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Abstract

The drastic increase in language models’ parameters has led to
a new trend of deploying models in cloud servers, raising grow-
ing concerns about private inference for Transformer-based
models. Existing two-party privacy-preserving techniques,
however, only take into account natural language understand-
ing (NLU) scenarios. Private inference in natural language
generation (NLG), crucial for applications like translation and
code completion, remains underexplored. In addition, previous
privacy-preserving techniques suffer from convergence issues
during model training and exhibit poor inference speed when
used with NLG models due to the neglect of time-consuming
operations in auto-regressive generations. To address these
issues, we propose a fast private text generation framework
for Transformer-based language models, namely MERGE.
MERGE reuses the output hidden state as the word embed-
ding to bypass the embedding computation and reorganize
the linear operations in the Transformer module to acceler-
ate the forward procedure. Extensive experiments show that
MERGE achieves a 26.5x speedup to the vanilla encrypted
model under the sequence length 512, and reduces 80% com-
munication cost, with an up to 10x speedup to state-of-the-art
approximated models.

Introduction
Recently, from pre-trained language models (PLMs) to large
language models (LLMs), Transformer (Vaswani et al. 2017)
based models have attracted significant attention because of
their exceptional performance in downstream tasks. Due to
the high demand for computing power, this growth of model
parameters also has caused the trend of hosting models to
cloud service providers, which raises wide concerns about
privacy inference and training. For example, existing natural
language processing (NLP) services like Copilot1 and Chat-
GPT require users to submit their queries in plain text, which
may contain confidential information such as source code,
medical information, and personal preferences.

To alleviate the privacy problem, recent works (Hao et al.
2022; Chen et al. 2022) have developed two-party secure
inference services for PLMs by secure Multi-Party Compu-
tation (MPC). MPC ensures the privacy of user data and
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1https://github.com/features/copilot

model weights, and shares them secretly. However, PLMs
inference under MPC is considerably slow compared to the
plain-text version, which limits its application in real-world
services. To address this issue, several works have attempted
to simplify the bottleneck operations such as activation func-
tions and softmax in the Transformer model. For instance,
(Mishra et al. 2020) uses Neural Architecture Search (NAS)
to replace the activation functions with linear layers, and
(Li et al. 2022) approximates the exponential operation with
polynomial functions.

Though designed for Transformer, existing works (Hao
et al. 2022; Chen et al. 2022; Li et al. 2022) solely explore
the scenario of natural language understanding (NLU) (e.g.,
on the GLUE (Wang et al. 2019) benchmark). Unfortunately,
we observe that they have no significant improvements in
natural language generation (NLG) tasks (cf., Fig. 1). By
illustrating the bottleneck of NLU and NLG inference proce-
dures, we find that auto-regressive generation used in PLMs
suffers from extra time cost in embedding table query and
token sampling (i.e., GenTime), which slows down the whole
inference procedure heavily.

In this paper, we explore accelerating the generation proce-
dure of language models. Different from existing works that
merely approximate the nonlinear operations, we consider
the optimization at the architecture level and attempt to reor-
ganize and simplify the whole generation procedure as well
as Transformer modules. To this end, we propose MERGE
(short for MPC-based Embedding Resending GEneration),
a fast and easy-to-adopt framework for private text genera-
tion. MERGE is compatible with previous MPC-based works
(e.g., MPCformer, THE-X, and IRON) and mainstream PLMs
(e.g., GPT-2 (Radford et al. 2019), T5 (Raffel et al. 2020), and
Bart (Lewis et al. 2020)). In concrete, MERGE can simplify
the time-consuming operations in NLG such as embedding
query and token sampling. To achieve that, we first put for-
ward a strategy called embedding resending, which directly
uses the output hidden state as the new input token embed-
ding. Embedding resending helps to bypass the embedding
table query operation and decouple the computation between
forward representation learning and next token sampling.
Besides, following the recent research (Hassid et al. 2022)
in attention mechanism, we approximate self-attention with
constant attention matrices and merge tensor computations
in the Transformer module before inference. Nevertheless,
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Figure 1: Encrypted inference time comparisons among BERT-base and GPT-2 with sequence length 128, where MPCformer,
THE-X, and MERGE in Fig. (a) are different private inference methods. While nonlinear operations such as softmax (Soft-
maxTime) and activation functions (ActTime) account for a substantial portion of inference time in BERT-base (Fig. (b)), the
inference time is more balanced across operations for NLG models (Fig. (c)), with non-trivial time consumption from linear
computations (LinearTime), embedding table query (EmbedTime), and token sampling (GenTime).

these two strategies are challenging because: 1) PLMs are
usually sensitive to input embeddings, while there are some
unavoidable errors in the generated embeddings; 2) constant
attention in our merge module might hurt the performance of
PLMs. To address the above challenges, we first propose an
embedding alignment and augmentation task to enhance the
robustness of PLMs about input embeddings. Besides, we em-
ploy a weighted distillation training task for approximation
models, which allows us to alleviate the negative effects of
constant attention. Our empirical experiments on popular text
generation tasks such as E2E (Dusek, Novikova, and Rieser
2018), Multiwoz 2.1 (Eric et al. 2020), and DailyDialog (Li
et al. 2017) demonstrate the effectiveness of MERGE. Specif-
ically, it achieves a considerable speedup of 7.75x to GPT-2
and 10.89x to T5 under the sequence length 128, and 26.5x
under sequence length 512, while maintaining an acceptable
performance with losses in BERTscore (Zhang et al. 2020),
BARTscore (Yuan, Neubig, and Liu 2021), and Rouge-L (Lin
2004) of only 0.02 (under 0.92), 0.14 (under -2.90), and 0.03
(under 0.44), respectively. Source code of experiments can
be found here: https://github.com/liangzid/MERGE.

Related Work
Although existing MPC techniques can provide secure in-
ference for neural networks, they usually suffer from pro-
hibitively high communication delays and computation costs.
This is primarily due to the critical nonlinear operations
within neural networks. Therefore, some works aim to ap-
proximate these bottleneck operations in neural networks.
For instance, (Chen et al. 2022) replaces the GeLU acti-
vation function in the Transformer with ReLU, and (Hao
et al. 2022) reformulates the Tanh(·) function in GeLU
based on optimized exponential operations. Besides, (Mishra
et al. 2020) approximates the ReLU function with linear
layers to replace the MPC method used for ReLU through
the garbled circuits with secret sharing and Beaver triples.
Similarly, (Li et al. 2022) approximates GeLU with ReLU
and quadratic functions. For the softmax operation in the
attention mechanism, (Li et al. 2022) approximates it by
softmax(x) ≈ ReLU(x)∑

ReLU(x) or softmax(x) ≈ (x+c)2∑
(x+c)2 .

Nevertheless, these approximations were designed for the
“one-time” inference of NLU models (e.g. BERT), and are not
optimized for auto-regressive generative models (e.g. GPT-
series) that execute the forward inference multiple times. By
contrast, our work focuses on optimizing the overall genera-
tion procedure instead of some nonlinear operations, which
leads to more transformative performance for Transformer-
based language models.

Preliminary
Text Generation with Language Models
The text generation task (e.g. dialogue) aims to generate the
desired sequence y (e.g. the response of the chatbot) under
the given prefix text p (e.g. the dialogue context) with the
language model pθ(y|p). Typically, existing language models
usually generate y in an auto-regressive manner, i.e.,

pθ(y|p) =
Nt∏
t=1

p(xy
t |p, x

y
<t), (1)

where xy
t denotes the t-th generated token of y and xy

<t
denotes the generated tokens of y at step t.

In Eq. (1), if we denote the one-hot representation of
(p, xy

<t) as xt with text length Nt, then the generation proce-
dure consists of the following three stages:
a) Embedding table query: to obtain the initialized em-
beddings for each word, i.e., Et = fe(xt), where fe(x) :
RNt×V → RNt×d is the embedding layer that maps the V -
length index representation into the d-dimension semantic
space to obtain the semantic embeddings Et.
b) Representation learning: to obtain the representations
of inputs considering the contexts, i.e., hnl

t = ftr(E′
t), where

ftr : RNt×d → RNt×d is an nl-layer transformer model,
hnl
t is the output hidden state, and E′

t is the combination of
positional embeddings, token embeddings Et, and others.
c) Next token sampling that generated the new token, i.e.,
xy
t ∼ fcls(hnl

t )[Nt], where fcls(hnl
t ) : RNt×d → RNt×V

is the linear head for token prediction, and fcls(hnl
t )[Nt]

which is the Nt-th element of fcls(hnl
t ) denotes the probabil-

ity distribution of in vocabulary for current sampled token,
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Figure 2: An overview of MERGE at inference (Fig. (a)) and re-training (Fig. (b)) stages.

and ∼ denotes the sampling strategy (e.g., greedy search) to
obtain the new generated token xy

t according to vocabulary
distribution fcls(hnl

t )[Nt].

Transformer Module
In the above representation learning step, the Transformer
model ftr can be viewed as a stack of transformer modules.
Here, we introduce the three key components of transformer
module fn

tr : RNt×d → RNt×d as follows:
a) Projection: to compute the subsequent self-attention,

the transformer module first projects the input hidden state to
the (query, key, value) tuple, i.e.,

Qn,Kn,Vn = WT
Qnhn−1,WT

Knhn−1,WT
V nhn−1,

where WQn ,WKn ,WV n ∈ Rd×(d/Nh)×Nh are Nh-head pro-
jection matrices. Particularly, we have h0 = E′

t.
b) Self-Attention is proposed to aggregate the con-

text information into a new representation for each word
base on the above (Qn,Kn,Vn) tuple. Firstly, it cal-
culates the correlation between contextual words, i.e.,
An = fdr(softmax(Qn · (Kn)T /

√
dk)), where An ∈

RNh×Nt×Nt denotes the Nh-head attention matrix and dk =
d/Nh. Then, the new representations are weighted aggre-
gated based on the above attention matrix, i.e., xnatt =
fln(fdr(W

T
dn · (Concat(An · Vn)) + bdn) + hn−1), where

Wdn ∈ Rd×d is the weight matrix, bdn ∈ Rd is the bias, fdr
denotes the dropout operation (Srivastava et al. 2014), and
fln is the layer normalization (Ba, Kiros, and Hinton 2016),

fln(x) =
x − E[x]√
V ar[x] + ϵ

⊙ γ + β, (2)

in which ϵ is a tiny number, ⊙ denotes the element-wise
product, and E[x] and V ar[x] denote the mean and variance
of x, respectively.

c) Feed forward: to compute the output hidden state, a
two-layer MLP is used, i.e., hn = fln(fdr(W

nT
O ·(Act(WnT

I ·
xnatt + bnI ) + bnO) + xnatt), where Wn

I ∈ Rd×dI and Wn
O ∈

RdI×d are weighted matrices, bnI ∈ RdI and bnO ∈ Rd are
bias vectors, dI is the dimension of intermediate states, and

Act(·) denotes the activation functions such as ReLU (Agarap
2018) or GeLU (Hendrycks and Gimpel 2016).

Our Method
Overview
Fig. 2 gives an overview of how MPC systems work in pri-
vate text generation and the role MERGE plays in the whole
framework. As we can see, to enable private computations
among multiple parties, the MPC system encrypts both the
texts and the model parameters, and then send them securely
with various secure techniques. Since it is imperative to ac-
celerate the inference (shown in Fig. 1), our method MERGE
aims to export an optimized model Mm to the original model
Mf for MPC systems, which involves a two-step re-training
procedure. Especially, it consists of an approximation of
Transformer architecture, called merge module (MM), and a
training task for a new generation strategy, called embedding
resending (ER). Fig. 3 illustrates the details of them.

Embedding Resending (ER)
As shown in Fig. 3(b), the core idea of ER is borrowing
the representation of Merge Module as the word embedding
(shown as the red line). In detail, ER regards the hidden state
(hnl

t−1[Nt−1]) at step t− 1 as Et[Nt] at step t, i.e.,

Et = [Et−1; hnl
t−1[Nt−1]] = [E0; hnl

t−1], (3)

where E0 denotes the token embeddings of the prefix p and
“;” denotes the concatenation operation. In this way, our ER
strategy achieves two aspects of optimization: 1) since we
obtain Et[Nt] without sending new token into the Embedding
Layer, we avoid the time-consuming embedding table query;
2) since we only require the hidden states instead of sampled
tokens in following generation procedure, we can execute the
token sampling and representation learning in parallel.
Alignment optimization. Eq. (3) assumes embedding table
query as the inverse procedure of next token sampling, which
implies that hidden states and token embeddings are in the
same representation space. Therefore, to align the representa-
tions hnl

t−1[Nt−1] and Et[Nt], we design a training task that
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Figure 3: Generation procedure and architecture of existing models (Fig. (a)) and MERGE (Fig. (b) and (c)).

maximizes the cosine similarity between these vectors, i.e.,

Lc =
1

Ntr ·N

Ntr∑
i

N∑
t=1

1− cos(hnl
i,t−1[Nt−1],Ei,t[Nt]), (4)

where function cos computes the cosine of the angle between
two vectors, Ntr is the number of train set, and N denotes the
sequence length. Here we select the cosine similarity instead
of mean square error (MSE) because the inner product (e.g.,
self-attention) plays a key role in the Transformer module.
Robustness Optimization. Besides, we observe that the error
of token embeddings significantly impacts the performance of
the Transformer model ftr and leads to nonsensical sentence
generation with the MSE value over 0.05 (cf., Fig. 5). To
enhance the robustness of ftr, we introduce an embedding
augmentation method that first masks each element et in Et

with a probability p, and then adds a uniform noise sampled
from a small interval (−ϵ, ϵ) i.e.,

ẽt = mt · (et + nt), (5)

where mt ∼ Bernoulli(1 − p) and nt ∼ Uniform(−ϵ, ϵ).
Based on the noised token embeddings Ẽt, the cross-entropy
loss can be reformulated as,

Lce =
1

Ntr ·N

Ntr∑
i

N∑
t=1

xt[Nt] · logfcls(ftr(Ẽt))[Nt]. (6)

In this way, for a word embedding input in a noisy range, ftr
will learn to obtain a similar hidden state.

Therefore, the overall train loss is formulated as,

L = λLc + (1− λ)Lce, (7)
where λ ∈ [0, 1] is a weighting factor.

The Merge Module (MM)
To further accelerate the inference process, we also propose
the merge module, which is an efficient approximation of the
Transformer module, focusing on optimizing the computation
of the linear and softmax functions.

Following recent research (Hassid et al. 2022), we first
replace the dynamic self-attention matrix An with a constant
attention matrix Cn ∈ RNh×Nt×Nt . We initialize Cn with
the average of An in train set, i.e.,

Cn =
1

Ntr

Ntr∑
i

An
i (8)

Besides, we approximate the layer normalization fln in
attention with a simple element-wise multiplication f ′

ln(x) =
x ⊙ γ + β, inspired by the previous work (Chen et al. 2022).
Consequently, the attention procedure now can now be ap-
proximated as,

xn
att = f ′

ln(fdr(W
nT
d ·(Concat(Cn·Vn))+bnd )+hn−1). (9)

Based on Eq. (9), we simplify the whole computation pro-
cedure by reorganizing matrix computations in ftr and merg-
ing intermediate linear operations. Specifically, we merge the
projection operation Wn

V , the linear map Wn
d , the approxi-

mated layer normalization function f ′
ln, as well as the first

linear map in feed-forward Wn
I into a single linear layer, i.e.,

a weighted matrix Mn
u ∈ Rd×dI and a bias term bnMu

∈ RdI ,
which are formatted as:

Mn
u = (WV n ·Wn

d + 1)⊙ γ ·Wn
I ,

bnMu
= WnT

I ⊙ γ · bnd +WnT
I · β + bnI ,

(10)

where 1 ∈ Rd×d is the residual term in attention module.
As Eq. (10) shows that no parameters dependent on in-

put token embeddings E′
t, we can pre-compute Mu and bMu

before the inference stage, thus reducing the computation
during model execution. Thus, we simplify the entire Trans-
former module into only three tensor multiplications, i.e.,

xn
o = fmer(hn−1)

= fln(W
n
O

T · Act(Mn
u

T · Cn · hn−1 + bnMu
) + bnO).

(11)

Although it may appear possible to merge Mn
u with the

previous linear matrix Wn−1
O in Eq. (11) by approximating
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Time/ Communication Time (s)Model Embed Linear Softmax Total Time (s) Speedup

GPT2-base (124M)
CrypTen 321.44/52.33 251.93/74.21 454.61/113.96 1328.26 1x
MPCformer (sm2relu) 316.75/51.55 253.57/76.56 181.14/45.59 1001.41 1.33x
MPCformer (sm2quad) 318.16/50.88 253.30/75.16 152.45/37.40 972.50 1.36x
THE-X 329.29/58.30 258.00/80.21 87.71/19.28 965.79 1.37x
MERGE (ER+MM) 5.17/0.87 157.50/53.97 †0.00/0.00 171.38 7.75x
MERGE (only ER) 5.41/0.95 260.36/80.00 477.76/124.83 834.13 1.59x
MERGE (only MM) 320.84/50.92 250.98/81.57 †0.00/0.00 747.45 1.78x

T5 (138M)
CrypTen 323.46/53.36 328.09/96.08 693.73/175.57 1569.41 1x
MPCformer (sm2relu) 327.51/55.36 328.61/96.80 284.65/75.17 1207.63 1.30x
MPCformer (sm2quad) 324.81/52.03 325.97/92.89 235.54/58.47 1149.07 1.37x
THE-X 316.16/48.58 321.90/90.82 126.73/25.51 1050.28 1.49x
MERGE (ER+MM) 7.62/1.27 131.31/44.11 †0.00/0.00 144.02 10.89x
MERGE (only ER) 8.24/1.58 211.57/65.19 596.74/166.50 874.36 1.79x
MERGE (only MM) 322.38/51.35 221.57/69.22 †0.00/0.00 693.30 2.26x
Model Embed (Byte) Linear (Byte) Softmax (Byte) Total (Byte) Fraction

GPT2-base (124M)
CrypTen 71.41GB 159.36GB 1.62GB 322.54GB 100.00%
MPCformer (sm2relu) 71.41GB 135.54GB 0.54GB 317.20GB 98.34%
MPCformer (sm2quad) 71.41GB 135.54GB 0.07GB 316.73GB 98.20%
THE-X 71.41GB 135.54GB 0.50GB 319.14GB 98.95%
MERGE (ER+MM) 1.15GB 119.89GB †0.00GB 121.76GB 37.75%
MERGE (only ER) 1.15GB 160.63GB 1.62GB 168.51GB 52.24%
MERGE (only MM) 71.41GB 119.89GB †0.00GB 281.88GB 87.39%

T5 (138M)
CrypTen 147.14GB 199.97GB 7.72GB 380.45GB 100.00%
MPCformer (sm2relu) 147.14GB 199.97GB 2.73GB 364.74GB 95.87%
MPCformer (sm2quad) 147.14GB 199.97GB 0.33GB 362.33GB 95.24%
THE-X 147.14GB 199.97GB 2.97GB 369.73GB 97.18%
MERGE (ER+MM) 1.73GB 95.66GB †0.00GB 98.03GB 25.77%
MERGE (only ER) 1.73GB 120.17GB 7.56GB 132.44GB 34.81%
MERGE (only MM) 73.72GB 95.66GB †0.00GB 257.89GB 67.79%

Table 1: Inference time and communication costs comparison among different operations. Results marked with † come from the
optimization in MM which replaces the dynamics attention with constant attention, thus having no cost in softmax. The remaining
tables use the same notation system as outlined here.

the layer normalization fln with f ′
ln, we choose to keep them

separate for the following two reasons. Firstly, the merged
matrix Wn−1

O ·Mn
u ∈ RdI×dI has significantly more param-

eters than WO plus Mu, since dI is typically larger than d.
Secondly, removing fln in Eq. (11) will hurt the convergence
of the merge module heavily during the training stage.

Obviously, to derive Eqs. (10) and (11), we need to swap
Wn

v and Cn, which requires the verification that the matrix
multiplications on the tensor hn−1

t under different dimen-
sions obeys the commutative law.

Experiments
Settings
Datasets. We evaluate MERGE on three representative text
generation tasks, including Multiwoz (Eric et al. 2020), a
human-human multi-turn task-oriented dialogue corpus, Dai-

lyDialog (Li et al. 2017), a multi-turn chitchat dataset, and
CommonGen (Lin et al. 2020), a hard-constrained controlled
text generation benchmark.
Baselines. We compare MERGE with state-of-the-art private
inference models and frameworks, including THE-X (Chen
et al. 2022), one of the first approximation architecture of
Transformer models, MPCformer (Li et al. 2022), the approx-
imated model that aims to accelerate the inference procedure
of Transformer, and Crypten , one PyTorch version of the
general MPC implementations based on secret sharing.
Evaluation Metrics. We evaluate MERGE in two dimen-
sions: inference speed, and the effectiveness of approximation
models. For inference speed, we record both the computation
time and the communication volume for each method. For the
effectiveness of PLMs, we use Meteor (Banerjee and Lavie
2005), CHRF++ (Popovic 2017), NIST (Lin and Och 2004),
ROUGE family (Lin 2004), BERTscore (Zhang et al. 2020),
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Model BERTscore BARTscore NIST Rouge-L METEOR CHRF++
MultiWoz NLG (Eric et al. 2020)

GPT-2 (124M) 0.9237 -2.9020 4.7907 0.4424 0.4900 43.2777
+ER (no train) 0.6860 -5.0660 0.2325 0.0707 0.0425 3.9721
+MPCformer (sf2relu) 0.9287 -2.5377 5.7248 0.4806 0.5792 48.8241
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) 0.8984 -3.1464 3.7444 0.3970 0.4302 36.6983
+MERGE only ER 0.9155 -2.8057 5.0812 0.4339 0.5102 44.2484
+MERGE only MM 0.9268 -2.6277 5.6524 0.4778 0.5647 47.7262

CommonGen (Lin et al. 2020)
GPT-2 (124M) 0.9336 -3.4710 3.7840 0.2744 0.3012 27.7038
+ER (no train) 0.5999 -4.9864 0.0701 0.0192 0.0066 0.9470
+MPCformer (sf2relu) 0.8943 -4.1436 2.1301 0.1861 0.2691 27.6167
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) 0.8821 -4.2479 0.6639 0.2025 0.1538 16.0573
+MERGE only ER 0.8953 -3.8979 1.6796 0.2430 0.2110 20.8878
+MERGE only MM 0.9083 -4.0885 2.2687 0.2026 0.2058 20.9888

DailyDialog (Li et al. 2017)
GPT-2 (124M) 0.8404 -6.6387 0.5429 0.1142 0.1042 11.5089
+ER (no train) 0.7518 -6.8820 0.1287 0.0566 0.0526 6.8067
+MPCformer (sf2relu) 0.8161 -6.3494 1.1102 0.1322 0.1261 12.0713
+MPCformer (sf2quad) OOT OOT OOT OOT OOT OOT
+THE-X OOT OOT OOT OOT OOT OOT
+MERGE (ours) 0.8213 -6.2384 0.3674 0.1233 0.0955 7.8091
+MERGE only ER 0.8205 -6.5515 0.1069 0.1301 0.0833 6.5819
+MERGE only MM 0.8343 -6.5800 1.0499 0.1525 0.1364 14.9039

Table 2: Performance experiments of our MERGE method for private text generation.

and BARTscore (Yuan, Neubig, and Liu 2021) as the metrics.

Implementation Details
Hyperparameters. We use GPT-2 (124M) (Radford et al.
2019) as the basic evaluation backbone, with max sequence
length 128. We trained all models under the learning rate
3×10−5, batch size 4 with 3 epochs, based on the implemen-
tation of huggingface Transformers (Wolf et al. 2020). As
for approximated models, we train our baselines under the
same hyperparameter settings in their source code, and train
MERGE with 50, 000 steps under the learning rate 8× 10−5.
We set the dropout rate to 0.6, λ to 0.75, and noise to 0.75. It
will cost 0.09 hours for every 1,000 steps.
Environments. All experiments above are on a single 32 GB
Nvidia Tesla V100 GPU. Following previous works (Li et al.
2022), for the experiments of private inference, we use two
32 GB Nvidia Tesla V100 GPUs to simulate the client and
the server, with 10 GbE Ethernet bandwidth. We implement
the whole MPC system based on Crypten (Knott et al. 2021),
a semi-honest MPC framework built on PyTorch.

Speed Evaluation
We evaluate the inference speed under two mainstream NLG
architectures, i.e. the pure decoder represented by GPT-2,
and the encoder-decoder models represented by T5, to in-
vestigate the speedup of ER and MM. As shown in Table

1, MERGE obtains a 7.75x speedup to the encrypted GPT-
2, and 10.89x to T5, under the sequence length 128, while
existing methods merely give the speedup less than 2x. Be-
sides, the ER strategy obtains a 59x speedup on Embed Time,
which saves 98.3% inference time in embedding table query.
Different from ER, MM merges the softmax into the results
of constant attention, demonstrating a zero cost in softmax,
and a slight time decrease in Linear Time. We also see that
MERGE achieves a higher speedup on T5 than GPT-2, which
might be because every self-attention module of T5 follows
with a cross-attention module possessing a much higher time
proportion on linear computations and softmax.

Under the same settings of Table 1, we also record the com-
munication cost between the client and the server, shown in
Table 1. In general, Table 1 reveals a similar phenomenon to
Table 1. We see that existing methods reduce the communica-
tion cost slightly (less than 2% in GPT-2), while our method
reduces 62% communication cost, with 98% and 25% on
embedding table query and linear operation, respectively.

Performance Evaluation
In addition to inference speed, we also focus on the inference
performance between MERGE and other MPC frameworks.
As shown in Table 2, our method achieves comparable re-
sults to MPCformer and demonstrates strong scores across
multiple metrics. For instance, the BERTscore of MERGE
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Figure 4: The inference time and communication cost varying generated max sequence lengths and model parameters.
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is lower than MPCformer with ReLU approximation (MPC-
former (sf2relu)) by only 0.01, 0.017, and 0.001 in MultiWoz,
CommonGen, and DailyDialog, respectively. Besides, Table
2 indicates that some acceleration methods designed for NLU
models are not suitable to text generation models, i.e. they
suffer from the convergence problem during training. For in-
stance, THE-X replaces all layer normalization operations to
the approximate normalization, which we observed will lead
to the out of time (OOT) issue. Similarly, the MPCformer
that replaces the softmax function with quadratic functions
(MPCformer (sf2quad)) faces the same problem, though we
train it with an elaborate layer-wise knowledge distillation.

Analysis
Model Size and Sequence Lengths. In this section, we dive
to explore the effectiveness of our MERGE method under
longer sequence lengths and larger model parameters. For
sequence length, we set it from 64 to 512 and record the
average score as well as the minimum and maximum score
for each point. Illustrated by Fig. 4 (the upper row), we see
that the inference time cost, as well as the communication
cost, decreases with the improvements in sequence length.
In detail, our MERGE method can obtain a 26.5x speedup
to the vanilla model and 11.8x to the state-of-the-art model
THE-X under sequence length 512, and reduce almost 80%
communication cost. Besides, our embedding resending (ER)

strategy can obtain a constant embedding inference time,
which is because ER bypasses the embedding table query,
and thus its embedding time is only related to the generation
prefix of samples.

For model parameters, we also evaluate MERGE under dif-
ferent model sizes from 82M to 391M and set the sequence
length to 128. The parameter experiments in Fig. 4 (the below
row) demonstrates that there are no significant improvements
in speedup while the model size increases, but our MERGE
still obtains a significant speedup (~10x) to existing meth-
ods. Besides, our method exhibits a conspicuous positive
correlation with the model parameter size in terms of the gap
between our method and the baselines, particularly in linear
time and the communication cost, which demonstrates the
effectiveness of our MERGE.
Robustness of Word Embedding. Illustrated in Fig. 5, we
add random noise on the embedding of Transformer models
and evaluate the decrease of text generation for different
generation strategies. In concrete, Fig. 5 demonstrates that
there exists an abrupt decline with MSE error 0.08 for vanilla
auto-regressive generation, while our method can resist the
decreasing of generation quality.

Conclusion

To address the problem of private text generation, we pro-
pose MERGE, a novel framework to accelerate the inference
procedure of Transformer-based language models. MERGE
consists of two optimizations, embedding resending and the
merge module. The former speeds up the auto-regressive
generation by bypassing the embedding table query of Trans-
former models, and the latter optimizes and merges the com-
putation of the existing Transformer modules. Extensive ex-
periments demonstrate the superiority of MERGE both in
inference speed and generation quality. In the future, we
plan to design a fast and plug-and-play MPC framework for
existing language models.
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