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Abstract

Video question answering involves understanding video con-
tent to generate accurate answers to questions. Recent studies
have successfully modeled video features and achieved di-
verse multimodal interaction, yielding impressive outcomes.
However, they have overlooked the fact that the video con-
tains richer instances and events beyond the scope of the
stated question. Extremely imbalanced alignment of informa-
tion from both sides leads to significant instability in reason-
ing. To address this concern, we propose the Video-Context
Aligned Transformer (V-CAT), which leverages the context
to achieve semantic and content alignment between video and
question. Specifically, the video and text are encoded into a
shared semantic space initially. We apply contrastive learn-
ing to global video token and context token to enhance the
semantic alignment. Then, the pooled context feature is uti-
lized to obtain corresponding visual content. Finally, the an-
swer is decoded by integrating the refined video and question
features. We evaluate the effectiveness of V-CAT on MSVD-
QA and MSRVTT-QA dataset, both achieving state-of-the-
art performance. Extended experiments further analyze and
demonstrate the effectiveness of each proposed module.

Introduction
Video Question Answering (VideoQA) is a challenging task
within the multimodal learning domain, aiming to under-
stand videos and answer questions (Zhong et al. 2022).
VideoQA not only requires precise semantic understanding
of both the video and the question, but also need effectively
interactions to locate the most critical feature within the
video with rich spatiotemporal information.

Currently, the mainstream paradigm for video question
answering is to encode the video and question using sepa-
rate pre-trained models (He et al. 2016; Hara, Kataoka, and
Satoh 2018; Devlin et al. 2018), and then fuse the visual
and textual features through a complex interaction model
for classifying the final answer. Many existing works have
exhibited powerful video content modeling abilities and
achieved high performance on multi-modal information in-
teraction. They input extracted features into spatio-temporal
(Jin et al. 2021; Jiang et al. 2020; Dang et al. 2021; Gao
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Figure 1: The two challenges of video question answering
are semantic alignment, which refers to ensuring that the se-
mantics of the video and related text are consistent in the en-
coded features, and content alignment, which entails match-
ing the questions and related content in the video.

et al. 2023), hierarchical (Le et al. 2020; Liu et al. 2021;
Peng et al. 2022; Xiao et al. 2022; Dang et al. 2021), multi-
scale (Peng et al. 2022; Guo et al. 2021), or multi-granularity
(Xiao et al. 2022) structured models, and generate useful
answers through complex and precise interactions. Further-
more, some researchers have focused on causal analysis (Li
et al. 2022b,a; Yu et al. 2023; Zang et al. 2023), answer-
ing questions by finding relevant information in the video.
Although achieving promising performance improvement,
there exist two main challenges that hinder precisely match-
ing the exact answers. The first challenge lies in the semantic
unalignment of visual contents in videos and textual con-
tents in questions. To obtain accurately matched answers,
semantics in video and question need to be precisely aligned
into the same common space, and then generate the exact an-
swer for the question. As shown in Figure 1(a), the text ’two
elephants are pushing a car forward’ and its corresponding
video event should be semantically aligned into the same
feature space for effectively question answering.

The second challenge lies in the content unalignment
within videos that contain much richer information than a
single question sentence. More complete coverage of video
information provides a deeper understanding than a sin-
gle question sentence that only aligns with a specific event
within the video. To improve the content alignment, multiple
sentences can be used to offer a more comprehensive cover-
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age of video contents, which provides a large space for an-
swer acquisition. Existing methods directly align the video
and question, requiring the model to correspond vastly in-
formative videos with information-scarce question-answer
pairs. This extremely imbalanced alignment of information
from both sides leads to significant instability in reasoning.
Therefore, we propose to first expand the information vol-
ume on the textual side to align it with the video, and then
further obtain accurate answers through single-question in-
teraction with the video. This gradually progressive video
refinement approach is smoother, resulting in more stable
alignment between the two modalities, which is shown in
Figure 1(b).

To address the above mentioned challenges, we treat the
VideoQA task from a perspective of reading comprehension
(Sun et al. 2022). Intuitively, To accelerate human reading
comprehension, one effective approach is to quickly skim
through all the questions, and then read the article while
bearing in mind an understanding of these questions. This
helps pinpoint the most important areas in the article that
require attention. Afterwards, a more thorough reading of
the current question allows for a speedy and correct answer.
Thus, drawing on this thought process, we propose a Video
Context Alignment Transformer (V-CAT), utilizing all the
questions related to videos as the context. Firstly, the pre-
trained models and a trainable encoder are used to extract
each single modality features. Then, contrastive learning are
used to semantically constrain global features of both the
video and context, achieving semantic alignment for both
modalities. Afterward, aligning the contents of the video
with the context, we preliminarily extract the vital informa-
tion that requires attention. Finally, interact granularly with
the video by the answer decoder, and use the global token of
question to classify answer.

Our work makes the following three contributions:

• We revise the existing traditional paradigm and pro-
posed V-CAT, the Video-Context Alignment Transformer
method. By introducing context, we balance the informa-
tional levels of both modalities and achieve preliminary
semantic and content alignment between the video and
context. We then proceed to interact the current granular
question and refined video content to predict answer.

• We propose a semantic alignment method based on con-
trastive learning. By utilizing contrastive loss on global
features of videos and contexts within the same batch,
the semantic matching features are pulled closer while
the non-matching features are pushed apart, effectively
enhancing the effectiveness of semantic alignment.

• We conduct experiments on the traditional datasets
MSVD-QA (Xu et al. 2017) and MSRVTT-QA (Xu
et al. 2016), and obtained state-of-the-art performance,
demonstrating the effectiveness of our proposed method.
In addition, we conducted further analysis on each mod-
ule through extended experiments, confirming the re-
markable ability enhancement brought about by each
module.

Related Work

In recent years, the VideoQA paradigm has mainly followed
a three-step process (Zhong et al. 2022): firstly, extracting
features using pre-trained models; secondly, performing fea-
ture interaction between videos and questions; and finally,
classifying answers in open-ended manner. Typically, pre-
trained models in the computer vision field, such as ResNet
(He et al. 2016) and ResNeXt (Hara, Kataoka, and Satoh
2018), are used to extract video features, while word em-
bedding vector like Glove (Pennington, Socher, and Man-
ning 2014) or pre-trained models such as Bert (Devlin et al.
2018) are used to extract question features in natural lan-
guage processing. In recent works, various attempts have
been made to improve the most critical interaction pro-
cess of the model. Due to the time and space dimensions
in videos, some works have attempted to model them spa-
tiotemporally(Jin et al. 2021; Jiang et al. 2020; Dang et al.
2021; Gao et al. 2023), focusing on the relationship between
video clips and regions. To further improve the model’s abil-
ity to learn high-order semantic information, some works
have modeled the structure hierarchically(Le et al. 2020;
Liu et al. 2021; Peng et al. 2022; Xiao et al. 2022; Dang
et al. 2021). In these structures, the model can learn differ-
ent semantic characteristics at different levels, making the
learning process more enriched. Similarly, some works have
extracted multi-scale(Peng et al. 2022; Guo et al. 2021) or
multi-granularity(Xiao et al. 2022) features from videos for
interaction with questions. Previous studies have concluded
that videos contain more diverse and informative instances
and events than a sentence (Lin et al. 2022). Although these
sophisticated models have strengthened the representation
ability of video features, excessive redundant video infor-
mation may cause instability during interaction with ques-
tions. Therefore, some works(Li et al. 2022b,a; Yu et al.
2023; Zang et al. 2023) have attempted to locate key video
clips using causal analysis to filter out irrelevant informa-
tion and obtained satisfactory results. With the rise of pre-
trained models, some works (Xue et al. 2022; Zellers et al.
2021; Seo, Nagrani, and Schmid 2021) hope to enhance the
model’s semantic alignment and generalization ability by
pre-training on large-scale datasets, followed by fine-tuning
on VideoQA subtasks. However, these methods require a
considerable amount of dataset and training resources, and
lack interpretability. Additionally, due to the extremely un-
equal distribution of semantic information between videos
and question answers, abrupt alignment methods are highly
unstable and prone to failure.

Our approach differs from previous work in that we at-
tempt to address the lack of information on the textual side
to achieve balance in aligning features of the two modalities
as much as possible. We introduce all video-related ques-
tions as context, initially aligning them with semantic and
content of the video. We then progressively interact the cur-
rent question and refined video to obtain the final answer.
Despite using simple modules compared to previous work,
our method still achieves decent performance because of sta-
ble and smooth semantic and content alignment between the
video and text.
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Figure 2: The V-CAT model. All the questions related to videos are utilized as the context. Firstly, the pre-trained model is used
to extract the text and video features. Then, a trainable encoder and contrastive learning is used to semantically constrain global
features of both the video and context, achieving semantic alignment for both modalities by the encoder. Afterward, aligning
the content of the video with the context, we preliminarily extract the vital information that requires attention. Finally, the video
and the question interact at a fine-grained level by a decoder, after that the global token is utilized to classify answers.

Method
As shown in Figure2, V-CAT consists of four main mod-
ules: a feature extractor module, which extracts video and
question features separately; a semantic alignment module,
which encodes the videos and questions and applies con-
trastive learning to constrain video and question features,
thereby enhancing the semantic alignment of the encoder;
a content alignment module, which enables the capture of
key video features in the given context and ensures the sta-
bility of subsequent training; and a decoding module, which
generates more precise answers using question features.

Feature Extractor
Pre-trained model In this module, the conventional ap-
proach involves using pre-trained models to extract video
and text features separately. First, we sample an equal num-
ber of frames from the video, following the previous work
and adhering to a simple and efficient principle. We choose
the traditional ResNet(He et al. 2016) and ResNeXt(Hara,
Kataoka, and Satoh 2018) models to extract appearance and
motion features from each frame of the video, denoted as
va ∈ Rf×dv and vm ∈ Rf×dv respectively. The variables f
and d represent the number of frames sampled per video and
the dimensionality of the embedded features, respectively.
Next, we concatenate the two types of features at the frame
level to obtain the video feature v ∈ R2f×dv . For extracting
text features, we utilize a pre-trained BERT model(Devlin
et al. 2018). We perform pooling on the extracted context
features in order to capture the global contextual informa-
tion. This feature is represented as c ∈ R1×dq . And the
question feature is denoted as q ∈ Rl×dq . Here, l represents
the maximum length of a single sentence, and dq represents
the feature dimension. It is worth mentioning that these three
feature extractors are not involved in the subsequent training

process.

Encoder The pre-trained models are trained in their re-
spective modal domains, resulting in significant semantic
discrepancies in the learned feature representation spaces.
To ensure that the encoded semantic features of both modal-
ities are more consistent, we introduce a learnable seman-
tic alignment encoder after the pre-trained models. Through
this encoder, we effectively project the video and question
features to a common semantic space, achieving alignment
between the visual and textual modalities.

We design the encoder based on the encoder of the Trans-
former model (Vaswani et al. 2017). For visual features, we
first use a linear layer to project the features to the model
dimension. Additionally, before inputting them into the en-
coder, we introduce a learnable token vg to capture global
information for semantic alignment. Then, we incorporate
positional encoding to capture the relative temporal posi-
tion information of each frame. After normalization, we ob-
tain visually features that are more uniformly standardized.
These operations can be represented by

v = LN([vW, vg] + pos) (1)

where pos represents the positional encoding, LN denotes
the normalization operation, and W ∈ Rdv×d is trainable
parameter, d denotes the hidden size of model.

Next, through self-attention and feed-forward networks,
we obtain visual features v with contextual information. The
formulas for the attention mechanism and feed-forward net-
work are as

vi+1 = FFN(MHA(vi, vi, vi)) (2)

where FFN is feed-forward network and MHA represents
multi-head attention. FFN formulation are denoted as

FFN(x) = LN(ReLU(xW1)W2 + x) (3)
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Figure 3: An illustration of contrastive alignment. A higher
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where Wi ∈ Rd×d is trainable parameter, ReLU represents
the activation function. Also, MHA are denoted as

MHA(Q,K, V ) = Softmax(
(QW1)(KW2)

T

√
t

)(VW3)

(4)
where Wi ∈ Rd×d is trainable parameter, Softmax is a
activation function, t denotes as the temperature of attention.
In this process, Q, K, and V are all video features v.

For context and question features, we similarly use lin-
ear layers to transform the features to the model dimension.
Then, we introduce learnable tokens qg and cg to capture
global information for both context and question. And we
obtain the textural features that are more uniformly stan-
dardized, which can be denoted as

q = LN([qWq, qg] + pos), (5)
c = LN([cWc, cg] + pos) (6)

where Wq and Wc are learnable parameters. Afterward, sim-
ilar to visual features, they are input into the encoder for pro-
cessing. The formulas for this process can be represented as

qi+1 = FFN(MHA(qi, qi, qi)), (7)
ci+1 = FFN(MHA(ci, ci, ci)). (8)

Semantic Alignment Module
In the encoder module, we have connected an encoder af-
ter the pre-trained models to encode the visual and tex-
tual modality features separately, ensuring that their feature
representations have consistent semantics. However, since
the information contained in a single question text is much
less than that in a video, the model may not always learn
semantic-aligned features as desired. To better align the two
modalities and draw inspiration from the work of multi-
modal alignment (Radford et al. 2021a; Tsimpoukelli et al.
2021; Hou et al. 2022; Li et al. 2023), we utilize context
with richer textual information for semantic aligning with
the video, and introduce contrastive learning to supervise
the learning process of the encoder. This encourages seman-
tically similar multimodal features to be closer in the feature
space, while pushing semantically dissimilar features further
apart. Specifically, we adopt a contrastive learning approach

as shown in the Figure 3, where the global alignment token
of the video and the global alignment token of the context
are normalized and then used to compute a large similarity
matrix. The formula for this process can be represented as

vg = v[0], (9)
cg = c[0], (10)

simij = vig · (cjg)T (11)

where symbol [i] represents the i-th token in the sequence, i
and j denotes the number of v and c in a batch.

It is evident that the video and the context from the same
sample are more related, while different samples within a
batch are unrelated. Therefore, we naturally desire the di-
agonal of this similarity matrix to be 1, while the other po-
sitions are 0. To achieve this, we adopt a loss calculation
method inspired by (Radford et al. 2021a) and construct
sample labels as

z′ = I(bsz) (12)

where I(x) denotes a Identity matrix with the size of x,
bsz denotes the size of batch. Then, we use cross-entropy
to achieve the goal of semantic similarity differentiation, al-
lowing the features of the two modalities to be embedded
into a common feature space, which represents as

Lcl = −Σbsz
i=1(z

′
i)

TSimi. (13)

Unlike simple embedding features in the past, we fur-
ther extract video and context global features as interface,
to achieve video-context semantic alignment by utilizing the
contrastive learning. Consistent features in a shared feature
space facilitate subsequent interactions between two modal-
ities.

Content Alignment Module
After obtaining semantically aligned visual and textual in-
formation, previous work (Lin et al. 2022) has shown that
videos often contain richer instance and event information
compared to individual sentences. However, for video ques-
tion answering tasks, redundant information can often lead
to interference when answering questions, resulting in in-
stability during modality interaction. For answering the cur-
rent question, we only need video information relevant to the
question. Refined visual features can enable faster and more
accurate modality interaction.

Here, to better align with human thinking, we first roughly
examine the context, which allows us to identify the video
information of interest. Therefore, we use the query token cq
of context as the key and value in the cross-attention mod-
ule, while the video features serve as the query. This enables
us to use the contextual semantic information to search for
and aggregate video features while reducing the attention
on redundant and irrelevant video features. It also avoid the
instability of alignment between video and single sentence.
This way, we can obtain more refined and effective visual
features. Specifically, we interact the localized video fea-
tures with the contextual content alignment features through
a decoder. The decoder consists of cross-attention, and feed-
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forward networks. The formulas for this process can be rep-
resented as

cq = c[1], (14)
vl = v[1 :], (15)

vi+1
l = FFN(MHA(vil , cq, cq)). (16)

Answer Decoder
After obtaining the refined video information that can be
used to answer the question, we can proceed to answer the
question using this content. Inspired by previous work (Sun
et al. 2022), video question answering is similar to reading
comprehension. After a rough examination of the context
to identify key content, we re-examine the question to pro-
vide an answer. By using question features, we can facilitate
more comprehensive modality interaction and obtain more
accurate answers.

Therefore, here we use a decoder module consisting of
cross-attention, and feed-forward networks to interact be-
tween the visual and textual modalities and decode the an-
swer. We use word-level question features, including learn-
able global features, as the query, and the video features as
the key and value, which are input into the decoder. The for-
mula for this process can be represented as follow:

qi+1 = FFN(MHA(qi, vl, vl)). (17)

Next, we use the global token of the question, which en-
capsulates rich multimodal interactions, as input to the sub-
sequent answer generation module. It can be represented as
follows:

qg = q[0], (18)
p = ELU(qgW1)W2 (19)

where W1 ∈ Rd×d and W2 ∈ Rd×m denotes the trainable
parameters, m denotes the size of answer set, ELU repre-
sents the activation function. The obtained p can be used for
predicting various answers. In the training process, cross-
entropy loss is used:

Lce = −Σm
i=1ziln(pi) (20)

where zi = 1 if the answer index corresponds to the ith sam-
ple’s ground-truth answer and 0 otherwise. Finally, our con-
struct overall loss:

L = Lce + αLcl (21)

where α denotes the weight of loss.

Experiment
Datasets
We experiment on the traditional and widely used datasets
in the video question answering domain, MSVD-QA(Xu
et al. 2017) and MSRVTT-QA(Xu et al. 2016). They are
both open VideoQA datasets constructed using videos and
descriptions. The videos mainly consist of short videos, and
MSVD-QA contains 1,970 short videos with 50,505 open-
ended Q&A pairs. MSRVTT-QA includes 10,000 videos

with 243,000 Q&A pairs. These two datasets are both open-
ended, which are more challenging compared to the current
multiple-choice question answering datasets. They require
models to have a strong ability to understand both visual and
textual modalities and generate answers from a large cond-
structed answer set accordingly.

Implementation Details
In our experiments, each video is uniformly sampled into
segments of 16 frames. For videos with insufficient frames,
we pad using either the initial or terminal frame. In order
to balance the information of video and text to better align-
ment, we introduce the context, which possess richer infor-
mation than one sentence. Video context can be constructed
by many method such as video description and video com-
ment. In our work, we obtain context by concatenating ex-
tracted features from all questions related to current video
and utilizing pooling operation. It is worth mentioning that,
there are no same video in both train set and test set, which
avoid the leakage of test set problems. The extracted visual
and textual features possess dimensions of 2048 and 768, re-
spectively, while the model’s dimension stands at 1024. The
model’s context encoder, video encoder, question encoder,
content decoder, and answer decoder are all composed of
stackable transformer layers, facilitating adaptability to di-
verse datasets. When employing the MSVD-QA dataset, the
numbers of layer for each module are set at 8, 1, 1, 7 and 4,
respectively, which are searched from 1 to 8. For MSRVTT-
QA, the numbers are 1, 1, 2, 2, and 1. Concerning the loss
weight α, they are designated at 1e-5 for MSVD-QA and
1e-6 for MSRVTT-QA, which are searched from 1e-6 to
1 increasing by multiples of 10 each time. Throughout the
training process, the model underwent 30 epochs of iterative
training with a batch size of 128 and a learning rate of 1e-4.

Comparison with State-of-the-arts
Table 1 presents the evaluation results of our approach and
the performance of state-of-the-art models in the VideoQA
domain, where accuracy is utilized as metric to evaluate the
performance of the models. To ensure a comprehensive com-
parison, we also showcase the visual and textual feature ex-
tractors employed by each method, as well as whether addi-
tional datasets were used for pretraining.

Our approach V-CAT leverages conventional computer
vision techniques, namely ResNet(He et al. 2016) and
ResNeXt(Hara, Kataoka, and Satoh 2018), to extract video
features. And we employ the classical BERT(Devlin et al.
2018) model to extract textual features. Similarly, HCRN(Le
et al. 2020), B2A(Park, Lee, and Sohn 2021), HAIR(Liu
et al. 2021), MHN(Peng et al. 2022), HQGA(Xiao et al.
2022) and EIGV(Li et al. 2022a) also utilize traditional
image-based models such as Faster R-CNN(Anderson et al.
2018). However, their performance falls significantly short
of our method. Our accuracy surpasses that of the highest-
performing EIGV model by 2.6 on MSVD-QA and 4 on
MSRVTT-QA, respectively.

Furthermore, even when compared to CLIP-QA(Radford
et al. 2021b), which incorporates the powerful multi-
modal CLIP (Radford et al. 2021a) model, and PMT(Peng
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Method Video Ex. Text Ex. PT MSVD↑ MSRVTT↑
HCRN(Le et al. 2020) ResNet, ResNeXt Glove - 36.1 35.6
B2A(Park, Lee, and Sohn 2021) ResNet, ResNeXt Glove - 37.2 36.9
HAIR(Liu et al. 2021) ResNet, Faster R-CNN Glove - 37.5 36.9
CLIP-QA(Radford et al. 2021b) CLIP Bert - 38.5 39
MHN(Peng et al. 2022) ResNet, ResNeXt Glove - 40.4 38.6
HQGA(Xiao et al. 2022) ResNet, ResNeXt, Faster R-CNN Bert - 41.2 38.6
EIGV(Li et al. 2022a) ResNet, ResNeXt Bert - 42.6 39.3
CoVGT(Xiao et al. 2023) ResNet, Faster R-CNN RoBERTa - - 40.0
PMT (Peng et al. 2023) X3D-M Glove - 41.8 40.3
HD-VILA(Xue et al. 2022) ResNet, TimeSformer Bert 100M 41.8 40.3
MERLOT(Zellers et al. 2021) ViT RoBERTa 180M - 43.1
CoMVT (Seo, Nagrani, and Schmid 2021) S3D Bert 100M 42.6 39.5
V-CAT(ours) ResNet, ResNeXt Bert - 45.2 43.3

Table 1: Comparison with state-of-the-art methods on VideoQA datasets. Video Ex. and Text Ex. denote the video and text
feature extractor, respectively. PT denotes the a mount of dataset used for pre-training.

Method MSVD↑ MSRVTT↑
V-CAT w/o context 35.7 34.2
V-CAT w/ question 31.3 31.5
V-CAT w/o SA 45.1 43.0
V-CAT w/o CA 37.2 36.6
V-CAT 45.2 43.3

Table 2: Ablation study of the alignment module.

et al. 2023), which is based on a video-based model
X3D(Feichtenhofer 2020), and CoVGT(Xiao et al. 2023),
which utilizes the robust RoBERTa(Liu et al. 2019) model
for textual feature extracting, our approach still exhibits a
notable advantage. On the MSVD-QA and MSRVTT-QA
datasets, our accuracy exceeds that of the leading PMT
model by 3.4 and 3, respectively. Evidently, although our
pretrained model is straightforward, the feature processing
pipeline remains stable, and the extracted features are effec-
tively utilized.

Meanwhile, HD-VILA(Xue et al. 2022), MER-
LOT(Zellers et al. 2021) and CoMVT(Seo, Nagrani,
and Schmid 2021) aim to enhance the model’s modality
alignment and generalization capabilities through large-
scale dataset pretraining, with the goal of improving
accuracy. Despite not employing any data pretraining, our
model achieves accuracy surpassing that of the highest-
performing CoMVT model by 2.6 on MSVD-QA and
MERLOT model by 0.2 on MSRVTT-QA. This demon-
strates that our balanced approach to video and context
ensures a more stable and efficient alignment process.

Ablation Analysis

Method MSVD↑ MSRVTT↑
V-CAT w/o CL 45.1 43.0
V-CAT w/ L1 43.6 42.8
V-CAT w/ L2 44.1 42.2
V-CAT w/ KL 42.2 41.5
V-CAT 45.2 43.3

Table 3: Variants of our model specifically in loss function.
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Figure 4: The figure showcases the impact of stacking layers
in different modules of the model on its performance on the
MSVD-QA and MSRVTT-QA datasets. The horizontal axis
represents the number of layers in the encoder or decoder,
while the vertical axis represents the model’s accuracy. Each
point of a specific color corresponds to a respective module.

Alignment We conducted an ablation analysis on the strat-
egy of using context for alignment, which result is shown in
Table 2. The ’w/o context’ indicates a model that does not
use any context, while ’w/ question’ represents the model
using the current question as context. It was observed that
the video features without contextual alignment struggle to
align effectively with the semantic and content of the text,
resulting in a significant impact on the model. Meanwhile,
using only the question as context yields unsatisfactory re-
sults. The primary reason is that the amount of informa-
tion contained in a single question is much less than that
in the video (Lin et al. 2022), leading to an extremely imbal-
anced of two semantic information during alignment, which
destabilizes the model. Additionally, aligning with a single
sentence with minimal information reduces the richness of
video information, resulting in a loss of smoothness and po-
tentially causing the video features to lose crucial informa-
tion for reasoning. Furthermore, to further analyze the roles
of semantic and content alignment in the model, we eval-
uated ’w/o SA’ and ’w/o CA’ separately. It was found that
both cases led to a decrease in model accuracy, with a greater
loss observed when content alignment was removed.
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Video:

Attention:

Context:

Context: Video:

Attention:

• what does a man 
collect from a 
group of people?

• what is a man 
selling goods on?

• ......

• what did the man 
jump the hill into 
the lake with?

• what crashes into 
a lake?

• ......

Figure 5: Two case of the attention of different video contents under the context. The context is constructed by collecting video-
related questions. It is evident that, within the context alignment, the model is more adept at capturing the primary events in the
video, while disregarding some peripheral and unrelated scenes.

Contrastive Learning Table 3 shows the analysis impact
of contrastive learning loss. Firstly, we present the model’s
performance removing the loss constraint. The accuracy of
the model decreases, which shows the evidence that the
contrastive loss imposes constraints on video and contex-
tual features, enabling the model to align video and text se-
mantically more effectively, thereby enhancing the model’s
performance. Also, we replaced the contrastive loss func-
tion to obtain multiple variants of the model and analyze
the effectiveness. It was observed that regardless of whether
L1 loss, L2 loss or KL(Kullback-Leibler) divergence loss
was used as the loss function, they all led to a decrease in
model performance, even lower than without incorporating
the loss constraint. Although these three types of loss func-
tions aim to encourage similarity between the feature dis-
tributions of two global tokens, the contrastive loss used in
addition to this is able to further push apart semantically dis-
similar pairs. This makes the model more stable and reliable
in semantic alignment.

Encoders and Decoders For each module, we employed
transformer-based encoders and decoders. Such stackable
modules enhance the model’s scalability and can adapt to
different datasets by altering the number of layers. To ex-
plore the impact of layer numbers on the model’s perfor-
mance on the MSVD-QA and MSRVTT-QA, we present
the results for different parameters, as shown in the Fig-
ure 4. Overall, both datasets achieve satisfactory results with
fewer layers, and an excessive number of stacked layers ac-
tually leads to a decline in model performance. Regarding
the MSVD-QA dataset, apart from the layers in the Video
Encoder, an appropriate increase in other layers contributes
to model improvement. However, for the MSRVTT dataset,
increasing the number of layers generally results in a de-
crease in model accuracy, particularly for the Question En-
coder and Answer Decoder, where the accuracy drops below
30 when the number of layers reaches 8. It is evident that by
adjusting the layer numbers of each module, we can adapt
the model to different datasets.

Content Attention Visualization
We conducted a visual analysis of the attention mechanism
during the content alignment process to explore the selec-
tion and filtering of actual video contents, which is shown in
Figure 5. In the first example, the event in the video where
the man sells a product to earn money is assigned greater
attention, while certain shots of the crowd are given lower
weight. In contrast, in the second example, the entire video
emphasizes the scene where the man leaps on a motorcy-
cle, soaring through the air before plunging into the water,
garnering higher attention, while some non-essential shots
receive lower attention. It is evident that, within the con-
text alignment, the model is more adept at capturing the
primary events in the video, while disregarding some pe-
ripheral and unrelated scenes. These primary events are pre-
cisely the subjects that tend to be inquired about. Further-
more, the model effectively assigns higher weight to these
crucial events, which aids in subsequent answer decoding,
while appropriately disregarding environmental scenarios.

Conclusion
We proposes V-CAT, which strengthens the information on
the textual side by introducing context to align with the
video. Specifically, the feature extractor and encoder em-
bed visual and textual information into a shared feature
space, and innovatively introduce contrastive learning to
align global visual and contextual semantics, ensuring the
consistency of multimodal features. Subsequently, more rel-
evant video information is extracted through contextual in-
formation refinement to stabilize the subsequent answering
process. Finally, the interaction between the current ques-
tion features and video features yields the final answer. Our
model structure is simple yet remarkably effective. Evalua-
tion results on the MSVD-QA and MSRVTT-QA datasets
demonstrate that our approach outperforms existing mod-
els. In future, we will consider replacing the simplistic en-
coder module during answer generation and introduce more
refined interaction methods. Additionally, alternative ap-
proaches can be explored for modeling the context of videos.
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