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Abstract

Aspect-based sentiment analysis (ABSA) has attracted much
attention due to its wide application scenarios. Most previ-
ous studies have focused solely on monolingual ABSA, pos-
ing a formidable challenge when extending ABSA applica-
tions to multilingual scenarios. In this paper, we study up-
grading monolingual ABSA to cross-lingual ABSA. Existing
methods usually exploit pre-trained cross-lingual language
to model cross-lingual ABSA, and enhance the model with
translation data. However, the low-resource languages might
be under-represented during the pre-training phase, and the
translation-enhanced methods heavily rely on the quality of
the translation and label projection. Inspired by the observa-
tion that quantum entanglement can correlate multiple single
systems, we map the monolingual expression to the quan-
tum Hilbert space as a single quantum system, and then u-
tilize quantum entanglement and quantum measurement to
achieve cross-lingual ABSA. Specifically, we propose a nov-
el quantum neural model named QPEN (short for quantum
projection and quantum entanglement enhanced network).
It is equipped with a proposed quantum projection module
that projects aspects as quantum superposition on a complex-
valued Hilbert space. Furthermore, a quantum entanglement
module is proposed in QPEN to share language-specific fea-
tures between different languages without transmission. We
conducted simulation experiments on the classical computer,
and experimental results on SemEval-2016 dataset demon-
strate that our method achieves state-of-the-art performance
in terms of F1-scores for five languages.

Introduction

Aspect-based sentiment analysis (ABSA) is a fine-grained
task for sentiment analysis. It aims at inferring the sentimen-
t polarities over specific aspects in a sentence (Liu 2012;
Hu et al. 2019). With the development of the product re-
views and the social media, ABSA has been widely applied
in many real-world applications.

However, most existing methods focus merely on the
monolingual ABSA task, and can hardly be directly applied
to the multi-lingual scenario. In practice, the real-world ap-
plications such as E-commerce systems accept the reviews
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of user in different languages, requiring high-quality multi-
lingual systems for the sentiment analysis. Therefore, the
cross-lingual ABSA, which aims to train a ABSA model pri-
marily on the data in one language and then apply it to oth-
er languages, has become an essential ingredient in multi-
lingual sentiment analysis systems.

In recent years, cross-lingual pre-trained language mod-
els such as the multilingual BERT (m-BERT) model (Devlin
etal. 2019) and the XLM-Roberta (XLM-R) model (Conneau
et al. 2020) have become a prevalent paradigm for tackling
cross-lingual ABSA. Thanks to the multilingual knowledge
learned in the pre-training stage (Wu and Dredze 2019),
these pre-trained models are able to be fine-tuned on labeled
data in source language (usually English) and then be direct-
ly applied to the data in target language. To further investi-
gate the transfer of language-specific knowledge in solving
the cross-lingual ABSA problem, an aspect code-switching
mechanism with knowledge distillation (Zhang et al. 2021)
has been proposed to enhance the cross-lingual alignment
for pre-trained cross-lingual language models.

However, it is still challenging to adopt the cross-lingual
pre-trained language models to tackle the cross-lingual AB-
SA task since the low-resource languages might be under-
represented during the pre-training phase (Conneau et al.
2020; Pfeiffer et al. 2020). Making use of the translated tar-
get language data with projected labels is a plausible way
to transfer language-specific knowledge (Li et al. 2020),
whereas the performance of such translation-based method-
s heavily relies on the quality of the translation and label
projection. In practice, the task-specific knowledge in the
translated data would also be limited if the quality of the
projected label is unsatisfactory.

To tackle these challenges, we investigate the problem
of cross-lingual ABSA by introducing quantum modules to
pre-trained cross-lingual language models, based on the ob-
servation that quantum entanglement can correlate multiple
single systems in quantum systems. Specifically, we propose
a novel quantum cross-lingual ABSA model named QPEN
(short for quantum projection and quantum entanglement
enhanced network). It is equipped with a quantum projec-
tion module and a quantum entanglement module, as shown
in Figure 1. Given a review context, QPEN first encodes
the context to contextualized representation by applying a
pre-trained cross-lingual language model such as mBERT or
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Figure 1: The overall architecture of QPEN. QPEN consists of the input layer, the lexical encoding layer, the quantum layer, and
the output layer, of which the quantum layer contains the quantum projection module and the quantum entanglement module.

XLM-R. We propose two quantum modules to enhance the
cross-lingual language modelling for cross-lingual ABSA.
The first module is the quantum projection module, which
projects the contextualized representation to the complex
representation in a Hilbert space. With this module, we can
formulate each aspect as a quantum superposition state on a
complex-valued Hilbert space. In order to enforce the model
sharing the language-specific knowledge between different
languages, we propose a quantum entanglement module that
enables each particle to measure its own quantum state to
share the entire information without transmission through-
out the quantum system, yielding entanglement representa-
tion that captures shared language-specific knowledge be-
tween different languages. The complex representation and
the entanglement representation are then concatenated for
the sequence labeling classification.

We evaluate our model QPEN on the SemEval-2016
dataset (Pontiki et al. 2016). Experimental results demon-
strate that the proposed model outperforms state-of-the-art
methods by an average absolute gain of 1.03% (resp. 2.31%)
in terms of F1-score based on the mBERT (resps. XLM-R)
model. The main contributions of this work include:

1. We proposed a quantum neural model named QPEN for
cross-lingual ABSA, which is equipped with a quantum
projection module and a quantum entanglement mod-
ule.To the best of our knowledge, it is the first method

introducing quantum modules for cross-lingual ABSA.

. We provide the quantum circuit implementation for the
proposed quantum entangled module, which allows our
model QPEN to be implemented on a quantum computer.

. We conduct the simulation experiments on a classical
computer using the SemEval-2016 dataset to demon-
strate significant improvements achieved by QPEN.

Related Works

Our work shares the same research line with aspect-based
sentiment analysis and quantum neural networks.

Aspect-Based Sentiment Analysis. Traditional sentiment
analysis tasks (Liu 2012) are sentence-level or document-
level oriented. In contrast, ABSA is an entity-level oriented
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and a more fine-grained task for sentiment analysis. Most
recent researches on cross-lingual ABSA mainly focus on
its sub-tasks including the cross-lingual aspect term extrac-
tion (Lin et al. 2014) and aspect sentiment classification
(Lambert 2015; Barnes, Lambert, and Badia 2016). To ob-
tain language knowledge of the target languages, transla-
tion systems are used to obtain pseudo-parallel data (Zhou,
Wan, and Xiao 2015). A word or phrase alignment algorith-
m such as fastAlign (Dyer, Chahuneau, and Smith 2013)
is then utilized to project the label from the source to the
target sentence. Since the performance of such methods
heavily depends on the quality of the translation and align-
ment, different strategies (Klinger and Cimiano 2015; Li
et al. 2020) are proposed to further improve the data qual-
ity. Another line of work uses the cross-lingual word em-
beddings trained on large parallel bilingual corpus (Ruder,
Vuli¢, and Sggaard 2019). By switching the word embed-
dings between different languages, the model can be used
in a language-agnostic manner (Barnes, Lambert, and Badia
2016; Akhtar et al. 2018; Wang and Pan 2018; Jebbara and
Cimiano 2019). Recently, the transformer-based models pre-
trained on large multilingual corpus, such as the multilingual
BERT (mBERT) model (Devlin et al. 2019) and the XLM-
Roberta (XLM-R) model (Conneau et al. 2020), have shown
significant improvements for various cross-lingual Natural
Language Processing (NLP) (Martin 2009) tasks. Thanks
to the language knowledge learned in the pre-training pro-
cess, fine-tuning the model on the labeled source language
data and directly conducting the inference on the target da-
ta can achieve impressive cross-lingual adaptation perfor-
mance (Wu and Dredze 2019; Pires, Schlinger, and Garrette
2019; Karthikeyan et al. 2020). Some studies further utilize
the translation system together with the pre-trained models
(Fei, Zhang, and Ji 2020; Hu et al. 2020; Singh et al. 2020;
Li et al. 2020). To investigate the importance of language-
specific knowledge in solving the cross-lingual ABSA prob-
lem, the model ACS (Zhang et al. 2021) was distilled on the
unlabeled target language data, which improves the perfor-
mance to the same level as the supervised method.

Quantum Neural Networks. The quantum method pro-
vides new ideas and directions for the development of NLP
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(Martin 2009), and some quantum and quantum-inspired
neural networks have been designed (Li et al. 2021; Zhao,
Hou, and Xu 2022; Yan, Wu, and Yan 2023). Recently, a
fundamentally new, quantum cognitively motivated fusion
strategy for predicting sentiment judgments was proposed.
In particular, utterances were formulated as quantum su-
perposition states of positive and negative sentiment judg-
ments, and unimodal classifiers were formulated as mutual-
ly incompatible observables, on a complex-valued Hilbert
space with positive-operator valued measures (Gkoumas
et al. 2021a). In view of the advantages of quantum prob-
ability (OP) (Gudder 2014) in modeling such uncertainty,
a transparent quantum probabilistic neural model and a QP
driven multi-task learning framework have been proposed
(Gkoumas et al. 2021b; Liu et al. 2021). Besides, a novel
perspective on conversational emotion recognition has been
provided by drawing an analogy between the task and a
complete span of quantum measurement (Li et al. 2021).
To accurately and comprehensively model complicated in-
teractions, a comprehensive framework quantum-like multi-
modal network for multi-modal sentiment analysis has been
designed, which leverages the mathematical formalism of
quantum theory (QT) and a long short-term memory (LSTM)
network (Zhang et al. 2020). In addition, a novel quantum
neural network has been proposed for learning combinatori-
al optimization problems in a supervised manner to achieve
better and faster results (Ye, Yan, and Yan 2023), a hybrid
quantum-classical generative adversarial network has been
designed for the image generation via learning discrete dis-
tribution (Zhou et al. 2023), and a quantum convolution-
al neural network based on variational quantum circuits has
been constructed (Gong et al. 2024).

Considering the importance of the language-specific
knowledge in solving the cross-lingual ABSA problem, in-
spired by the quantum technology, we propose a quantum
projection and quantum entanglement enhanced network
(QOPEN) for cross-lingual ABSA tasks since the quantum
entanglement enables each particle to measure its own quan-
tum state to share the whole information without transmis-
sion throughout the quantum system.

Preliminaries on Quantum Theory

We introduce the key concepts of the quantum cognition
(Busemeyer and Bruza 2012; Fell et al. 2019), which we
exploit to construct the proposed work.

Quantum Projection

Hilbert Space. Quantum cognition exploits an infinite
complex-valued vector space, called Hilbert space H, in
which the state of a quantum system is represented as a unit-
length vector. Different from classical probability, quantum
probability events are defined as orthonormal basis states. A
projective geometric structure establishes relationships be-
tween states vectors and basis states (Hughes 1989; Halmos
2017). The same Hilbert space can be represented by differ-
ent sets of orthonormal basis states, and the same state can
be defined over different sets of orthonormal basis states.

Quantum Superposition. Quantum superposition is one
of the fundamental concepts in quantum mechanics
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(OM)(Merzbacher 1998), which describes the uncertainty of
a single particle. In the micro world, a particle like a photon
can be in multiple mutually exclusive basis states simulta-
neously with a probability distribution. A general pure state
| ) is a vector on the unit sphere, represented by

(D

where {|e1),|ea),...,|en)} are basis states forming an or-
thogonal basis of the Hilbert Space, and the probabili-
ty amplitudes {wq,ws,...,w,} are complex scalars with
S Jwi|*> =1, and | - | is the modulus of a complex num-
ber. |¢) is a superposition state when it is not identical to
a certain basis state |e;). In particular, in a two-dimensional
Hilbert Space Ho spanned by basis states |0) and |1), a pure
state |) is represented as

lo) = wiler) + walea) + ... + wnlen)

o) :cosg\0>+e’¢sing|1> 2)
where § € [0,27], ¢ € [0,27], ¢ is the imaginary number
and i2 = —1.

Quantum Measurement. Quantum measurement is anoth-
er fundamental concept in quantum cognition for calculating
quantum probabilities. In quantum mechanics, projection-
valued measure (PVM) removes a system state from uncer-
tainty to a precise event, by projecting a state to its certain
corresponding basis state. In the absence of measuremen-
t, there is uncertainty in the state in that it takes all possi-
ble measurement values simultaneously. After measuremen-
t, the state collapses onto a certain basis state. However,
PVMs on subsystems of a larger system cannot be described
by a PVM acting on the system itself. Positive-operator val-
ued measure (POVM) overcomes this constraint, by associ-
ating a positive probability for each measurement outcome,
ignoring the post-measurement state (Nielsen and Chuang
2002). That is to say, POVM is a generalization of PVM,
providing mixed information of a state for the entire ensem-
ble of all the subsystems (Gkoumas et al. 2021a).

Quantum Entanglement

In quantum mechanics, when several particles interact with
each other, the properties of each particle have been inte-
grated into the properties of the whole system, which can-
not describe the properties of each particle alone, and can
only describe the properties of the whole system, this phe-
nomenon is called quantum entanglement (Horodecki et al.
2009). Quantum entanglement is a phenomenon that occurs
purely in quantum systems. In classical mechanics, no sim-
ilar phenomenon can be found. The most common quan-
tum entanglement state are Bell states (Nielsen and Chuang
2002). Bell states are the maximally quantum entangled s-
tates of two qubits, an EPR (Einstein-Podolsky-Rosen) pair
is one of the four Bell states.

1

+y
+ 1
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Eten is fris, lekker, maar
de plaats is te klein.
Dutch

The food is very fresh and delicious, || | | La nourriture est trés fraiche et délicieuse, La comida es muy fresca y deliciosa, pero
but this place is too small for me. mais cet endroit est trop petit pour moi. este lugar es demasiado pequefio para mi.
English French Spanish
E
Y — | q, H
q, § q;
N ) -9,

Ena oueHb cBexkast 4 BKyCHasl, HO 9TO
MECTO CJIMIIKOM MaJIEHBKOE JUISi MEHSL.
Russian

Figure 3: The quantum entangled states for cross-lingual ABSA tasks with five languages, where |C1) is the quantum entangle-
ment state of five languages and g; is a single quantum system for a language.

Figure 2: Representations of the aspect in a Hilbert space.

Quantum Projection and Quantum
Entanglement Enhanced Network

An overview of QPEN is shown in Figure 1. The cross-
lingual ABSA task can be formulated as a sequence labelling
problem (Li et al. 2019; He et al. 2019). Given a sentence
x = {x;}1 | with L tokens, the model predicts a label se-
quence y = {y;}E, wherey;, € Y = {B,I,E,S} —
{POS,NEU, NEG}|J{O} denotes the aspect boundary
and its sentiment polarity for the corresponding token x;.
For example, y; = B — POS means z; is the beginning of
a positive aspect term. In the cross-lingual transfer setting,
we only have the sentence-label pair in the source language
S, ie., (z%;y°) € D and aim to predict the label sequence
y”' for the sentence 7 in the target language T

Following method ACS (Zhang et al. 2021), we adopt two
cross-lingual pre-trained models, i.e., mBERT (Devlin et al.
2019) and XLM-R (Conneau et al. 2020), as the lexical en-
coder to compute contextualized representation.
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Quantum Projection Module

We formulate every aspect as a mutually incompatible ob-
servable on a complex-valued Hilbert space, which is a
3-dimensional vector space H3 spanned by basis states
{I4),]-),|0) }. The basis states |+), |0), and |—) correspond
to the positive, the neutral, and the negative sentiments, re-
spectively. We represent an aspect Ag as a pure state |Ag )
on H3, and the representations of the aspect and the basis
states in a Hilbert space are shown in Figure 2. One aspect
is represented as a pure state |Ag ) of positive, neutral, and
negative sentiments on a 3-dimensional Hilbert space.

|45) = al+) + B10) + 1), @)
where |af? + |82 + [y|* = L.

For the ternary sentiment analysis task, each observable is
associated with three eigenstates and three eigenvalues, with
common eigenvalues of 1, 0, and -1 for the positive, the neu-
tral, and the negative sentiments. Incompatibility falls under
different sets of eigenstates {|Af,+),[|A45,0),||A5, )}
defining one aspect basis.

(A5, +|A5,+) = (45,045, 0)
= (45,45, -) =1
:<Ag7_|Ag70> <Ag7_|Ag7+> =0

In quantum theory (Nielsen and Chuang 2002), a general

observable O can be decomposed to its eigenstates {|\;)}

of the orthonormal basis as O = X\;|\;)()\;|, where eigen-
values {\;} are possible values that a state can take for the
corresponding events after quantum measurement. Thus, the
aspect observable is

A§ = (+1)|A5, +)(AG, +|
+(0)] 45, 0)(A5, 0] (7)
+ (_1)‘1457 _><Ag, _|

&)
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Figure 4: Quantum circuit implementation of the quantum
entanglement module, where h, g, k denote the Hadamard
gate, the CNOT gate, the measure gate, respectively.

The observable for the final sentiment decision Sg* is

S5t = (FD ) (+H + (0I0) 0] + (=1)[=)(~] @)

Following the projective geometric structure, the measure-
ment probability on an eigenstate equals the projection of
the system state onto it. Thus, the sentiment of one aspect is

determined by the observable S()“

Quantum Entanglement Module

Language-specific knowledge is essential for tackling the
cross-lingual ABSA task (Zhang et al. 2021). Meanwhile,
in QM, when several particles interact with each other, ev-
ery particle can obtain the information of the whole quantum
system by measuring its own quantum state. So we try to cre-
ate the quantum entanglement between different languages
to share the language-specific knowledge, and the quantum
entanglement between different languages that we created is
shown in Figure 3. Quantum entanglement module can be
implemented by combination of CNOT gates and Hadamard
gates, and the quantum circuit is shown in Figure 4.

To create the quantum entanglement, we design a quan-
tum entanglement state with five qubits.

|C1) = 00000) + [11111)
= 5110000} + [1111)) ® ([0} + 1))
+ (|0000) — [1111)) ® (|0) — [1))]

— %wa +167)e))
® %um +]1)) ©)
+(lo* ¢ )+ 0"))
® %uw — 1))
— %[(|¢+>|¢+> F167)e7)) @ [4)

+(l¢To7) + o 0" @)

The most common representation of quantum mechanical
phenomena are transformation matrices (Miller and Thorn-
ton 2006).A qubit can be expressed by a column vector, and

1) and

the two orthogonal quantum states are |0) = ( 0
( (1) ) , respectively. We assign the language-specific

1)
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EN FR SP DU RU
Train No.Sen 2000 1664 2070 1722 3655
No.Asp 1743 1641 1856 1231 3077
Test No.Sen 676 668 881 575 1209
No.Asp 612 650 713 373 949

Table 1: Statistics of the data in each language. No.Sen de-
notes the number of sentences and No.Asp denotes the num-
ber of aspects in each set respectively.

knowledge to each particle that each language own in the
designed quantum entangled state |C!), and all particles can
obtain the whole language-specific knowledge of other par-
ticles in the whole system by measuring their own quantum
state, which completes the information sharing of the whole
language-specific knowledge.

Loss Function

We minimize the following total objective function:

Le=— Y > logp(a)

(s,a)€Ay ceC

(10)

where L¢ is a standard cross-entropy loss, A;; contains all
sentence-aspect pairs, and C is the collection of distinct sen-
timent polarities.

Experiments

To evaluate our method QPEN, we transform the quantum
state into linear algebraic representation and apply them to
the classical cross-lingual ABSA task since the most com-
mon representation of quantum mechanical phenomena are
transformation matrices (Miller and Thornton 2006). Then
we conducted simulation experiments on the SemEval-2016
dataset (Pontiki et al. 2016) with five languages. All the ex-
periments ! are performed on a workstation with a single
machine with 125GB of RAM and 40GB of video memo-
ry, two physical CPU with 24 cores Intel(R) Xeon(R) Gold
6248R CPU @ 3.00GHz, and a single GPU (Nvidia A100).

Dataset

We conduct experiments on SemEval-2016 dataset (Pontiki
et al. 2016), including real user reviews in English (EN),
French (FR), Spanish (SP), Dutch (DU), and Russian (RU)
2. The data in each language is already split into training and
testing sets. We keep the split and further sample 20% data
from the training set as the validation set for model selection.
Summary data statistics are shown in Table 1, where No.Sen
and No.Asp denote the number of sentences and the number
of aspects in each set, respectively.

'The code and datasets are available at https:/github.com/
sysulic/QPEN.git

There is one more language data namely Turkish is provided
in the SemEval workshop. However, we leave it out in the exper-
iments due to its extremely small testing set (less than 150 sen-
tences)
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Methods mBERT XLM-R
FR SP DU RU Avg FR Sp DU RU Avg
ZERO-SHOT 45.60 57.32 4268 36.01 4540 | 56.43 67.10 59.03 56.80 59.84
TRANSLATION-TA | 40.76 50.74 47.13 41.67 45.08 | 47.00 58.10 56.19 50.34 5291
BILINGUAL-TA 41.00 51.23 49.72 43.67 4641 | 4934 61.87 58.64 52.89 55.69
TRANSLATION-AF | 48.03 59.74 49.73 50.17 5192 | 57.07 66.61 6126 59.55 61.12
BILINGUAL-AF 48.05 60.23 49.83 5124 5234 | 5791 68.04 60.80 60.81 61.89
ACS 49.65 59.99 51.19 52.09 5323 | 5939 6732 6283 60.81 62.59
ACS-DISTILL-S 5223  62.04 52772 53.00 5500 | 61.00 6893 6289 6097 6345
ACS-DISTILL-M 5225 6291 53.40 5458 55779 | 5990 69.24 63.74 62.02 63.73
QPEN(this work) | 53.27 63.84 54.61 5536 56.97 | 63.21 71.59 66.16 64.52 65.79
Table 2: Experimental results of the cross-lingual ABSA task on SemEval-2016 dataset.
Methods mBERT XLM-R
FR SP DU RU Avg FR SP DU RU Avg

ACS 49.65 5999 51.19 52.09 5323 | 5939 6732 6283 6081 62.59

ACS+QP | 50.34 61.78 52.89 5339 5458 | 61.31 69.72 64.26 62.72 64.33

ACS+QE | 50.61 62.07 53.08 53.47 54.83 | 60.56 69.05 6397 6183 63.72

QPEN 53.27 63.84 54.61 5536 5697 | 63.21 71.59 66.16 64.52 65.79

Table 3: Ablation study results, where QP and QE are the quantum projection and quantum entanglement modules.

Baselines

ZERO-SHOT (Conneau et al. 2020) utilizes the labeled
source data to fine-tune the model and directly conduct infer-
ence on the target data, which has shown to be a strong base-
line for the cross-lingual adaptation (Wu and Dredze 2019).
To compare with the previous translation-based method,
we adopt the baseline that utilizes the pseudo-labelled data
with the Translate-then-Align paradigm (TRANSLATION-
TA) (Li et al. 2020) and the combination of the source data
with such translated data (BILINGUAL-TA) (Zhang, Zhang,
and Fu 2019). ACS is an aspect code-switching mechanism
to augment the training data with code-switched bilingual
sentences (Zhang et al. 2021).

Implementation Details

We conduct experiments based on two multilingual pre-
trained models, the cased multilingual BERT (mBERT)
model (Devlin et al. 2019) and the base XLM-Roberta
(XLM-R) model (Conneau et al. 2020). Google translate
API 3 is used for the translation process. We train the models
based on mBERT and XLM-R up to 1500 and 2000 steps re-
spectively and conduct model selection on the last 500 steps.
The learning rate is 5e-5 and the range of batch size is {8, 12,
16}. The best choices are selected by the performance on the
source language data. We use a learning rate being 5e-5 and
the batch size being 16 for both mBERT model and XLM-R
model.We set the epsilon parameter of Adam optimizer to
be in the range [2e-5,3e-5].

3https://translate.google.com/
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Comparison Results

To evaluate QPEN and other typical methods, we use macro-
averaged Fl-score as the main evaluation metrics, where
a prediction will be judged as correct only if both it-
s boundary and sentiment polarity are correct. For all ex-
periments, we report the average Fl-scores over 5 run-
s with different random seeds. The main experimental re-
sults are reported in Table 2, where the results of methods
ZERO-SHOT, TRANSLATION-TA, and BILINGUAL-TA
are from Ref. (Li et al. 2020) while the results of meth-
ods TRANSLATION-AF, BILINGUAL-AF, ACS, ACS-
DISTILL-S, and ACS-DISTILL-M are from Ref. (Zhang
et al. 2021). We found that QPEN improves on both the m-
BERT and XLLM-R models, and the effect is better on mod-
el XLM-R than mBERT. Specifically, QPEN outperform-
s state-of-the-art methods by an average absolute gain of
1.03% in terms of Fl-score based on mBERT and 2.31%
in terms of F1-score based on XLM-R.Results demonstrate
that formulating aspects as quantum superposition states
on a complex-valued Hilbert space and sharing language-
specific knowledge by quantum entanglement can effective-
ly improve the performance of cross-langual ABSA tasks.
The performance difference between QPEN-mBERT (re-
sp. QPEN-XLM-R) and ACS-DISTILL-M-mBERT (resp.
ACS-DISTILL-M-XLM-R) is statistically significant with
p-value=1.6e-3 (resp. 1.3e-3) < 0.05 by a two-tailed t-test.

Ablation Study

To further investigate the role of quantum projection and
quantum entanglement in QPEN, we conduct extensive ab-
lation studies and take method ACS (Zhang et al. 2021) as
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Source English Sentence Target Language ACS QPEN
Our server was very helpful and friendly. Dutch T V) T )
Be prepared to wait, because the place is pretty tiny. Dutch -1 ) (-1 )
The service was very pleasant and the desert was good. French T V. 1T V) a+, 1 4)
I choose to go with one of the special, the braised
lamb shank in red wine, which was excellent. French 0 x) a1 V)
T highly recommend Caviar Russe to one who wants
delicious top grade caviar and fantastic service. French 0 x) a1 V)
STightly above average wines start at $70+
with only one selection listed at $30+. Dutch 1 x) a1 x)

Table 4: Case studies, where “1”, “0”, and “-1” represent the positive, the neutral, and the negative sentiment, respectively. “,/”
denotes the sentiment judgment of aspect is correct while “x”” denotes the sentiment judgment is wrong.

Figure 5: Visual analysis on the test set by adapting t-SNE
on the sentence embeddings from QPEN and ACS, where
(a) is the sentence embedding plot from ACS with model m-
BERT while (b) is the sentence embedding plot from QPEN
with model mBERT, and (c) is the sentence embedding plot
from ACS with model XLLM-R while (d) is the sentence em-
bedding plot from QPEN with model XLM-R, respectively.

the baseline method. The results are reported in Table 3.
Ablation studies show that quantum projection and quan-
tum entanglement improve the performance on models of
both mBERT and XLM-R models. Besides, the effect of
quantum projection on XLM-R model is better than that on
mBERT model, and the effect of quantum entanglement on
mBERT model is better than that on XLLM-R model.

Case Study and Error Study

Table 4 shows several cases from ACS and QPEN, where
“17, “0”, and “-1” denote the positive, the neutral, and the
negative sentiments, respectively, and “\/” and “x” denote
the sentiment judgments of aspect are correct and wrong,
respectively. We highlight the aspect words in blue.

Taking the third sample as an example, QPEN is also
able to accurately identify the sentiment of each aspect even
when there are many aspects in a sentence. Take the fourth
sample as an example, the aspect “braised lamb shank in
red wine” is a long aspect term, and “shank” is missed with
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method ACS, so ACS fails. However, QPEN succeeded by
employing quantum entanglement to identify the aspect and
its sentiment. Besides, in the fifth sample, the aspect has t-
wo sub-aspects “caviar” and “service”, so ACS fails since it
based on the label projection. But QPEN succeeded based
on the quantum entanglement and the quantum projection.

Take the sixth sample as an example, both the ACS and
QPEN fail to correctly predict the sentence “Slightly above
average wines start at $70+ with only one selection listed
at $30+.”. Due to the difficulty to identify the sentiment of
word “wines” in the sentence, and “$70+” and “$30+” are
just price comparisons without any sentiment words.

Visual Analysis

We conduct visual analysis on the test set by adapting t-SNE
on the sentence embeddings from QPEN and the baseline
ACS (Zhang et al. 2021), as shown in Figure 4. In which, (a)
is the sentence embedding plot from ACS with the model m-
BERT, (b) is the sentence embedding plot from QPEN with
the model mBERT, (c) is the sentence embedding plot from
ACS with the model XLLM-R, and (d) is the sentence embed-
ding plot from QPEN with the model XLM-R, respectively.

Compared with the the baseline method ACS, method
QPEN yields more hybridized representation between dif-
ferent languages. This implies that the propose quantum
modules encourage to share language-specific knowledge
between different languages, resulting in more accurate pre-
dictions for the cross-lingual ABSA task. We leave the opti-
mization of our model in the future work with the evolution-
ary algorithm (Chaturvedi, Su, and Welsch 2021).

Conclusion

In this paper, we have proposed a quantum projection
and quantum entanglement enhanced network for cross-
lingual aspect-based sentiment analysis tasks, named QPEN.
It is equipped with a proposed quantum projection mod-
ule to project aspects as a quantum superposition state
on a complex-valued Hilbert space, and a proposed quan-
tum entanglement module to enforce the model sharing the
language-specific between different languages. Extensive
experiments on SemEval-2016 dataset show that QPEN is
superior to the baseline approaches. Our ablation study, case
study and visual analysis further confirm the effectiveness of
key components in the proposed QPEN model.
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