
Robustness Verification of Deep Reinforcement Learning Based Control Systems
Using Reward Martingales

Dapeng Zhi1, Peixin Wang2* , Cheng Chen1, Min Zhang1*

1Shanghai Key Laboratory of Trustworthy Computing, East China Normal University
2University of Oxford

zhi.dapeng@163.com, peixin.wang@cs.ox.ac.uk, {chchen,zhangmin}@sei.ecnu.edu.cn

Abstract

Deep Reinforcement Learning (DRL) has gained prominence
as an effective approach for control systems. However, its prac-
tical deployment is impeded by state perturbations that can
severely impact system performance. Addressing this critical
challenge requires robustness verification about system perfor-
mance, which involves tackling two quantitative questions: (i)
how to establish guaranteed bounds for expected cumulative
rewards, and (ii) how to determine tail bounds for cumulative
rewards. In this work, we present the first approach for robust-
ness verification of DRL-based control systems by introducing
reward martingales, which offer a rigorous mathematical foun-
dation to characterize the impact of state perturbations on sys-
tem performance in terms of cumulative rewards. Our verified
results provide provably quantitative certificates for the two
questions. We then show that reward martingales can be imple-
mented and trained via neural networks, against different types
of control policies. Experimental results demonstrate that our
certified bounds tightly enclose simulation outcomes on vari-
ous DRL-based control systems, indicating the effectiveness
and generality of the proposed approach.

Introduction
Deep Reinforcement Learning (DRL) is gaining widespread
adoption in various control systems, including safety-critical
ones like power systems (Zhang, Tu, and Liu 2023; Wan et al.
2023) and traffic signal controllers (Liu and Ding 2022; Chen
et al. 2020). As these systems collect state information via
sensors, uncertainties inevitably originate from sensor errors,
equipment inaccuracy, or even adversarial attacks (Zhang
et al. 2020; Wan, Zeng, and Sun 2022; Zhang et al. 2023).
In real-world scenarios, the robustness guarantee of their
performance is of utmost importance when they are subjected
to reasonable environmental perturbations and adversarial
attacks. Failing to do so could lead to critical errors and a
significant decline in performance, which may cause fatal
consequences in safety-critical applications.

A DRL-based control system’s robustness can be reflected
in its performance variation, i.e., the cumulative rewards,
when the system is perturbed (Lütjens, Everett, and How
2019). The robustness verification refers to two quantitative

*Corresponding Author.
Copyright© 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

questions: (i) how to establish guaranteed bounds for ex-
pected cumulative rewards, and (ii) how to determine their
tail bounds. However, the verification is a very challeng-
ing task. Firstly, DRL-based control systems are complex
cyber-physical systems, making formal verification difficult
(Deshmukh and Sankaranarayanan 2019). Secondly, the in-
clusion of opaque AI models like Deep Neural Networks
(DNNs) adds complexity to the problem (Larsen et al. 2022).
Thirdly, performance is measured statistically rather than by
analytical calculations, lacking theoretical guarantees.

In this work, we propose a novel approach for formally
verifying the robustness of DRL-based control systems. By
leveraging the concept of martingales from probabilistic pro-
gramming (Chakarov and Sankaranarayanan 2013; Wang
et al. 2019; Wang 2022), we establish provable upper and
lower bounds for the expected cumulative rewards of DRL-
based control systems under state perturbations. Specifically,
we define upper reward supermartingales (URS) and lower
reward submartingales (LRS) and prove they provide theo-
retical guarantees in the system’s certified reward range. We
then extend our analysis to encompass tail bounds of rewards,
utilizing a combination of martingales and Hoeffding’s in-
equality (Hoeffding 1994). This refined approach can derive
upper bounds for tail probabilities that show the deviation of
system performance from predefined thresholds, offering a
comprehensive understanding of the system’s robustness.

We further show that reward martingales can be efficiently
implemented and trained as DNNs, as ranking martingales
are trained (Lechner et al. 2022), against various control
policies. Given a DRL-based control system, we define a
corresponding loss function and train a DNN repeatedly until
the DNN satisfies the conditions of being a reward martingale
or timeout. We identify that computing expected rewards is
the difficult part in checking whether a trained DNN is a
reward martingale and it varies in the training approaches
of policies. If policies are implemented by DNNs on infinite
and continuous state space, we take advantage of the over-
approximation-based method (Lechner et al. 2022). We also
propose an analytical method to compute expected values
precisely when policies are trained on discretized abstract
state space in recently emerging approaches (Jin et al. 2022;
Li et al. 2022; Drews, Albarghouthi, and D’Antoni 2020).

We intensively evaluate the effectiveness of our approach
on four classic control problems, namely, MountainCar, Cart-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19992

Pole, B1, and B2. Through rigorous quantitative robustness
verification using our proposed method, we assess the perfor-
mance of the corresponding DRL-based control systems. To
demonstrate our approach’s effectiveness, we compare the
verified lower and upper bounds, and tail bounds with the
performance achieved through simulations under the same
settings. Our experimental results demonstrate that the veri-
fied bounds tightly enclose the simulation outcomes.

In summary, this work makes three major contributions:

• We introduce reward martingales and prove that they ana-
lytically characterize both reward bounds and tail bounds
to the performance of perturbed DRL-based control sys-
tems, rendering us the first robustness verification ap-
proach to those systems.
• We show that reward martingales can be represented and

efficiently trained in the form of deep neural networks and
propose corresponding validation approaches for policies
trained by two different approaches.
• We intensively evaluate our approach on four classic con-

trol problems with control policies under two different
training approaches, demonstrating the effectiveness and
generality of the proposed approach.

Related Work
Qualitative Verification of DRL-based Control Systems
Formal verification of DRL-based control systems has re-
ceived increasing attention for safety assurance in recent
years. Jin et al. (2022) proposed a CEGAR-driven training
and verification framework that guarantees that the trained
systems satisfy the properties predefined in ACTL formu-
las. Bacci (2022) developed formal models of controllers
executing under uncertainty and proposed new verification
techniques based on abstract interpretation. Corsi, March-
esini, and Farinelli (2021) provided a new formulation for
the safety properties to ensure that an agent always makes
rational decisions. They focus on qualitative verification for
specific properties but lack quantitative guarantees.

Robust Training of DRL Systems Several attempts are
made to improve DRL systems’ robustness by means of for-
mal verification (Oikarinen et al. 2021; Kumar, Levine, and
Feizi 2022). For instance, Lütjens, Everett, and How (2019)
proposed to compute guaranteed lower bounds on state-action
values to determine the optimal action under a worst-case
deviation in input space. Oikarinen et al. (2021) designed
adversarial loss functions by leveraging existing formal veri-
fication bounds w.r.t. neural network robustness. Zhang et al.
(2020) studied the fundamental properties of state-adversarial
Markov decision processes and developed a theoretically
principled policy regularization. These approaches focused
on robust training rather than verification, and they have to
rely on simulation to demonstrate the effectiveness of their
approaches in robustness improvement.

Quantitative Verification in Stochastic Control Systems
via Martingales Robustness verification of control systems
is essentially a quantitative verification problem, which pro-
vides certified guarantees to systems’ quantitative properties

such as stabilization time. Some studies emerged in this direc-
tion. Lechner et al. (2022) considered the problem of formally
verifying almost-sure (a.s.) asymptotic stability in discrete-
time nonlinear stochastic control systems and presented an
approach for general nonlinear stochastic control problems
with two aspects: using ranking supermartingales (RSMs) to
certify a.s. asymptotic stability and presenting a method for
learning neural network RSMs. Zikelic et al. (2023) studied
the problem of learning controllers for discrete-time non-
linear stochastic dynamical systems with formal reach-avoid
guarantees by combining and generalizing stability and safety
guarantees with a tolerable probability threshold over the in-
finite time horizon in general Lipschitz continuous systems.
However, these works do not consider system robustness, a
non-trivial property of DRL-based control systems.

Preliminaries
DRL-Based Control Systems We consider DRL-based
control systems where the control policies are implemented
by neural networks (NNs) and suppose the networks are
trained. Formally, a DRL-based control system is a tuple
M = (S , S 0, S g, A, π, f ,R), where S ⊆ Rn is the set of system
states (possibly infinite), S 0 ⊆ S (resp. S g ⊆ S) is the set of
initial (resp. terminal) states and S 0 ∩ S g = ∅, A is the set of
actions, π : S → R is the trained policy implemented by a
neural network, f : S × A→ S is the system dynamics, and
R : S × A × S → R is the reward function. 1

A trained DRL-based control system M is a decision-
making system that continuously interacts with the environ-
ment. At each time step t ∈ N0, it observes a state st and feeds
st into its planted NN to compute the optimal action at = π(st)
that shall be taken. Action at is then performed, which transits
st into the next state st+1 = f (st, at) via the system dynam-
ics f and earns some reward rt+1 = R(st, at, st+1). Given an
initial state s0 ∈ S 0, a sequence of states generated during
interaction is called an episode, denoted as e = {st}t∈N0 .

State Perturbations During interaction with environments,
the observed states of systems may be perturbed and actions
are computed based on the perturbed states. Formally, an
observed state at time t is ŝt := st + δt where δt ∼ µ and
µ is a probability distribution over Rn. Due to perturbation,
the actual successor state is st+1 := f (st, ât) with ât := π(ŝt)
and the reward is rt+1 := R(st, ât, st+1). Note that the succes-
sor state and reward are calculated according to the actual
state and the action on the perturbed state, and this update is
common (Zhang et al. 2020). We then denote a DRL-based
control system M perturbed by the noise distribution µ as
Mµ = (S , S 0, S g, A, π, f ,R, µ).

Probability Space Given an Mµ, for each s0 ∈ S 0, there
exists a probability space (Ωs0 ,Fs0 ,Ps0) such that Ωs0 is the
set of all episodes that start from s0 by the environmental
interaction, Fs0 is a σ-algebra over Ωs0 (i.e., a collection of
subsets of Ωs0 that contains the empty set ∅ and is closed
under complementation and countable union), and Ps0 : F →

1Here we focus on deterministic system dynamics and policies,
and leave the analysis of probabilistic ones as future work.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19993

[0, 1] is a probability measure on Fs0 . We also denote the
expectation operator in this probability space by Es0 .

Termination Time When states are perturbed, actions may
become sub-optimal, which may cause non-termination or
premature termination. Thus, prerequisites for studying the
robustness of DRL-based control systems are to guarantee
the system is terminating and know its termination time.
Intuitively, the termination time of an episode is the number
of steps it takes for the episode to reach the terminal set or∞
if it never reaches S g.

Formally, the termination time of an Mµ is a random vari-
able defined on episodes as T ({st}t∈N0) := min {t ∈ N0 | st ∈

S g}. We define min ∅ = ∞. A control system is finitely ter-
minating if it has finite expected termination time over all
episodes, i.e., Es0 [T] < ∞ for all states s0 ∈ S 0. Besides,
a system has the concentration property if there exist two
constants a, b > 0 such that for sufficiently large n ∈ N, we
have Ps0 (T > n) ≤ a · exp(−b · n) for all states s0 ∈ S 0, i.e.
if the probability that the system executes n steps or more
decreases exponentially as n grows.

Problem Formulation
Model Assumptions Given a DRL-based control system, it
is assumed that its state space S is compact in the Euclidean
topology of Rn, its system dynamics f and trained policy
π are Lipschitz continuous. This assumption is common in
control theory (Zikelic et al. 2023). Besides, we further as-
sume that once the system state enters S g, it will stop and no
more actions will be taken, i.e., for any sT ∈ S g, sT+1 = sT .
The control systems of interest are assumed to be finitely ter-
minating, which can be checked by the stability verification
approach (Lechner et al. 2022). For perturbation, we assume
that a noise distribution µ either has bounded support or is a
product of independent univariate distributions.

Definition 1 (Cumulative Rewards). Given an Mµ with ter-
mination time T , its cumulative reward is a random variable
defined on episodes as R(e) :=

∑T
t=0 rt, where e = {st}

T
t=0 is

an episode and rt is the step-wise reward of e that is deter-
mined by the reward function R(·) in Mµ with r0 ≡ 0.

Intuitively, the cumulative reward is the sum of all step-
wise rewards until the system reaches a terminal state. It is a
random variable and varies from different episodes.

Robustness Verification Problems of Mµ Given an Mµ
and an initial state s0 ∈ S 0, we are interested in the following
two robustness problems:

1. What are the upper and lower bounds for Es0 [R]?
2. Given a reward c, what is the tail bound of Ps0 (R ≥ c)

(resp. Ps0 (R ≤ c)) if c is larger (resp. smaller) than the
upper (resp. lower) bound of Es0 [R]?

The first problem concerns certified upper and lower bounds
of expected cumulative rewards when systems are perturbed.
The second problem considers two cases. Provided a cumu-
lative reward c that is greater than the upper bound of the
expected cumulative reward Es0 [R], we are interested in the
tail probability that a system can achieve a reward greater
than c. The dual problem is to compute the tail probability

that the system can achieve a cumulative reward lower than
c, when c is less than the lower bound of Es0 [R]. A higher
tail probability implies worse robustness because it indicates
a higher probability that the reward gets out of the certified
range of expected cumulative rewards.

Reward Martingales and Fundamentals
In this section, we present our theoretical results about the
two robustness verification problems by introducing the no-
tion of reward martingales. It is the foundation of reducing
the robustness verification problems of perturbed DRL-based
control systems to the analysis of a stochastic process.

In the following, we fix a perturbed DRL-based control sys-
tem Mµ = (S , S 0, S g, A, π, f ,R, µ) and denote the difference
S \ S g by S g for the set of non-terminal states in S .

To define reward martingales, we first need the notion of
pre-expectation of functions. Given a function h(·), the pre-
expectation preh(·) of h(·) is the reward of the current step
plus the expected value of h(·) in the next step of the system.

Definition 2 (Pre-Expectation). Given an Mµ and a function
h : S → R, the pre-expectation of h is a function preh : S →
R, such that:

preh(s) =
{

h(s) if s ∈ S g

r + Eδ∼µ[h(f (s, π(s + δ)))] if s ∈ S g

where, r = R(s, π(s), f (s, π(s))) is the reward of performing
action π(s) in state s.

We next define the notion of reward martingales. First, we
begin with the definition of URS which can be served as an
upper bound for the expected cumulative reward of Mµ.

Definition 3 (Upper Reward Supermartingales, URS). Given
an Mµ, a function h : S → R is an upper reward supermartin-
gale (URS) of Mµ if there exist K,K′ ∈ R such that:

∀s ∈ S g,K ≤ h(s) ≤ K′ (Boundedness)

∀s ∈ S g, preh(s) ≤ h(s) (Decreasing Pre-Expectation)

Intuitively, the first condition says that the values of the
URS at terminal states should always be bounded, and the
second condition specifies that for all non-terminal states, the
pre-expectation is no more than the value of the URS itself.

Similar to the definition of URS (Definition 3), we define
LRS as follows and will employ it as a lower bound for the
expected cumulative reward of Mµ.

Definition 4 (Lower Reward Submartingales, LRS). Given
an Mµ, a function η : S → R is a lower reward submartingale
(LRS) of Mµ if there exist K,K′ ∈ R such that:

∀s ∈ S g.K ≤ η(s) ≤ K′ (Boundedness)

∀s ∈ S g.preη(s) ≥ η(s) (Increasing Pre-Expectation)

Compared with the definition of URS, the only difference
is that the second condition of LRS specifies that the pre-
expectation is no less than the value of the LRS itself at all
non-terminal states. We call K,K′ the bounds of h (resp. η) if
h (resp. η) is a URS (resp. LRS), correspondingly.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19994

Definition 5 (Difference-boundedness). Given an Mµ and a
function h : S → R, h is difference-bounded if there exists
m ∈ R such that for any state s ∈ S , |h(f (s, π(s)))−h(s)| ≤ m.

Based on the URS and LRS, we have Theorem 1, stating
that there must exist upper and lower bounds of the expected
cumulative rewards of the perturbed system when we can
calculate URS and LRS for the system.
Theorem 1 (Bounds for Expected Cumulative Rewards).
Suppose an Mµ has a difference-bounded URS (resp. LRS)
h (resp. η) and K,K′ ∈ R are the bounds of h (resp. η). For
each state s0 ∈ S 0, we have

Es0 [R] ≤ h(s0) − K. (Upper Bound)
(resp. Es0 [R] ≥ η(s0) − K′) (Lower Bound)

Proof Sketch. For upper bounds, we define the stochastic
process {Xn}

∞
n=0 as Xn := h(sn), where h is an URS and sn is

a random (vector) variable representing value(s) of the state
at the n-th step of an episode. Furthermore, we construct the
stochastic process {Yn}

∞
n=0 such that Yn := Xn +

∑n
i=0 ri, where

ri is the reward of the i-th step. Let T be termination time of
Mµ. We prove that {Yn}

∞
n=0 satisfies the prerequisites of the Op-

tional Stopping Theorem (OST) (Williams 1991). This proof
depends on the assumption that Mµ is finitely terminating and
h is difference-bounded. Then by applying OST, we have that
E[YT] ≤ E[Y0]. By the boundedness condition in Definition 3,
we obtain that R =

∑T
i=0 ri = YT − XT ≤ YT − K. Finally, we

conclude that Es0 [R] ≤ E[YT] − K ≤ E[X0] − K = h(s0) − K.
The proof of lower bounds is similar.

Theorem 2 (Tail Bounds for Cumulative Rewards). Suppose
that an Mµ has the concentration property and a difference-
bounded URS (resp. LRS) h (resp. η) with bounds K,K′ ∈ R.
Given an initial state s0 ∈ S 0, if a reward c > h(s0)−K (resp.
c < η(s0) − K′), we have

Ps0 (R ≥ c) ≤ α + β · exp(−γ · c2) (1)

(resp. Ps0 (R ≤ c) ≤ α + β · exp(−γ · c2) (2)

where, α, β, γ are positive constants derived from Mµ, the
concentration property and h (resp. η), respectively.

To prove Eq. (1), we construct a stochastic process {Yn}
∞
n=0

such that Yn := h(sn) +
∑n

i=0 ri where h is an URS, sn and ri
are defined as those in the proof sketch of Theorem 1. By Def-
inition 3, we prove that {Yn}

∞
n=0 is a supermartingale. Then by

the difference-bounded property of h (Definition 5), we derive
the upper bound of Ps0 (R ≥ c) by the concentration property
of Mµ and Hoeffding’s Inequality on Martingales (Hoeffding
1994). Eq. (2) is obtained in the same manner.

Neural Network-Based Reward Martingales
Martingales are not necessarily polynomial functions and
can be as complex as deep neural networks, as shown by the
pioneering works (Abate, Giacobbe, and Roy 2021; Lech-
ner et al. 2022; Zikelic et al. 2023; Dawson, Gao, and Fan
2023). Likewise, we show that reward martingales can be
also achieved in the form of DNNs.

Our method consists of two modules that alternate within a
loop: training and validating. In each loop iteration, we train

Algorithm 1: Sketch of Upper Reward Martingales.
input :Perturbed System Mµ, Granularity τ, Refinement

step length ξ.
output :Neural URS h or UNKNOWN.

1 S̃ ← Discretize(S , τ);
2 h← Initialize(·);
3 while timeout not reached do
4 h ← Train(h, S̃) ; // Train a candidate.
5 if Eq. (8) ∧ Eq. (10) then // Validate.
6 Return h ; // Return h once it is valid.
7 else
8 τ← τ − ξ ; // Make τ smaller.

9 S̃ ← Discretize(S , τ) ∪ Counterexamples(h);
10 Return UNKNOWN.

a candidate reward martingale in the form of a neural network
which is then passed to the validation. If the validation result
is false, we compute a set of counterexamples for future
training. This iteration is repeated until a trained candidate is
validated or a given timeout is reached. The whole process
of URS is sketched in Algorithm 1. LRS is achieved by
replacing Eq. (8) and Eq. (10) with Eq. (9) and Eq. (11) in
line 5, respectively.

Training Candidate Reward Martingales
The training phase involves two important steps, i.e., training
data construction and loss function definition.

Discretizing Training Data Since the state space S is pos-
sibly continuous and infinite, to boost the training we choose
a finite set of states and then train reward martingale can-
didates on it. This can be achieved by discretizing the state
space S and constructing a discretization S̃ ⊆ S such that
for each s ∈ S , there is a s̃ ∈ S̃ with ||s − s̃||1 < τ, where
τ > 0 is called the granularity of S̃ . As S is compact and
thus bounded, this discretization can be computed by simply
picking vertices of a grid with sufficiently small cells. For
the training after validation failure, S̃ is constructed on a set
of counterexamples and a new finite set of states triggered
by a smaller τ. Once the discretization S̃ is obtained, we
construct three finite sets S C1 := S̃ ∩ S g, S C2 := S̃ ∩ S g and
S C3 := S̃ ∩ S 0 used for the training process.

Loss Functions of URS A candidate URS is initialized as
a neural network hθ w.r.t. the network parameter θ. Then hθ
is learned by minimizing the following loss function:

LURS (θ) := k1 ·LC1(θ) + k2 ·LC2(θ) + k3 ·LC3(θ) (3)

where ki, i = 1, 2, 3 are the algorithm parameters balancing
the loss terms.

The first loss term is defined via the boundedness condition
of URS in Definition 3 as:

LC1(θ) =
1
|S C1|

∑
s∈S C1

[max{hθ(s) − K′, 0}

+max{K − hθ(s), 0}]

(4)

Intuitively, a loss will incur if either hθ(s) is not bounded
from above by K′ or below by K for any s ∈ S C1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19995

The second loss term is defined via the decreasing pre-
expectation condition of URS in Definition 3 as:

LC2(θ) =
1
|S C2|

∑
s∈S C2

max{
∑

s′∈Ds

hθ(s′)
N
− hθ(s) + ζ, 0}

 , (5)

where for each s ∈ S C2, Ds is the set of its successor states
such that Ds := {s′ | s′ = f (s, π(s + δi)), δi ∼ µ, i ∈ [1,N]},
N > 0 is the sample number of successor states. Note that
hθ is a neural network, so it is intractable to directly com-
pute the closed form of its expectation. Instead, we use the
mean of hθ(·) at the N successor states to approximate the
expected value Eδ∼µ[h(f (s, π(s + δ)))] for each s ∈ S C2, and
ζ to tighten the decreasing pre-expectation condition. Details
will be explained in Theorem 3.

The third loss term is the regularization term used to assure
the tightness of upper bounds from URS:

LC3(θ) :=
1
|S C3|

∑
s∈S C3

(max{hθ(s) − u, 0}) (6)

where u enforces the upper bounds always under some toler-
able thresholds to make upper bounds as tight as possible.

Loss Functions of LRS Like URS, a candidate neural net-
work LRS ηθ w.r.t. the parameter θ is learned by minimizing
the loss function

LLRS (θ) := k1 ·LC1′ (θ) + k2 ·LC2′ (θ) + k3 ·LC3′ (θ) (7)

where ki, i = 1, 2, 3 are hyperparameters balancing the loss
terms. LC1′ ,LC2′ are defined based on the LRS conditions
in Definition 4, while LC3′ is the regularization term used to
assure the tightness of lower bounds from LRS:

LC1′ (θ) =
1
|S C1|

∑
s∈S C1

(
max{ηθ(s) − K′, 0} +max{K − ηθ(s), 0}

)
,

LC2′ (θ) =
1
|S C2|

∑
s∈S C2

max{ηθ(s) −
∑

s′∈Ds

ηθ(s′)
N
− ζ′, 0}

 ,
LC3′ (θ) =

1
|S C3|

∑
s∈S C3

(
max{l − ηθ(s), 0}

)
,

where ζ′ is used to make the increasing pre-expectation con-
dition stricter (see Theorem 3), and l is a hyper-parameter
that enforces the lower bounds are as tight as possible by
incentivizing not exceeding some tolerable thresholds.

Reward Martingale Validation
A candidate URS (resp. LRS) is validated if it meets the
conditions in Definition 3 (resp. Definition 4). Because the
candidate URS and LRS are neural networks, they are Lip-
schitz continuous (Ruan, Huang, and Kwiatkowska 2018).
Thus, the condition in Definition 5 is satisfied straightfor-
wardly. For the boundedness condition, we can check

inf
s∈S g

h(s) ≥ K and sup
s∈S g

h(s) ≤ K′ (8)

or alternatively,

inf
s∈S g
η(s) ≥ K and sup

s∈S g

η(s) ≤ K′ (9)

using the interval bound propagation approach (Gowal et al.
2018; Xu et al. 2020). When a state s ∈ S g violates the above
conditions, it is treated as a counterexample and added to S̃
for future training.

For the decreasing and increasing pre-expectation condi-
tions in Definitions 3 and 4, Theorem 3 establishes two cor-
responding sufficient conditions, which are easier to check.
Theorem 3. Given an Mµ and a function h : S → R, we
have preh(s) ≤ h(s) for any state s ∈ S g if the formula below

Eδ∼µ[h(f (s̃, π(s̃ + δ)))] ≤ h(s̃) − ζ (10)

holds for any state s̃ ∈ S̃ ∩ S g, where ζ = rmax + τ · Lh · (1 +
L f · (1 + Lπ)) with L f , Lπ, Lh being the Lipschitz constants of
f , π, h, and rmax being the maximum value of R, respectively.
Analogously, we have preη(s) ≥ η(s) for any state s ∈ S g if:

Eδ∼µ[η(f (s̃, π(s̃ + δ)))] ≥ η(s̃) − ζ′ (11)

holds for any state s̃ ∈ S̃ ∩ S g, where ζ′ = rmin − τ · Lη · (1 +
L f · (1 + Lπ)) with rmin being the minimum value of R.

Similarly, any state violating Eqs. (10) and (11) is treated
as a counterexample and will be added to S̃ for training.

To check the satisfiablility of Eqs. (10) and (11) in a state s̃,
we need to compute the expected value Eδ∼µ[h(f (s̃, π(s̃+δ)))]
and Eδ∼µ[η(f (s̃, π(s̃+δ)))]. However, it is difficult to compute
a closed form because h (resp.η) is provided in the form of
neural networks. We devise two strategies below depending
on the training approaches of control policies.

An Over-Approximation Approach For control policies
that are trained on compact but infinitely continuous state
space, we bound the expected value Eδ∼µ[h(f (s̃, π(s̃ + δ)))]
(resp. Eδ∼µ[η(f (s̃, π(s̃ + δ)))]) via interval arithmetic (Gowal
et al. 2018; Xu et al. 2020) instead of computing it, which
is inspired by the work (Lechner et al. 2022; Zikelic et al.
2023). In particular, given the noise distribution µ and its
support N = {δ ∈ Rn | µ(δ) > 0}, we first partition N into
finitely k cells cell(N) = {N1, · · · ,Nk}, and use maxvol =
maxNi∈cell(N)vol(Ni) (resp. minvol = minNi∈cell(N)vol(Ni)) to
denote the maximal (resp. minimal) volume with respect to
the Lebesgue measure of any cell in the partition, respectively.
For the expected value in Eq. (10), we bound it from above:

Eδ∼µ[h(f (s̃, π(s̃ + δ)))] ≤
∑

Ni∈cell(N)

maxvol · sup
δ

F(δ) (12)

where F(δ) = h(f (s̃, π(s̃ + δ))). Similarly, for the expected
value in Eq. (11), we bound it from below:

Eδ∼µ[η(f (s̃, π(s̃ + δ)))] ≥
∑

Ni∈cell(N)

minvol · inf
δ

F(δ) (13)

Both supremum and infimum can be calculated via interval
arithmetic. We refer interested readers to (Lechner et al. 2022)
and (Zikelic et al. 2023) for more details.

By replacing the actual expected values with their overesti-
mated upper bounds and lower bounds in Eqs. (12) and (13),
the validation becomes pragmatically feasible without losing
the soundness, i.e., a reward martingale candidate that is vali-
dated must be valid. However, due to the overestimation, it
may produce false positives and incur unnecessary further
training or even timeout.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19996

s

∆1 ∆4

∆6

∆2

∆9

∆8

∆7

∆3

∆5

s

Infinite and continuous Discretized perturbed state space

discretize S

perturbed state space and the possibilities of actions

perturbed space

δ

Figure 1: An example of state space discretization

An Analytic Approach We propose an analytical approach
for the control policies that are trained on discretized abstract
states. In previous work (Jin et al. 2022; Tian et al. 2022; Li
et al. 2022), a compact but infinitely continuous state space
S was discretized to a finite set of abstract states, i.e., S =⋃L

i=1 S i and ∀i , j, S i∩S j = ∅. Then a neural network policy
π was trained on the set of abstract states. After training, each
abstract state S i corresponds to a constant action ai, i.e.,
π(s) = ai for all s ∈ S i, i = 1, . . . , L.

Because an abstract state space is finite, we can calculate
the probabilities of all possible actions for the perturbed state
ŝ = s + δ with δ ∼ µ, i.e.,

∆i := p(â = ai) = p(s + δ ∈ S i) (14)

Fig. 1 shows an illustrative example. Because the system
dynamics f is deterministic, the probability of the succes-
sor state s′i equals to the probability of the action ai, i.e.,
p(f (s, â) = s′i) = ∆

i. We can compute the analytic solution:

Eδ∼µ[h(f (s, π(s + δ)))] =
∑L

i=1 h(s′i) × ∆
i, (15)

where ∆i =
∫

S i µ
′ dŝ with S i being the set of all states whose

action is ai, and µ′ being the distribution of the perturbed state
ŝ that obtained using the value of the actual state s and the
noise distribution µ (Williams 1991). Eδ∼µ[η(f (s, π(s + δ)))]
can be calculated in the same manner.

Experimental Evaluations
Our experimental objectives are to evaluate: (i) the effective-
ness of certified upper and lower bounds, (ii) the effectiveness
of certified tail bounds, and (iii) the efficiency of training and
validating reward martingales.

Experimental Settings. We consider four benchmarking
problems: CartPole (CP), MountainCar (MC), B1, and B2

Task Dim. Alg. A.F. Size A.T. S.P. Training
CP 4 DQN ReLU 3 × 200 Dis. Gym C.S./A.S.
MC 2 DQN Sigmoid 2 × 200 Dis. Gym C.S./A.S.
B1 2 DDPG ReLU 2 × 100 Cont. R.A. C.S./A.S.
B2 2 DDPG Tanh 2 × 300 Cont. R.A. C.S./A.S.

Table 1: Experimental settings. (Dim.: dimension; Alg.: DRL
algorithm; A.F.: activation function; A.T.: action type; S.P.:
sources of problems; Dis.: discrete; Cont.: continuous; R.A.:
reachability analysis; C.S.: training on concrete states; A.S.:
training on abstract states.)

(a) σ = 0.1 (A.S.) (b) σ = 0.1 (C.S.)

(c) r = 0.2 (A.S.) (d) r = 0.2 (C.S.)

(e) σ = 0.3 (A.S.) (f) σ = 0.3 (C.S.)

(g) r = 0.5 (A.S.) (h) r = 0.5 (C.S.)

Figure 2: Certified bounds for CartPole (a-d) and B1 (e-h).

from Gym (Brockman et al. 2016) and the benchmarks for
reachability analysis (Ivanov et al. 2021), respectively. The
finite termination and the concentration property of our exam-
ples are ensured by using existing methods in Lechner et al.
(2022). To demonstrate the generality of our approach, we
train systems with different activation functions and network
structures of the planted NNs, using different DRL algorithms
such as DQN (Mnih et al. 2013) and DDPG (Lillicrap et al.
2016). Table 1 gives the details of training settings.

For the robustness verification, we consider two different
state perturbations, i.e., Gaussian noises with zero means and
different deviations, and uniform noises with zero means and
different radii. Specifically, for each state s = (s1, . . . , sn), we
add noises X1, . . . , Xn to each dimension of s and obtain the
perturbed state (s1 + X1, . . . , sn + Xn), where Xi ∼ U(−r, r)
(1 ≤ i ≤ n) is some uniformly distributed noise or Xi ∼

G(0, σ) (1 ≤ i ≤ n) is some Gaussian distributed noise.

Effectiveness of Certified Upper and Lower Bounds.
Fig. 2 shows the certified bounds of expected cumulative re-
wards (Theorem 1) and the simulation results for CP and B1
under different perturbations and policies, respectively. The
x-axis indicates different initial states, while the y-axis means

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19997

(a) r = 0.2 (A.S.) (b) r = 0.2 (A.S.)

(c) r = 0.2 (C.S.) (d) r = 0.2 (C.S.)

(e) r = 0.5 (A.S.) (f) r = 0.5 (A.S.)

(g) r = 0.5 (C.S.) (h) r = 0.5 (C.S.)

Figure 3: Certified tail bounds of expected cumulative re-
wards and simulation results for CartPole (a-d) and B1 (e-h).

the corresponding expected cumulative rewards. The orange
lines represent the upper bounds calculated by the trained
URSs, the green lines represent the lower bounds computed
by the trained LRSs, and the blue lines and shadows represent
the means and standard deviations of the simulation results
that are obtained by executing 200 episodes for each initial
state. We can find that the certified bounds tightly enclose the
simulation outcomes, demonstrating the effectiveness of our
trained reward martingales.

We also observe that the tightness of the certified bounds
depends on particular systems, trained policies and perturba-
tions, which is worth further investigating.

Effectiveness of Certified Tail Bounds. Fig. 3 depicts the
certified tail bounds and statistical results for CP and B1
under different perturbations and policies. Due to the data
sparsity of cumulative rewards, we choose 200 different ini-
tial states (instead of a single one) and execute the systems
by 200 episodes for each initial state. We record the cumu-
lative rewards, and the statistical results of tail probabilities
for different c’s are shown by the black dashed lines. For

URS LRS
Task Pert. Policy T.T. V.T. To.T. T.T. V.T. To.T.

CP
σ = 0.1 A.S. 912 751 1663 1165 822 1987

C.S. 1203 873 2076 1384 918 2302

r = 0.2 A.S. 901 409 1310 1081 535 1616
C.S. 898 529 1427 1009 649 1658

B1
σ = 0.3 A.S. 501 45 546 629 41 670

C.S. 570 53 623 850 189 1036

r = 0.5 A.S. 530 47 577 681 175 856
C.S. 593 54 647 945 280 1225

Table 2: Time on training and validating reward martingales.
(T.T.: training time; V.T.: validating time; To.T.: total time.)

each initial state s0 from the 200 initial states, we calculate
Ps0 (R ≥ c) and Ps0 (R ≤ c) according to Theorem 2. Their
average values P(R ≥ c) and P(R ≤ c) are shown by the red
solid lines. The results show that our calculated tail bounds
tightly enclose the statistical outcomes. We also observe that
the trend of the calculated tail bounds is exponential upward
or downward, which is consistent with Theorem 2.

Efficiency Comparison. Table 2 shows the time cost
of training and validating processes under different poli-
cies and perturbations. In general, training costs more
time than validating, and high-dimensional systems e.g.,
CP (4-dimensional state space) cost more time than low-
dimensional ones, e.g, B1 (2-dimensional state space). That
is because the validation step suffers from the curse of high-
dimensionality (Berkenkamp et al. 2017).

We also observe that, the analytic approach is more effi-
cient in training and validating than the over-approximation-
based approach. This result is consistent to the fact that the
analytical approach can produce more precise results of the
expected values and consequently can reduce false positives
and unnecessary refinement and training. The conclusions
from the above results are also applicable to MC and B2.

Concluding Remarks
In this paper, we have introduced a groundbreaking quanti-
tative robustness verification approach for perturbed DRL-
based control systems, utilizing the innovative concept of
reward martingales. Our work has established two fundamen-
tal theorems that serve as cornerstones: the certification of
reward martingales as rigorous upper and lower bounds, as
well as their role in tail bounds for system robustness. We
have presented an algorithm that effectively trains reward
martingales through the implementation of neural networks.
Within this algorithm, we have devised two distinct methods
for computing expected values, catering to control policies
developed across diverse state space configurations. Through
an extensive evaluation encompassing four classical control
problems, we have convincingly showcased the versatility
and efficacy of our proposed approach.

We believe this work would inspire several future studies
to reduce the complexity in validating reward martingales for
high dimensional systems. Besides, it is also worth further
investigation to advance the approach for calculating tighter
certified bounds by training more precise reward martingales.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19998

Acknowledgments
The work has been supported by the NSFC-ISF Joint Pro-
gram (62161146001, 3420/21), NSFC Project (62372176,
62306116), Huawei Technologies Co., Ltd., Shanghai Inter-
national Joint Lab of Trustworthy Intelligent Software (Grant
No. 22510750100), Shanghai Trusted Industry Internet Soft-
ware Collaborative Innovation Center, the Engineering and
Physical Sciences Research Council (EP/T006579/1), Na-
tional Research Foundation (NRF-RSS2022-009), Singapore,
and Shanghai Jiao Tong University Postdoc Scholarship.

References
Abate, A.; Giacobbe, M.; and Roy, D. 2021. Learning Proba-
bilistic Termination Proofs. In CAV, volume 12760, 3–26.
Bacci, E. 2022. Formal verification of deep reinforcement
learning agents. Ph.D. thesis, University of Birmingham,
UK.
Berkenkamp, F.; Turchetta, M.; Schoellig, A. P.; and Krause,
A. 2017. Safe Model-based Reinforcement Learning with
Stability Guarantees. In NeurIPS, 908–918.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
Gym. ArXiv:1606.01540.
Chakarov, A.; and Sankaranarayanan, S. 2013. Probabilistic
Program Analysis with Martingales. In CAV, 511–526.
Chen, C.; Wei, H.; Xu, N.; Zheng, G.; Yang, M.; Xiong,
Y.; Xu, K.; and Li, Z. 2020. Toward A Thousand Lights:
Decentralized Deep Reinforcement Learning for Large-Scale
Traffic Signal Control. In AAAI, 3414–3421.
Corsi, D.; Marchesini, E.; and Farinelli, A. 2021. Formal
verification of neural networks for safety-critical tasks in
deep reinforcement learning. In UAI, volume 161, 333–343.
Dawson, C.; Gao, S.; and Fan, C. 2023. Safe Control With
Learned Certificates: A Survey of Neural Lyapunov, Barrier,
and Contraction Methods for Robotics and Control. IEEE
Trans. Robotics, 39(3): 1749–1767.
Deshmukh, J. V.; and Sankaranarayanan, S. 2019. Formal
techniques for verification and testing of cyber-physical sys-
tems. In Design Automation of Cyber-Physical Systems,
69–105.
Drews, S.; Albarghouthi, A.; and D’Antoni, L. 2020. Proving
data-poisoning robustness in decision trees. In PLDI, 1083–
1097.
Gowal, S.; Dvijotham, K.; Stanforth, R.; Bunel, R.; Qin,
C.; Uesato, J.; Arandjelovic, R.; Mann, T. A.; and Kohli, P.
2018. On the Effectiveness of Interval Bound Propagation for
Training Verifiably Robust Models. CoRR, abs/1810.12715.
Hoeffding, W. 1994. Probability inequalities for sums of
bounded random variables. The collected works of Wassily
Hoeffding, 409–426.
Ivanov, R.; Carpenter, T.; Weimer, J.; Alur, R.; Pappas, G.;
and Lee, I. 2021. Verisig 2.0: Verification of neural network
controllers using taylor model preconditioning. In CAV, 249–
262.

Jin, P.; Tian, J.; Zhi, D.; Wen, X.; and Zhang, M. 2022.
Trainify: A CEGAR-Driven Training and Verification Frame-
work for Safe Deep Reinforcement Learning. In CAV, volume
13371, 193–218.
Kumar, A.; Levine, A.; and Feizi, S. 2022. Policy Smoothing
for Provably Robust Reinforcement Learning. In ICLR.
Larsen, K.; Legay, A.; Nolte, G.; Schlüter, M.; Stoelinga, M.;
and Steffen, B. 2022. Formal methods meet machine learning
(F3ML). In ISoLA, 393–405.
Lechner, M.; Zikelic, D.; Chatterjee, K.; and Henzinger, T. A.
2022. Stability Verification in Stochastic Control Systems
via Neural Network Supermartingales. In AAAI, 7326–7336.
Li, Z.; Zhu, D.; Hu, Y.; Xie, X.; Ma, L.; Zheng, Y.; Song, Y.;
Chen, Y.; and Zhao, J. 2022. Neural Episodic Control with
State Abstraction. In ICLR.
Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous
control with deep reinforcement learning. In ICLR.
Liu, B.; and Ding, Z. 2022. A distributed deep reinforcement
learning method for traffic light control. Neurocomputing,
490: 390–399.
Lütjens, B.; Everett, M.; and How, J. P. 2019. Certified
Adversarial Robustness for Deep Reinforcement Learning.
In CoRL, volume 100, 1328–1337.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Graves, A.;
Antonoglou, I.; Wierstra, D.; and Riedmiller, M. A. 2013.
Playing Atari with Deep Reinforcement Learning. CoRR,
abs/1312.5602.
Oikarinen, T. P.; Zhang, W.; Megretski, A.; Daniel, L.;
and Weng, T. 2021. Robust Deep Reinforcement Learning
through Adversarial Loss. In NeurIPS, 26156–26167.
Ruan, W.; Huang, X.; and Kwiatkowska, M. 2018. Reach-
ability Analysis of Deep Neural Networks with Provable
Guarantees. In IJCAI, 2651–2659.
Tian, J.; Zhi, D.; Liu, S.; Wang, P.; Katz, G.; and Zhang, M.
2022. BBReach: Tight and Scalable Black-Box Reachability
Analysis of Deep Reinforcement Learning Systems. CoRR,
abs/2211.11127.
Wan, X.; Sun, M.; Chen, B.; Chu, Z.; and Teng, F. 2023.
AdapSafe: Adaptive and Safe-Certified Deep Reinforce-
ment Learning-Based Frequency Control for Carbon-Neutral
Power Systems. In AAAI, 5294–5302.
Wan, X.; Zeng, L.; and Sun, M. 2022. Exploring the Vulner-
ability of Deep Reinforcement Learning-based Emergency
Control for Low Carbon Power Systems. In IJCAI, 3954–
3961.
Wang, P. 2022. Tail-Bound Cost Analysis over Nondetermin-
istic Probabilistic Programs. Journal of Shanghai Jiaotong
University (Science), 1–11.
Wang, P.; Fu, H.; Goharshady, A. K.; Chatterjee, K.; Qin,
X.; and Shi, W. 2019. Cost analysis of nondeterministic
probabilistic programs. In PLDI, 204–220.
Williams, D. 1991. Probability with martingales. Cambridge
university press.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

19999

Xu, K.; Shi, Z.; Zhang, H.; Wang, Y.; Chang, K.; Huang,
M.; Kailkhura, B.; Lin, X.; and Hsieh, C. 2020. Automatic
Perturbation Analysis for Scalable Certified Robustness and
Beyond. In NeurIPS.
Zhang, H.; Chen, H.; Xiao, C.; Li, B.; Liu, M.; Boning, D. S.;
and Hsieh, C. 2020. Robust Deep Reinforcement Learning
against Adversarial Perturbations on State Observations. In
NeurIPS, 21024–21037.
Zhang, H.; Gu, J.; Zhang, Z.; Du, L.; Zhang, Y.; Ren, Y.;
Zhang, J.; and Li, H. 2023. Backdoor attacks against deep
reinforcement learning based traffic signal control systems.
Peer Peer Netw. Appl., 16(1): 466–474.
Zhang, W.; Tu, Z.; and Liu, W. 2023. Optimal Charging
Control of Energy Storage Systems for Pulse Power Load
Using Deep Reinforcement Learning in Shipboard Integrated
Power Systems. IEEE Trans. Ind. Informatics, 19(5): 6349–
6363.
Zikelic, D.; Lechner, M.; Henzinger, T. A.; and Chatterjee,
K. 2023. Learning Control Policies for Stochastic Systems
with Reach-Avoid Guarantees. In AAAI, 11926–11935.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

20000

