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Abstract

Vertical Federated Learning (VFL) enables an active party
with labeled data to enhance model performance (utility) by
collaborating with multiple passive parties that possess aux-
iliary features corresponding to the same sample identifiers
(IDs). Model serving in VFL is vital for real-world, delay-
sensitive applications, and it faces two major challenges:
1) robustness against arbitrarily-aligned data and stragglers;
and 2) privacy protection, ensuring minimal label leakage to
passive parties. Existing methods fail to transfer knowledge
among parties to improve robustness in a privacy-preserving
way. In this paper, we introduce a privacy-preserving knowl-
edge transfer framework, Complementary Knowledge Distil-
lation (CKD), designed to enhance the robustness and pri-
vacy of multi-party VFL systems. Specifically, we formulate
a Complementary Label Coding (CLC) objective to encode
only complementary label information of the active party’s
local model for passive parties to learn. Then, CKD selec-
tively transfers the CLC-encoded complementary knowledge
1) from the passive parties to the active party, and 2) among
the passive parties themselves. Experimental results on four
real-world datasets demonstrate that CKD outperforms ex-
isting approaches in terms of robustness against arbitrarily-
aligned data, while also minimizing label privacy leakage.

Introduction
Vertical Federated Learning (VFL) (Yang et al. 2019)
enables global model building among organizations with
datasets sharing overlapping samples but differing in fea-
tures. In VFL, an active party with labeled data aligns sam-
ples with passive parties holding auxiliary features. Model
serving (Wang et al. 2023), the process of inferring a trained
machine learning model in a production environment to re-
ceive input data and respond with predictions in real time, is
particularly challenging in the context of VFL.

Figure 1 illustrates the concept of model serving in a
VFL system, highlighting two major challenges: robustness
against arbitrarily-aligned data, and label privacy protection.
Robustness primarily involves: 1) maintaining high utility
amidst arbitrary feature alignments across multiple parties;
and 2) ensuring timely, accurate predictions even with de-
lays from straggling passive parties. For label privacy, the
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Figure 1: Illustration of model serving in VFL system and
the two major challenges: 1) robustness against unaligned
data and stragglers, and 2) label privacy protection.

crux lies in ensuring that passive parties cannot infer labels
from their own bottom model outputs (Fu et al. 2022).

The robustness and privacy of VFL model serving have
recently emerged as a critical focal point of research.
Robustness: In two-party VFL, knowledge distillation
(KD) (Hinton, Vinyals, and Dean 2015) has been employed
to enhance robustness against unaligned data (Li et al. 2023;
Ren, Yang, and Chen 2022), as shown in Figure 2(a). Based
on alignment results, samples are routed to appropriate mod-
els (local or VFL model) for inference. However, such
”alignment → routing → inference” paradigm lacks scal-
ability in multi-party settings, given the exponential com-
plexity of candidate models. Meanwhile, the recent party-
wise dropout technique (Sun et al. 2023) does not effectively
transfer knowledge, leading to inferior utility on unaligned
data. Privacy: Existing KD-based methods expose redun-
dant label information to passive parties to transfer knowl-
edge, compromising label privacy. While cryptographic pro-
tections (Ren, Yang, and Chen 2022) have been proposed,
they introduce significant overheads and often fail to meet
stringent efficiency requirements. Recent inference-phase
protection techniques (Sun et al. 2023; Zou, Liu, and Zhang
2023) tend to reduce the label knowledge learned by pas-
sive parties, neglecting to preserve active party’s unlearned
information for passive parties to learn and transfer. In sum-
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Figure 2: Schematic comparison of existing methods with our CKD approach. Horizontally overlapped bars represent shared
label information. Our CKD trains passive parties to transfer only complementary label information (purple), removing redun-
dant information (coral) learned by the active party from ground-truth labels.

mary, existing methods do not adequately address the dual
challenges of robustness and privacy in model serving.

In addressing robustness and privacy, we focus on the
knowledge transfer process. While knowledge transfer bol-
sters VFL robustness, it risks label leakage (Fu et al. 2022).
Notably, passive parties should provide what we term as
”complementary” label knowledge, which is unlearned by
the active party’s model, rather than mirroring a superior
teacher model. By transferring only this ”complementary”
information, we can mitigate privacy risks. This insight,
however, introduces two main challenges:

Privacy challenge: How to extract the complementary
label information to train passive parties? To address
this challenge, we propose a Complementary Label Coding
(CLC) approach. The CLC simultaneously 1) minimizes the
KL-divergence between the original label and the federated
prediction, which integrates the knowledge of active party’s
local prediction and the passive parties’ learning objective,
and 2) minimizes the mutual information between the active
party’s local predictions and the passive parties’ learning ob-
jective. We find that optimizing the CLC objective can be
reduced to LogitBoost (Freund and Schapire 1997), a sim-
ple and efficient boosting algorithm. LogitBoost converts the
original labels into re-weighted pseudo-residuals based on
the active party’s local predictions, thereby eliminating re-
dundant label privacy.

Robustness challenge: How to transfer the comple-
mentary knowledge to improve robustness? To enhance
robustness against arbitrarily-aligned data, we further pro-
pose Complementary Knowledge Distillation (CKD) ap-
proach with two strategies: passive-to-active (p2a) distilla-
tion and passive-to-passive (p2p) distillation, as shown in
Figure 2(b). In p2a distillation, we distill knowledge from
passive parties to the active party. Specifically, the teacher
model is constructed from the sum of the local model pre-
diction and the federated predicted pseudo-residuals. In p2p
distillation, we further distill knowledge from the ensem-
ble of passive parties’ bottom models to each bottom model
through ensemble distillation (Lin et al. 2020).

We evaluate our CKD approach on four public datasets.
In model serving, CKD excels over six baselines, ensuring
high utility even with arbitrarily-aligned data, and simulta-

neously maintaining low label privacy leakage. The key con-
tributions of this work are summarized as follows:

• Introduction of the Complementary Label Coding (CLC)
objective, a novel method for dynamically extracting
complementary label information for passive parties.

• Development of Complementary Knowledge Distillation
(CKD), a technique to transfer knowledge among parties
while preserving privacy.

• Comprehensive evaluation of CKD and CLC on four
real-world datasets, demonstrating their superior robust-
ness and privacy protection.

The remainder of the paper is structured as follows: We
begin by discussing related works. Then, we provide the
problem formulation and the robustness and privacy con-
cepts. Next, we propose the CLC method. Subsequently, we
detail our CKD approach, and finally, we present experimen-
tal evaluations of CKD.

Related Work
Robustness against Unaligned Data in VFL. Recently,
the robustness of VFL model serving has attracted grow-
ing attentions. SplitKD (Li et al. 2023) and (Ren, Yang,
and Chen 2022; Wan et al. 2023) are the pioneer work that
use knowledge distillation (KD) (Hinton, Vinyals, and Dean
2015) to transfer knowledge from the VFL model to the ac-
tive party’s local model. Moreover, these methods require
2K−1 − 1 candidate VFL models for all arbitrarily-aligned
data when scale to K-parties. There are also many studies
using ensemble distillation methods (Lin et al. 2020) to im-
prove robustness in horizontal FL. However, these methods
are not applicable to VFL due to serious privacy leakage is-
sues (Fu et al. 2022). Party-wise dropout (PtyDrop) (Sun
et al. 2023) randomly dropout some passive parties dur-
ing training, without knowledge transfer. However, PtyDrop
leads to even inferior utility than standalone local model on
unaligned data. Therefore, it is still an open challenge to de-
sign a privacy-preserving knowledge transfer method to im-
prove robustness in multi-party VFL.

Knowledge transfer in VFL is also related to learning us-
ing privileged features (Vapnik and Izmailov 2015; Vapnik
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and Vashist 2009), which are available only in training stage
but unavailable in test stage. TVFL (Wang et al. 2023) ac-
tively filters out passive parties to improve efficiency on fully
aligned data. In contrast, robust VFL aims to achieve the
highest possible utility on arbitrarily-aligned test data.

Privacy-preserving VFL. Existing privacy protection ap-
proaches in VFL (Gao, Yao, and Yang 2022) include cryp-
tographic methods (Ren, Yang, and Chen 2022; Fu et al.
2021; Gao et al. 2019) and perturbation methods (Sun et al.
2022). Cryptographic methods incur high communication
and computation overheads, thus are unbearable in multi-
party VFL settings. (Ren, Yang, and Chen 2022) integrates
cryptographic methods with KD to protect privacy in train-
ing and inference. Perturbation methods mainly focus on
protecting label leakage from gradients during training (Li
et al. 2022), rather than model serving. (Sun et al. 2022) con-
sider model serving in split learning. But they fail to remove
the redundant label information learned by the active party.
Some recent works (Sun et al. 2023; Zou, Liu, and Zhang
2023) incorporate a loss term to minimize the mutual infor-
mation between the outputs of the passive party’s model and
the labels, manually tuning the loss weight to balance the
privacy-utility trade-off. In contrast, we explicitly define a
distinct learning target to train passive parties, ensuring zero
mutual information between the active party’s model output
and the learning targets of passive parties.

Problem Description
Problem Formulation
Vertical Federated Learning Setting. In a typical VFL
setting, the training data D has n samples with sample
identifiers (IDs) I and labels Y . The feature space X =
X0 × X1 · · · XK is partitioned among K + 1 parties by fea-
ture. An active party P0 has labeled local features {x0,y}.
Meanwhile, K passive parties {Pk}Kk=1 only have auxiliary
features {xk}Kk=1.

As shown in Figure 3, our CKD framework predicting a
sample with ID i ∈ I aligned among a set of passive parties
K ⊆ {1, . . . ,K} can be expressed as:

fCKD(i) = Merge
(
fθ(i), gλ

(
{hψk

(i)}k∈K
))
, (1)

where the active party P0 trains a local model fθ : X0 7→ Y
to predict labels. Each passive party Pk trains a bottom
model hψk

: Xk 7→ Y to learn the complementary la-
bel knowledge (i.e., pseudo-residual) of fθ. A top model
gλ : YK 7→ Y is trained to robustly aggregate the out-
puts of available bottom models. Finally, Merge : Y2 7→ Y
merges the local prediction and federated pseudo-residual to
make prediction. For simplicity, we use sample ID i to index
each sample. That is, fθ(i) and hψk

(i) denote fθ(x0,i) and
hψk

(xk,i), respectively.

Threat model. We focus on the risk of label privacy leak-
age during the model serving stage, where this risk origi-
nates from the output of the passive parties’ bottom mod-
els (Fu et al. 2022). We assume that these passive parties are
semi-honest and do not collude, signifying that they adhere

to the protocol but may attempt to extract private informa-
tion from the data available to them. Specifically, an adver-
sarial passive party Pk seeks to infer the raw label yi from
its model’s output hψk

(i), given its features xk,i ∈ Xk.
Notably, under the semi-honest threat model, we don’t ac-

count for Byzantine attackers (Zhang et al. 2015), which in-
volve malicious parties intentionally trying to disrupt or de-
ceive the system, thereby excluding considerations for ro-
bustness against such Byzantine attacks.

Robustness and Privacy
The dataset D has a ground-truth ID-label joint distribution
pgt(i, y), with uniform sample weight pgt(i) ∼ U and pri-
vate label pgt(y|i) = 1(y = yi). We use the standard error
to measure the utility and label privacy leakage of a model:
Definition 1 (Standard error). Given a dataset with ground-
truth distribution pgt(i, y), let KL(·||·) denote the KL-
divergence, the standard error of a model f is defined as:

Rpgt(i,y)(f) = Ei∼pgt(i)[KL(pgt(y|i)||f(i))].

Robustness Metric. In the model serving stage, we intro-
duce a robustness metric to quantify the performance consis-
tency of the federated model fCKD defined in Eq. 1 across
different subsets of passive parties K. The robustness metric
for the model is conceptualized as:∑
K⊆{1,...,K}

Rpgt(i,y)(fCKD) (Robustness Metric)

This metric captures the aggregated performance of the
model over all possible combinations of passive parties, aim-
ing to provide a comprehensive measure of its robustness in
diverse settings. However, it’s worth noting that directly op-
timizing this metric can be challenging due to its combina-
torial nature. Thus, while it serves as a conceptual guide to
understand robustness, our subsequent methods and discus-
sions do not directly optimize this exact objective.

Privacy Metric. The essence of privacy in our context re-
volves around the label information of a dataset. According
to Definition 1, we define the private label information as:
Definition 2 (Private label information). The private label
information of a dataset is defined as its ID-label joint-
distribution pgt(i, y).

To protect label privacy, the active party trains the pas-
sive parties’ models using a distinct distribution ppas(i, y),
different from pgt(i, y). The goal is to ensure that the pas-
sive parties’ models do not inadvertently leak sensitive label
information. A natural metric to capture this privacy leak-
age is the mutual information (MI) between pgt(i, y) and
ppas(i, y):

I(pgt(i, y); ppas(i, y)) (Privacy Metric)
However, if this MI is too low (e.g., 0), it implies that
the passive parties gain minimal label knowledge from
ppas(i, y), which could adversely affect the VFL utility. In-
stead of directly minimizing this MI, it’s crucial to retain
label knowledge that the active party’s local model fθ
hasn’t yet learned. This insight motivates our proposal of
the complementary label coding, which we detail in the sub-
sequent section.
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Complementary Label Coding
Motivated by the identified limitations, we introduce the
concept of Complementary Label Coding (CLC), to decou-
ple the label privacy pgt(i, y) into two distinct components:
1. The redundant label information pact(i, y) = pgt(i) ·
pact(y|i), which is already captured by the local model
fθ = pact(y|i).

2. The complementary label information pclc(i, y) that the
local model has yet to learn.

Therefore, the CLC objective is defined to optimize the com-
plementary label information pclc(i, y) as follows:

min
pclc(i,y)

Ei∼pgt(i)[KL(pgt(y|i)||pfed(y|i))] (Utility), (2)

s.t. pfed(y|i) = Merge(fθ(i), h
∗
pas(i)), (3)

h∗pas(i) = arg min
hpas

Ei∼pclc(i)[KL(pclc(y|i)||hpas(i))],

I(pact(i, y); pclc(i, y)) = 0 (Privacy). (4)
Remark: Eq. 2 and Eq. 3 aim to minimize the KL-

divergence between the original label pgt(y|i) and the fed-
erated prediction pfed(y|i), which integrates both the lo-
cal prediction and the passive parties’ learning objective via
Merge(). Meanwhile, Eq. 4 ensures that fθ(i) and h∗pas(i)
share no mutual information, making them independent.

Interestingly, we find that the CLC objective can be re-
duced to the LogitBoost (Freund and Schapire 1997) objec-
tive, as shown in Proposition 1.
Proposition 1. Given pgt(i) ∼ U is a uniform distribu-
tion, ground-truth label yi = pgt(y|i), local model output
logit fθ(i), and the expected passive model output h∗pas(i).
The original CLC objective in Eq. 2 is equivalent to Logit-
Boost (Freund and Schapire 1997) objective:

min
pclc(i,y)

n∑
i=1

1

n
LCE(yi, fθ(i) + h∗pas(i)), (5)

where LCE(y, y′) = ln(1 + exp(−y · σ(y′))) is the cross-
entropy loss taking logit y′ as input. σ() is softmax function.

Proof sketch: According to (Zhang 2004), for independent
input features fθ and h∗pas constrained in Eq. 4, the optimal
Merge(·, ·) is a linear, naive Bayes classifier. That is,
Merge∗(fθ(i), h

∗
pas(i)) = σ(a · fθ(i) + b · h∗pas(i) + c).

As the local model fθ(i) is trained to fit pgt(y|i) in prior,
we have a∗ = 1. Meanwhile, we fix [b, c] = [1, 0] to opti-
mize the corresponding h∗pas(i). Therefore, the CLC objec-
tive Eq. 2 can be reformulated as:

min
pclc(i,y)

Ei∼pgt(i)[KL
(
pgt(y|i)||σ(fθ(i) + h∗pas(i))

)
],

which can further be reduced to Eq. 5. �
Therefore, we use the Newton method to optimize Eq. 5

and get the optimized pclc(i, y) as follows:
Proposition 2. (Freund and Schapire 1997) Given ŷ0,i =
σ(fθ(i)) is the locally predicted probability. Using the New-
ton method, the optimization result pclc(i, y) of Eq. 5 is:

pclc(i) =
ŷ0,i(1− ŷ0,i)∑n
j=1 ŷ0,j(1− ŷ0,j)

, pclc(y|i) =
yi − ŷ0,i

ŷ0,i(1− ŷ0,i)
.

(6)

. . .
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Figure 3: Complementary Knowledge Distillation (CKD)
training overview. For simplicity, we use the output logit and
probability interchangeably.

We denote Dclc = (w, r) as the CLC-encoded private
label information, wherew = pclc(i) is sample weights and
r = pclc(y|i) is pseudo-residuals. The label privacy leakage
risk of CLC is guaranteed as follows:

Theorem 1 (Privacy guarantee). When the standard er-
ror of the local model fθ trained on pgt(i, y) satisfies
Rpgt(i,y)(fθ) → 0, the privacy leakage from CLC-encoded
results pclc(i, y) satisfies I(pgt(i, y); pclc(i, y))→ 0.

As the standard error of the active party’s local model ap-
proaches zero, the label leakage from the CLC results also
nears zero.

Our Proposed Approach
Based on the concept of Complementary Label Coding
(CLC) introduced in the previous section, we present our
Complementary Knowledge Distillation (CKD) framework
designed to enhance the robustness of multi-party VFL
model serving, as illustrated in Figure 3.

1) The architecture of CKD is structured as follows: the
active party trains a standalone local model fθ tailored to
fit labels, while passive parties train an ensemble model
hpas to fit the CLC-encoded re-weighted pseudo-residuals
Dclc = (w, r). A specially designed simplex layer gλ is
incorporated to aggregate the outputs of available bottom
models hψk

in a robust manner. 2) Subsequently, we detail
the online complementary knowledge distillation process,
which dynamically transfers the CLC-encoded label knowl-
edge both to the active party and among passive parties.

Framework Architecture
Active Party’s Local Model. The active party P0 trains
a standalone local model fθ on its local dataset {x0,y} as
follows:

Lloc =
n∑
i=1

1

n
LCE

(
yi, fθ(i)

)
,
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where fθ(i) is the output logit of the i-th sample xi, LCE is
the cross-entropy loss taking logit fθ(i) as input.

Ensemble of Passive Parties’ Models. As shown in Fig-
ure 3 (middle part), all passive parties collaboratively train a
federated ensemble model hpas = gλ ◦ {hψk

}Kk=1 to fit the
CLC-encoded re-weighted pseudo-residuals Dclc = (w, r).
Each passive party Pk trains its bottom model hψk

. Then,
the active party trains a simplex layer gλ to robustly aggre-
gate the outputs of the available bottom models hψk

. In all,
the ensemble of passive parties’ models hpas is as follows:

hpas(i) = gλ ◦ {hψk
}k∈K(i) =

∑
k∈K λk · hψk

(i)∑
k∈K λk

(7)

s.t. λk ≥ 0, ∀k ∈ [1,K],

where K denotes the set of available passive parties of sam-
ple i, and

∑
k∈K λk serves as a normalization factor. We

constrain {λk}k∈K = ∆|K| to be a simplex (i.e., one-sum,
non-negative) to ensure the simplex layer gλ is robust to dif-
ferent number of available parties.

To protect label privacy, the passive parties only learn the
CLC-encoded complementary label information. Therefore,
the objective of the ensemble models is as follows:

Lclc =
n∑
i=1

wi · ||ri − hpas(i)||22,

where (wi, ri) ∈ Dclc is the CLC-encoded weight and
pseudo-residual of sample i.

Overall CKD Model. In summary, the CKD model fCKD
can be expressed as the sum of active party’s local predic-
tions and the passive parties’ predicted pseudo-residuals:

fCKD(i) = fθ(i) + α · hpas(i), (8)
where α > 0 is the weight of the predicted pseudo-residual.
The predicted probability ŷfed,i = σ(fCKD(i)), where σ(·)
is the softmax function.

Online Knowledge Distillation
The federated model fCKD outperforms the local model fθ
alone by utilizing the predicted pseudo-residuals from pas-
sive parties to rectify the imprecise predictions of the lo-
cal model. Therefore, we adopt the federated model fCKD
as the teacher model and employ knowledge distillation
(KD) (Hinton, Vinyals, and Dean 2015) to transfer knowl-
edge from fCKD to the local model fθ. The passive-
to-active (p2a) distillation loss is defined based on KL-
divergence as follows:

Lp2a = T 2
n∑
i=1

wi ·KL(σ(fCKD(i)/T )||σ(fθ(i)/T )),

where T > 1 is the temperature to generate softened labels,
σ(·) is the softmax function, fCKD(i) and fθ(i) are the logit
of the federated model and the local model, respectively.

To further improve utility on partially-aligned data, we
conduct passive-to-passive (p2p) distillation by adopting en-
semble distillation (Lin et al. 2020) to transfer knowledge
from the ensemble of bottom models to each bottom model:

Lp2p(k) = T 2
n∑
i=1

wi ·KL(σ(hpas(i)/T )||σ(hψk
(i)/T )),

Algorithm 1 CKD: Training

Require: Aligned data D = {{xk}Kk=1,y} indexed by I .
. Cold start

1: Active party P0 trains fθ on {x0,y} via Lloc.
. Federated complementary knowledge distillation

2: Passive parties {Pk}Kk=1 initialize {ψk}Kk=1.
3: for each batch of sample ID b ⊂ I do
4: P0 updates Dclc = (w, r) via Eq. 6.

. Loss Computation
5: {Pk}Kk=1 compute {hψk

(b)}Kk=1, send to P0.
6: P0 computes fCKD(i) via Eq. 7 and Eq. 8.
7: P0 computes Lloc,Lclc, Lp2a, and Lp2p.

. Model Update
8: P0 updates simplex layer λ← λ− ∂Lclc

∂λ .
9: P0 updates local model θ ← θ − ∂Lact

∂θ .
10: {Pk}Kk=1 update models ψk ← ψk −

∂Lpas(k)

∂ψk
.

11: end for
Ensure: θ, {ψk}Kk=1, and λ.

Algorithm 2 CKD: Robust Model Serving

Require: Sample ID i, timeout delay t, each party Pk has
test set with IDs Ik, the trained CKD model fCKD.

1: Active party P0 broadcasts sample ID i to {Pk}Kk=1.
2: Meanwhile, P0 locally predicts fθ(i).
3: {Pk}Kk=1 send back hψk

(i) if i ∈ Ik else Null.
4: P0 waits until timeout t or receives all {hψk

(i)}Kk=1.
5: P0 computes fCKD(i) following Eq. 7 and Eq. 8.

Ensure: ŷfed,i = σ (fCKD(i))

Model Training. Algorithm 1 demonstrates the training
process of the proposed CKD. To update the local model,
the total loss of the local model fθ is formulated as:

Lact = Lloc + β · Lp2a,
where β > 0 is a coefficient that determines the weight of
knowledge distillation loss. The total loss of each passive
party Pk’s bottom model hψk

is defined as follows:
Lpas(k) = Lclc + β · Lp2p(k).

Robust Model Serving
Algorithm 2 illustrates the model serving process of CKD
when dealing with arbitrarily-aligned data. Initially, the ac-
tive party P0 broadcasts the sample ID i to all passive par-
ties {Pk}Kk=1. In response, each passive party Pk checks if
the sample i exists within its ID set Ik. If found, it computes
and returns the prediction hψk

(i); otherwise, it sends back a
Null response. Concurrently, P0 performs a local inference
to obtain fθ(i) using its local model. Once all responses are
gathered or a timeout is reached, P0 calculates the federated
prediction ŷfed,i = σ (fCKD(i)) based on Eq. 7 and Eq. 8.

Experimental Studies
In our experimental evaluation, we seek to address two
primary research questions: RQ1: How do complementary
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knowledge distillation and the simplex layer in CKD en-
hance the robustness of VFL compared to existing methods?
RQ2: Is CKD capable of providing stronger label privacy
protection compared to previous methods?

Experimental Setting
Datasets. We evaluate CKD using four widely used pub-
lic real-world datasets spanning various domains: two for
click-through rate (CTR) prediction, one for movie ratings,
and one for healthcare. 1) Criteo1: A dataset containing a
month’s worth of ad click records with 13 numerical and
26 categorical features. Features are randomly distributed
among one active party and four passive parties. 2) Avazu2:
Comprising 21 categorical fields, this dataset’s fields are ran-
domly distributed among five parties. We use a subset of
10 million records for both datasets. 3) HetRec (Cantador,
Brusilovsky, and Kuflik 2011): A movie rating dataset link-
ing the MovieLens10M dataset (Harper and Konstan 2015)
to RottenTomatoes reviews. Ratings are binarized using a
threshold of 2.5. Features are distributed among one active
party and two passive parties. 4) MIMIC-III (Johnson et al.
2016): A dataset for predicting in-hospital mortality based
on the initial 48 hours of ICU data, containing 714 features.
Features are distributed among five parties.

Implementations. For all datasets, we randomly sample
80% data for training and the rest for testing. We adopt the
widely used DeepFM (Guo et al. 2017) for both local and
bottom models on Criteo, Avazu and HetRec. We use a 3-
layer MLP for both local and bottom models on MIMIC-III.
The models are optimized by Adam (Kingma and Ba 2015).
We set the learning rate to 1e−4, the weight decay to 1e−4,
the passive ensemble model weight α to 1.5, and the batch
size to 2048. We use 5-fold validation to determine early
stopping. All training data are fully-aligned. For KD, we set
the temperature T to 20 and KD loss weight β to 3.

Compared methods. We compare our CKD with six other
methods in experiments. Cryptographic approaches (Ren,
Yang, and Chen 2022) are not included due to their expen-
sive communication and computational costs.

• Local model is only trained on the local data {x0,y}.
• Vanilla VFL (Yang et al. 2019) trains a federated model

and tests on fully-aligned data.

• VFEns trains ensemble of models on all parties via split
learning (Vepakomma et al. 2018). VFEns trains each
hψ(i) to fit labels via split learning and averages the pre-
dictions of available models.

• PtyDrop (Sun et al. 2023) randomly dropout passive
parties in training for robustness against unaligned data.
However, it does not transfer knowledge between parties.

• SplitKD (Li et al. 2023) distills knowledge from a feder-
ated model trained on fully-aligned data to a local model
trained on the active party’s local data.

1https://labs.criteo.com/category/dataset/
2https://www.kaggle.com/c/avazu-ctr-prediction
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Figure 4: The robustness against various unaligned parties.

• VFMD is an ensemble distillation method adopted from
FedDF (Lin et al. 2020) in horizontal FL. All parties train
their local models for label prediction and distill knowl-
edge from the ensemble to each model.

Metrics. We use the AUC (Area Under ROC curve) met-
ric in our experiments. 1) Utility: We evaluate the AUC of
the federated model on arbitrarily-aligned test data with var-
ious number of aligned passive parties. Higher AUC values
indicate superior model utility. 2) Privacy: For privacy eval-
uation, we calculate the average AUC of the label predic-
tions made by the passive parties via Passive Model Comple-
tion (PMC) attack (Fu et al. 2022). An ideal privacy leakage
AUC value is close to 0.5.

Robustness
To assess the robustness of CKD during model serving,
we simulate scenarios with arbitrarily-aligned data involv-
ing varying numbers of aligned passive parties. This setup
mirrors real-world situations where the alignment of pas-
sive parties can significantly influence the system’s utility.
Specifically, we emulate the absence of different passive
parties and compare the federated model’s AUC (FL-AUC)
across all methods using four datasets.

Figure 4 shows that CKD achieves the best utility
on partially-aligned data, and matches the top-performing
methods on unaligned data. Notably, the distillation-based
methods, namely CKD, SplitKD, and VFMD, demonstrate
superiority over other baselines like VFEns and PtyDrop
when data is partially aligned, attributed to their abil-
ity to transfer knowledge from passive to active parties.
For SplitKD, the reliance on a standalone local model for
partially-aligned data compromises its utility. Conversely,
PtyDrop’s performance diminishes when data is either un-
aligned or aligned with only a few passive parties. Although
VFMD exhibits robustness close to CKD, a significant con-
cern arises with VFMD, which we will address later: it poses
substantial label privacy risks since it directly trains passive
parties on labels.
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Method Criteo Avazu HetRec MIMIC-III

L-Util↑ P-Util↑ Priv↓ L-Util↑ P-Util↑ Priv↓ L-Util↑ P-Util↑ Priv↓ L-Util↑ P-Util↑ Priv↓
Local 72.2 - - 69.8 - - 68.6 - - 63.9 - -

VFEns 72.2 74.1 72.7 69.8 74.0 71.2 68.6 72.9 69.0 63.9 69.0 64.9
PtyDrop 70.8 73.5 62.4 67.9 73.5 60.4 66.7 72.6 61.6 62.4 67.8 57.3
SplitKD 72.6 72.6 70.5 70.2 70.2 69.8 69.0 69.0 69.2 64.2 64.2 65.1
VFMD 72.4 74.3 73.2 70.2 74.2 72.5 68.8 73.1 69.4 64.2 69.2 65.3

(Our) CKD 72.5 74.5 59.7 70.2 74.3 57.9 68.9 73.4 60.6 64.1 69.3 56.7

Table 1: The comparative results of utility and privacy on four datasets. L-Util and P-Util indicate the AUC (%) on active party’s
local data x0 and partially-aligned data {x0,xk}k∈K , respectively. Priv is the privacy leakage AUC (%) of bottom models.

Loss Criteo Avazu

Lp2a Lp2p L-Util↑ P-Util↑ Priv↓ L-Util↑ P-Util↑ Priv↓
× × 72.1 74.2 59.6 69.8 74.0 57.8
X × 72.5 74.4 59.4 70.1 74.2 57.6
X X 72.5 74.5 59.7 70.2 74.3 57.9

Table 2: Impact ofLp2a andLp2p on CKD. L-Util and P-Util
denote the AUC (%) on local data x0 and partially-aligned
data {x0,xk}k∈K , respectively. Priv is the privacy leakage
AUC (%) of bottom models against the PMC attack.

Label Privacy Protection
We assess the label privacy protection capabilities of CKD.
Table 1 presents the label privacy leakage AUC of CKD and
other baselines when subjected to the PMC attack (Fu et al.
2022), alongside their utility on unaligned and partially-
aligned data. We have excluded Vanilla VFL from this ta-
ble because it’s inapplicable to partially aligned data, and
its privacy leakage AUC mirrors that of the SplitKD model.
Notably, CKD stands out by offering effective knowledge
transfer from passive parties to the other parties, achieving
comparable local utility (L-Util) with SplitKD and the high-
est utility on partially-aligned data (P-Util), and significantly
enhancing label privacy protection against passive parties.
While PtyDrop offers similar label privacy protection, it falls
short in knowledge transfer, resulting in a local utility even
lower than the Local baseline. Therefore, CKD not only ex-
cels in knowledge transfer but also demonstrates superior la-
bel privacy protection compared to other baselines, reinforc-
ing its position as a leading solution for privacy-preserving
knowledge transfer in multi-party VFL systems.

Additional Experiments
Effect of knowledge transfer losses. We evaluate the im-
pact of passive-to-active knowledge transfer loss Lp2a and
passive-to-passive lossLp2p on CKD’s performance. Table 2
illustrates that both losses enhance CKD’s efficacy. Specif-
ically, 1) introducing Lp2a (as seen by comparing the first
two rows) boosts local utility while enhancing label privacy.
This enhancement arises as knowledge is transferred from
passive to active parties, refining local utility and concur-
rently reducing encoded complementary label information
in passive models, thereby protecting label privacy. 2) Intro-
ducingLp2p (evident from the last two rows) further elevates
local utility, albeit with a slight compromise in label privacy.

# Aligned passive parties

Top model 1 2 3 4

Averaging Layer 74.3 75.1 75.8 76.2

Simplex Layer 74.5 75.6 76.2 76.6

Table 3: Comparative AUC (%) results of different top mod-
els for robust aggregation in CKD on the Criteo dataset.

This is attributed to the enhanced knowledge sharing among
passive parties, which, while improving utility, slightly am-
plifies label privacy leakage.

Impact of the Simplex Layer We evaluate the role of the
simplex layer gλ in robustly aggregating against unaligned
features. Table 3 compares the utility across different num-
bers of aligned passive parties, contrasting the simplex layer
with an averaging layer. The results reveal that the sim-
plex layer consistently achieves higher utility across vary-
ing numbers of aligned passive parties. This superior per-
formance is attributed to the simplex layer’s ability to effec-
tively discern the contributions of passive parties and inte-
grate the complementary label information into the simplex
space. Consequently, the model’s robustness against missing
parties is improved.

Conclusions
In this work, we introduced Complementary Knowledge
Distillation (CKD), a novel approach designed to enhance
both the robustness and privacy of multi-party Vertical Fed-
erated Learning (VFL) against arbitrarily-aligned data in
model serving. Our method begins with the formulation of a
Complementary Label Coding (CLC) technique, which en-
codes the complementary label information that is unlearned
by the active party’s local model. Subsequently, CKD is pro-
posed to distill this complementary knowledge both to the
active party’s local model and among the passive parties.
Experimental validation on four public datasets confirms the
effectiveness of CKD in bolstering the robustness of multi-
party VFL, while also maintaining label privacy. Looking
ahead, our future work will delve into the convergence anal-
ysis of CKD and explore the integration of CKD with other
protection mechanisms, such as cryptographic methods, to
further protect label privacy during the training phase.
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