022) use the information of one modality to
augment another modality. The most representative work,
the QA-GNN (Yasunaga et al. 2021), adds language repre-
sentation as a new node to the retrieved KG and employs
an elaborate GNN to jointly update the LM and GNN rep-
resentations via message passing. Since these methods ig-
nore the modality gap between text and KGs, the distribu-
tion gap results in inconsistencies when combining cross-
modal representations and finally leads to suboptimal inter-
actions between cross-modal information. Other works tend
to use two-tower models for jointly modeling text and graphs
(Zhang et al. 2022; Wang et al. 2022; Ye et al. 2023). They
encode language and KGs via LMs and GNNs, respectively,
and fuse the language and knowledge representations in the
final layer for answer prediction. However, the information
exchanges between LMs and GNNs are limited, and the in-
formation fusion is shallow. Therefore, how to align and fuse
cross-modal information remains an important open ques-
tion.
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If it is not used for hair, a round brush is used for what?

A. hair brush  B. bathroom C. art supplies  D. shower  E. hair salon

Question: 
Candidate Answers: Retrieved

Knowledge
GraphExternal Knowledge:

art supply is used for painting, round brush is used for painting, ... 
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Figure 2: An overview of the graph reasoning transformers. The GRT consists of two separate uni-modal encoders for text
and KGs, followed by a cross-modal information fusion module. To better utilize structured relational knowledge, we first
serve knowledge triplets as atomic knowledge and propose a triplet-level graph encoder for knowledge encoding (Section
3.1). To address the challenge of the modality gap, we then propose a representation alignment pretraining to pretrain uni-
modal encoders to align the representations across modalities (Section 3.2). Finally, we establish cross-modal connections and
propose a cross-modal information fusion with attention bias, enabling information fusion across modalities (Section 3.3)).

Graph Reasoning Transformers
In this section, we propose a novel knowledge-augmented
QA model named GRT for knowledge-aware QA. We ex-
plain our model from the following aspects: the triplet-level
graph encoder, the representation alignment pretraining, and
the cross-modal information fusion process.

Relational Knowledge Feature via Triplet-Level
Graph Encoder
Vanilla LMs are blind to the modality of natural lan-
guage text, which is not conducive to the augmentation of
structured world knowledge. Therefore, the previous meth-
ods (Yasunaga et al. 2021; Zhang et al. 2022) are de-
voted to using GNNs to obtain graph features, where each
node aggregates information from its neighbours. However,
knowledge-aware QA is more concerned with identifying
which knowledge triplets can support the answer, while the
node information can be replaced by serial numbers to dis-
tinguish between different entities (Galárraga et al. 2013).
As a result, the initial node embeddings are demonstrated to
be dispensable, and some GNN layers are shown to be over-
parameterized (Jiang et al. 2022; Wang et al. 2022). Differ-
ent from the existing node-based models, we use knowledge
triplets as atomic knowledge for graph encoding and propose
a triplet encoder for graph encoding.

Semantic Triplet Embedding. As mentioned above, we
serve triplets as the atomic knowledge for graph encoding
and thus convert the given KG to a set of knowledge triplets.

Here, we use the types of entities and relations to initialize
the semantic triplet embeddings. The type of an entity repre-
sents the location of the entity in the QA context. If an entity
is mentioned in the question/answer context, it is denoted as
a question/answer entity. Otherwise, the entity is denoted as
an other entity. Therefore, the semantic triplet embeddings
can be expressed as follows:

hhrt = fs(τh, τr, τo), (1)

where τh and τo are one-hot representations of the head and
tail types, and τr is a one-hot representation of the relation.

Spatial Position Embedding. In a KG, the connections
between entities and relations are represented by the graph
structure. However, when linearizing the KG, the inherent
graph connectivity will inevitably be disrupted. To main-
tain the structural information of the KG, we transform the
physical connectivity of the knowledge triplets in a graph
structure into virtual connectivity in the embedding space.
Here, we utilize a pretrained knowledge graph embedding
approach called TransE (Bordes et al. 2013) to uniquely lo-
cate the spatial positions of the knowledge triplets. TransE
is a knowledge graph embedding model that represents enti-
ties and relations as continuous vectors in a low-dimensional
embedding space. In other words, TransE maps entities into
an embedding space and models the relations between en-
tities as translations in the embedding space. Therefore, we
can use TransE to uniquely locate the positions of entities
and relations in the embedding space, which can be ex-
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pressed as follows:
ph = TransE(h), pt = TransE(t), (2)

pr = ph − pt, (3)

phrt = fp(ph, pr, pt), (4)
By utilizing the entity and relation embeddings in the em-
bedding space, a knowledge triplet can be uniquely located.

Triplet Encoder. After obtaining the semantic triplet and
spatial position embeddings, we concatenate the two types
of embeddings into the input representation t and use a
triplet encoder to encode the knowledge triplets:

{tlGLS, t
l
1, ...t

l
J} = Tri-Enc({tl−1

GLS, t
l−1
1 , ...tl−1

J }). (5)
Specifically, we leverage the triplet-level graph encoder to
fuse the representations and utilize the final hidden states
for cross-modal information fusion and joint reasoning.

Representation Alignment Pretraining based on
Cross-Modal Correspondence
Due to the differences among the utilized data sources and
encoding methods, a distribution gap is observed between
text and KGs, which greatly limits the model’s ability to uti-
lize both sources of data (Ye et al. 2023). To alleviate the
distribution gap between text and graphs, we propose a rep-
resentation alignment pretraining based on cross-modal cor-
respondence to align cross-modal representations.

Text-Triplet Matching. First, we use a contextual LM
(Liu et al. 2019) as the backbone to encode the QA context
and texutalized world knowledge:

{hl
CLS , h

l
1, ...h

l
I} = PLM({hl−1

CLS , h
l−1
1 , ...hl−1

I }). (6)
For the text entity mentioned in the QA context, we use the
last hidden states corresponding to the entity as the text en-
tity representation. If the entity contains multiple tokens, we
apply mean pooling over all tokens of the entity to obtain the
entity representation. For each knowledge triplet mentioned
in the knowledge graph, we use the corresponding output
representation in the final layer of the triplet encoder as the
knowledge representation.

As the KG is obtained by entity linking (Yasunaga et al.
2021), the entities mentioned in the QA context are associ-
ated with the knowledge triplets in the KG. Therefore, we
can easily utilize this cross-modal correspondence for pre-
training. For a text entity mentioned in the QA context, we
select the knowledge triplet containing this entity as a pos-
itive text-triplet pair; otherwise, the triplet is described as a
negative pair. Then, we concatenate the representations of
the text entity and knowledge triplet of a text-triplet pair
and use an MLP to calculate the probability y that indicates
whether the text entity is matched to the triplet.

For each QA context, we select k1 positive text-triplet
pairs and k2 negative pairs for pretraining. If these text-
triplet pairs are positive pairs, their labels ŷ are assigned to
1; otherwise, they are assigned to 0. Finally, the text-triplet
matching loss can be expressed as follows:

LTTM = − 1

k1 + k2

k1+k2∑
i=1

yi log ŷi + (1− yi) log(1− ŷi).

(7)

Masked Language Modeling. Structured world knowl-
edge cannot be directly used by vanilla LMs. When encod-
ing the input text sequence, LMs rely solely on their own
parametric knowledge for text encoding, which can be heav-
ily limited by factors such as knowledge availability, timeli-
ness, and biases. However, the relational facts in the KG can
provide rich contextual information to the input sequence
and background knowledge to the text entities to enhance
the overall performance of text encoding.

To incorporate structured knowledge into the text encod-
ing process, we first use predefined templates to convert
knowledge triplets to natural language text. However, KGs
contain vast numbers of knowledge triplets. Including all of
these relational facts during text encoding would introduce
knowledge noise and potentially hinder the text encoding
performance. To mitigate this issue, we use a pretrained sen-
tence transformer (Reimers and Gurevych 2019) to calculate
the similarity scores of all knowledge triplets and the QA
context and finally select the top-20 sentences as clues.

Finally, we concatenate the QA context and the clues as
the input sequence. We follow the procedure of the official
BERT (Devlin et al. 2019) model to randomly select 15% of
the tokens for masked language modeling and calculate the
masked language modeling loss L. The overall pretraining
loss can be expressed as follows:

L = LTTM + LMLM . (8)
Masked language modeling with external knowledge en-
hances the ability of LMs to utilize external knowledge dur-
ing text encoding and can effectively prevent the negative
model distribution effect during contrastive learning (e.g.,
catastrophic forgetting).

Cross-Modal Information Fusion with Attention
Bias
Previous works tend to fuse cross-modal information in a
shallow way, such as incorporating the text representation
as a new node into the KG (Yasunaga et al. 2021) or using
an MLP between uni-modal encoders for cross-modal infor-
mation fusion (Zhang et al. 2022). However, these lead to
inconsistency when combining the cross-modal representa-
tions and finally lead to suboptimal cross-modal feature ag-
gregation results (Park et al. 2023). Therefore, our goal is to
enable the cross-modal information fusion module to better
utilize the complementary advantages of different modalities
to improve the effectiveness of joint reasoning.

Cross-Modal Connection. During information fusion, we
aim to enhance the cross-modal interactions between text
entities and their corresponding knowledge triplets. A text
entity may undergo grammatical changes or contain multiple
words. For instance, after entity linking, the text entity “car
shows” is linked to the KG entities “car” and “show” simul-
taneously. In this case, we aim to establish a cross-modal
connection between the text entity token “shows” and the
corresponding KG entity “show”.

To this end, we use a pretrained word embedding to cal-
culate the similarity between the text words and the KG en-
tities to establish cross-modal connections. For each knowl-
edge triplet, we first obtain the representations of the head
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...  for hair, a round brush is  ...    art supplies  ...

paintingart supplyhairround brush
... ...

 
supplieshairKG Entity‘art supply’

Text Word‘supplies’ 

Attention Bias

KG Entity‘hair’
Text Word‘hair’ 

KG Entity‘painting’
is not linked to any word 

Figure 3: Attention bias for information fusion. We establish
connections between the head/tail entity and the words with
the highest similarity and utilize this connection matrix to
construct attention bias.

and tail entities. Then, we obtain the word representations
of all text entities and calculate the representation similar-
ities between the words and the head/tail entity. As shown
in Figure 3, for each knowledge triplet, we establish con-
nections between the head/tail entity and the words with the
highest similarity. Note that some entities in the KG are ob-
tained by retrieving the 2-hop neighbourhoods of the linked
entities (i.e., other entities). Therefore, we only retain the
connections where the KG entity is mentioned in the input
sequence to avoid introducing attention noise between the
tokens and unrelated knowledge triplets. Finally, we can ob-
tain the connection matrix X̂ .

Attention Bias. After obtaining the connection matrix, we
construct an attention bias matrix that enables the connected
cross-modal tokens to obtain higher attention weights when
calculating attention in the cross-modal fusion layer. The at-
tention bias matrix can be expressed as follows:

Ω =

[
0 ω1X̂

ω2X̂
T 0

]
(9)

Since a knowledge triplet contains a head entity and a tail
entity, we use different biases ω1 and ω2 to initialize the at-
tention bias matrix for distinguishing the direction of cross-
modal attention.

Cross-Modal Information Fusion. In the cross-modal in-
formation fusion module, we stack M transformer blocks as
the backbone and modify the multi-head attention block to
adopt the original transformer for fusing cross-modal infor-
mation. Our cross-modal multi-head attention mechanism
can be expressed as follows:

Q = XWQ,K = XWK ,V = XWV , (10)

Attention(Q,K,V) = softmax(
QKT

√
d

+Ω)V. (11)

After the cross-modal information module, we use an
MLP to calculate the confidence score of the candidate an-
swer. Formally, given a question q and a candidate answer c,
the confidence score of candidate answer c can be expressed
as follows:

p(c|q) = exp(MLP([hCLS;h1; ...;hI ])), (12)

where [hCLS;h1; ...;hI ] is the output hidden states of cross-
modal information fusion layers. We leverage the final hid-
den states for answer prediction. We use the cross-entropy
loss during training and predict the candidate answer with
the maximum probability as the answer prediction.

Experiments
Experimental Setup
In this section, we empirically evaluate the performance and
adaptability of our proposed GRT model.

Datasets. We employ 3 challenging knowledge-intensive
QA benchmarks that heavily rely on knowledge-aware rea-
soning, including 2 commonsense QA benchmarks Com-
monsenseQA and OpenbookQA and a biomedical QA bench-
mark MedQA-USMLE.

• CommonsenseQA: This is a commonsense QA dataset
with 12247 questions that require knowledge-aware rea-
soning based on commonsense knowledge. Each ques-
tion provides 5 candidate answers. Due to the unavail-
ability of official data splits, we adopt the in-house (IH)
split (Lin et al. 2019) used in prior studies for evaluations.

• OpenbookQA: This is a commonsense QA dataset with
5957 questions that require commonsense knowledge
and elementary-level science knowledge for reason-
ing. Each question provides 4 candidate answers. Note
that OpenbookQA additionally provides 5,167 crowd-
sourced commonsense knowledge facts, which can be
used as external knowledge for joint reasoning. In this
work, we utilize the official data splits (Mihaylov and
Frank 2018) for our evaluations.

• MedQA-USMLE: This is a medical-domain QA dataset
with 12723 questions that require biomedical and clini-
cal knowledge for reasoning. Each question provides 4
candidate answers. We use MedQA-USMLE mainly to
verify the adaptability of our proposed GRT. In this work,
we utilize the official data splits (Jin et al. 2020) for eval-
uation purposes.

Baseline Methods. We compare our proposed GRT with
existing KG-augmented QA systems.

• RGCN , GconAttn, RN: These classic works use relation-
aware GNNs to encode KGs for joint reasoning.

• MHGRN, SAFE, GSC, QAT: These methods further in-
vestigate the effect of edge modeling on graph reasoning.

• QA-GNN, GreaseLM, FIT: These works mainly focus on
establishing cross-modal interactions and understanding.
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Models IHdev-Acc IHtest-Acc
RoBERTa-large (w/o KG) 73.0 (±0.4) 68.6 (±0.5)

GconAttn (Wang et al. 2019) 72.6 (±0.3) 68.5 (±0.9)
RN (Santoro et al. 2017) 74.5 (±0.9) 69.0 (±0.2)
MHGRN (Feng et al. 2020) 74.4 (±0.1) 71.1 (±0.8)
QA-GNN (Yasunaga et al. 2021) 76.5 (±0.2) 73.4 (±0.9)
SAFE (Jiang et al. 2022) - 74.0
GreaseLM (Zhang et al. 2022) 78.5 (±0.5) 74.2 (±0.4)
GSC (Wang et al. 2022) 79.1 (±0.2) 74.4 (±0.4)
QAT (Park et al. 2023) 79.5 (±0.4) 75.4 (±0.3)
FIT (Ye et al. 2023) 78.5 (±0.5) 75.6 (±0.3)

GRT (ours) 79.6(±0.3) 76.1(±0.4)

Table 1: Performance comparison with fine-tuned LMs and
KG-augmented QA systems on CommonsenseQA.

Models w/o Facts w Facts
Fine-tuned LM (w/o KG) 64.8 (±2.3) 78.4 (±1.6)

GconAttn (Wang et al. 2019) 64.7 (±1.4) 71.8 (±1.2)
RN (Santoro et al. 2017) 65.2 (±1.1) 75.3 (±1.3)
MHGRN (Feng et al. 2020) 66.8(±1.1) 80.6 (±1.4)
QAGNN (Yasunaga et al. 2021) 67.8 (±2.7) 82.7 (±1.5)
SAFE (Jiang et al. 2022) 69.2 87.1
GreaseLM (Zhang et al. 2022) - 84.8
GSC (Wang et al. 2022) 70.3 (±0.8) 86.6 (±0.4)
QAT (Park et al. 2023) 71.2 (±0.8) 86.9 (±0.2)
FIT (Ye et al. 2023) 70.1 (±1.0) 86.0 (±0.4)

GRT (ours) 72.6 (±1.0) 87.3 (±0.8)

Table 2: Performance comparison with fine-tuned LMs and
KG-augmented QA systems on OpenbookQA.

Implementation Details. For CommonsenseQA and
OpenbookQA, we adopt the vanilla contextual LM,
RoBERTa-large (Liu et al. 2019), as our LM backbone to
validate the performance of KG-augmented QA systems.
Specifically, we follow previous works and use Aris-
toRoBERTa (Clark et al. 2020) to combine the QA context
with its corresponding commonsense knowledge facts for
evaluation. To evaluate the domain generality of the method,
we adopt a biomedical-domain LM, SapBERT-Base, as
our LM backbone for MedQA-USMLE and compare
it with fine-tuned biomedical LMs, ClinicalBERT and
BioBERT, for further analysis. Our code is available at
https://github.com/HUSTNLP-codes/GRT

Main Results
Table 1 summarizes the overall results of our experiments on
the CommonsenseQA. Our proposed GRT achieves the best
performance of 76.1%, which is an improvement of 4.1%
over the fine-tuned LM. In addition, the GRT outperforms
the existing state-of-the-art GNN-oriented QA systems such
as GSC (Wang et al. 2022) and GreaseLM (Zhang et al.
2022), indicating the effectiveness of the triplet-level graph
encoder for joint reasoning.

On the OpenbookQA benchmark, as shown in Figure 2,
our proposed GRT also achieves a state-of-the-art perfor-

Models Test-Acc. (%)

ClinicalBERT (Huang et al. 2019) 32.4
BioRoBERTa-base (Lee et al. 2020) 36.1
BioBERT-basse (Lee et al. 2020) 34.1
BioBERT-large (Lee et al. 2020) 36.7

SapBERT-base (w/o KG) (Liu et al. 2021) 37.2
QAGNN (Yasunaga et al. 2021) 38.0
GreaseLM (Zhang et al. 2022) 38.5
GSC (Wang et al. 2022) 39.3
QAT (Park et al. 2023) 39.3
FIT (Ye et al. 2023) 39.0

GRT (ours) 39.5

Table 3: Test accuracy comparison on MedQA-USMLE with
biomedical LMs and KG-augmented QA systems.

Graph Feature CSQA OBQA OBQA w/ facts
Node 73.1 68.4 84.2
Node + GNN 74.1 68.8 85.4

Triplet 76.1 72.6 87.3

Graph Feature Negations Entities < 7 Entities > 7
Node 74.3 75.1 79.6
Node + GNN 75.6 75.8 79.1

Triplet 79.7 79.1 80.0

Table 4: Performance comparison with node-level graph fea-
tures and triplet-level graph features.

mance level of 72.6%, which is an improvement of 11.4%
over the vanilla RoBERTa-large baseline (i.e., w/o Facts).
Moreover, we conduct experiments using AristoRoBERTa
(i.e., w Facts) to combine the crowd-sourced commonsense
knowledge facts, which are provided by OpenbookQA, for
further evaluations. Our proposed GRT achieves the best re-
sult of 87.3% and outperform other KG-augmented QA sys-
tems. These results demonstrate the effectiveness of our rep-
resentation alignment pretraining.

Domain Generality
Med-USMLE. In addition to commonsense-domain QA
benchmarks, we also conduct experiments on a biomedical-
domain benchmark to further investigate the adaptation of
our model. Table 3 shows the experimental results ob-
tained on the Med-USMLE benchmark. Our proposed GRT
achieves a state-of-the-art result of 39.5% and outperform
other pretrained LMs from the biomedical domain. Com-
pared with other QA systems possessing shallow informa-
tion fusion, our proposed information fusion can effectively
improve the capability of GRT to fuse cross-modal informa-
tion. This result demonstrates the effective adaptability and
domain generality of our proposed model.

Empirical Analyses
To further analyse each component of our proposed GRT,
we mainly focus on 3 research questions as follows.
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Figure 4: Ablation studies on the representation alignment
pretraining (RAP). We additionally compare with 3 different
joint reasoning methods for further evaluations.

• Research Question 1: Is the triplet-level graph encoder
more effective than node-level encoding methods?

• Research Question 2: Does representation alignment
improve the effectiveness of joint reasoning?

• Research Question 3: How does attention bias influence
the performance of information fusion?

Effectiveness of the Triplet-Level Encoder. To answer
Research Question 1, we compare node-level graph fea-
tures, including the raw input node embeddings (Node)
and the node representations obtained through a GNN
(Node+GNN). The results in Table 4 show that the triple-
level graph feature significantly outperforms the node-level
graph feature, demonstrating its ability to enhance the
knowledge-aware QA task. Moreover, we conduct experi-
ments on distinct question types for a further evaluation. The
triplet-level graph features achieve the best performances of
79.7%, 79.1%, and 80.0% on all question types. The signif-
icant improvements achieved for questions with negations
and fewer than 7 entities demonstrate that triple-level graph
features effectively handle negations and utilize KGs to sup-
plement the background knowledge for text entities.

Ablation Studies. To answer Research Question 2, we
conduct ablation studies on the representation alignment
pretraining (RAP) and compare it with different joint rea-
soning methods, including method without information fu-
sion, using a cross-attention layer without explicit super-
vision, and information fusion with attention bias. The re-
sults in Figure 4 show that RAP yields significantly im-
proved performance across all methods on both benchmarks,
demonstrating that representation alignment can effectively
alleviate the negative impact of the modality gap and en-
hance the model’s ability to utilize cross-modal information.
Furthermore, the performance of the cross-attention layer,
which is widely used in multimodal models, is lower than
that of the method without information fusion on Open-
bookQA. The main reason for this is the insufficient corpora
utilized to train the cross-attention layer since large mul-
timodal models require pretraining on massive multimodal

When someone doesn't know to skate well, they 
normally do what to stay up?

A. spin  B. romance  C. hold hands  D. fall down  

Question: 

Candidate Answers:

(i) without Attention Bias
Prediction: D. fall down

(ii) with Attention Bias
Prediction: C hold hands

stay up hold hands skate up hold hands

hand
up

up
fall

skate
hold

hand
up

up
fall

skate
hold

UNMATCHEDUNMATCHEDMATCHEDMATCHED

Figure 5: The effectiveness of attention bias for information
fusion. The direction of an arrow indicates the direction of
cross-modal attention.

corpora. However, cross-modal information fusion with at-
tention bias still exhibits stable performance, indicating that
the attention bias can guide the information fusion to utilize
cross-modal information.

Qualitative Analyses. To answer Research Question 3,
we visualize the produced attention maps to demonstrate
how attention bias improves the cross-modal information fu-
sion process. As shown in Figure 5, the tokens above are
language entity tokens, while those below are knowledge
triplets. To better observe the attention changes, we only
show relatively high attention values between tokens and
triplets. After introducing the attention bias, the language
tokens tend to receive high attention values from their corre-
sponding knowledge triplets, and vice versa. For instance,
the text token ’skate’ receives the highest attention value
from the ’up-antonym-fall’ triplet, but after introducing the
attention bias, ’skate’ tends to attract more attention from
the corresponding ’skate-related-hold’ triplet. Additionally,
as we only establish connections between the triplets and the
entities mentioned in the text sequence, the attention bias
never causes the other text tokens to be linked to unrelated
triplets. This avoids introducing attention noise and enables
effective information fusion across modalities.

Conclusion
In this work, we propose GRT, a novel KG-augmented
QA model for knowledge-aware QA. We utilize triplets as
atomic knowledge and propose a novel triplet-level graph
encoder to better model structured knowledge. Moreover,
we propose a representation alignment pre-training to align
cross-modal representations and introduce an information
fusion method with attention bias to fuse cross-modal infor-
mation. Experimental results on 3 knowledge-intensive QA
benchmarks demonstrate the effectiveness and adaptation of
our proposed model to utilize cross-modal information.
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