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Abstract

We prove that when we do the Taylor series expansion of the
loss function, the BN operation will block the influence of the
first-order term and most influence of the second-order term
of the loss. We also find that such a problem is caused by the
standardization phase of the BN operation. We believe that
proving the blocking of certain loss terms provides an ana-
lytic perspective for potential detects of a deep model with
BN operations, although the blocking problem is not fully
equivalent to significant damages in all tasks on benchmark
datasets. Experiments show that the BN operation signifi-
cantly affects feature representations in specific tasks.

Introduction
Explaining the representation capacity of a deep neural net-
work (DNN) has received increasing attention in recent
years. Since people have grasped much experimental ex-
perience in applying DNNs, the next challenge has been
gradually shifted to a verifiable and analytic explanation for
technical flaws of current heuristic network designs, or ana-
lytic insights into how DNNs learn features. For example,
Tian et al. (2021) provided conceptual insights into how
non-contrastive self-supervised learning methods avoided
representational collapse. Deng et al. (2022) proved that
it was usually difficult for a DNN to encode interactions
between an intermediate number of input variables. Some
studies proved that the BN operation was not compatible
with both the dropout (Li et al. 2019) and the weight de-
cay (Van Laarhoven 2017; Li, Chen, and Yang 2020).

Therefore, in this paper, we aim to analyze the dis-
tinctive behavior of information processing for any DNNs
with batch-normalization (BN) layers. Specifically, this pa-
per discovers and theoretically proves that in a regression
task, for a DNN with stacked BN layers, each BN opera-
tion blocks the back-propagation of the first and second
derivatives of the loss function w.r.t. features, when we
do the Taylor series expansion of the loss function w.r.t. the
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output of the BN. That is, for a DNN with an arbitrary loss
function (e.g., MSE loss, logistic loss, etc.), network layers
before the BN layer cannot learn from all first derivatives
and some second derivatives of the loss function.

Note that for some certain tasks on benchmark datasets,
the BN’s blocking of certain derivatives may not lead to a
significant damage of the network learning. However, clean
and analytic insights into BN’s potential risks may provide
a new perspective for further understanding of DNNs.

In this paper, we consider using the Taylor series expan-
sion to represent the loss1 Loss(y(i)), where y(i) ∈ RD de-
notes the output feature of the standardization phase (sub-
tracting the mean and dividing the standard deviation) of the
BN operation, given the i-th input sample. We find that no
matter whether or not all samples share the same analytic
formula of the loss, we always can use the same form of Tay-
lor series expansion to represent the loss, i.e., Loss(y(i); ỹ) =
Loss(ỹ)+(y(i)− ỹ)⊤ĝ+ 1

2!
(y(i)− ỹ)⊤Ĥ(y(i)− ỹ)+∆̂(i), where

ĝ and Ĥ represent the gradient and the Hessian matrix of
Loss(y(i); ỹ), or alternatively, the substitute gradient and Hes-
sian matrix2 to alleviate errors caused by discontinuous and
unpredictable gating states in ReLU layers and influences of
different analytic formulas of the loss. ỹ is an arbitrary vec-
tor close to y(i). When y(i) is not close to the fixed point ỹ,
the residual term ∆̂(i) will be relatively large. Nevertheless,
the blocking of the first-order and the second-order terms
still has certain effects on learning.

Therefore, we have discovered and proved the following
conclusions, as shown in Theorem 2 and Corollary 1.
1. The gradient ĝ at the point ỹ cannot affect the learning of
network parameters before the BN layer.
2. Diagonal elements in the Hessian matrix Ĥ at the point ỹ
cannot affect the learning of parameters before the BN layer.
3. For off-diagonal elements in Ĥ at the point ỹ, their impacts
on learning parameters before BN are significantly reduced.
4. It is the derivatives of the mean and the standard deviation

1Loss(y) is a simplification of Loss(h(y)), where h(·) : RD →
R denotes the function of network layers between the BN operation
and the loss function. We omit h(·) to simplify the description.

2Subsection “Case 2: A More General Case” introduces how
to compute substitute ĝ and Ĥ to approximate input samples with
different loss formulas.
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in the standardization phase that eliminate the influence of
certain loss elements.

Although the affine transformation phase in the BN al-
lows the DNN to learn from the gradient ĝ and mitigate the
blocking problem, to some extent, experiments have shown
that the blocking problem still significantly affects the learn-
ing of specific DNNs. Furthermore, according to our theory,
if we replace the BN with the layer normalization (LN) (Ba,
Kiros, and Hinton 2016), then the learning process would no
longer suffer from the blocking problem, although it is hard
to say whether LN is an ideal substitute of BN. Neverthe-
less, an analytic understanding of the BN’s blocking prob-
lem may provide new distinctive guidance in future devel-
opment in deep learning theory.

Related Work
Some studies have discussed negative effects of normaliza-
tion methods on representation learning in some applica-
tions. In experiments, the BN usually hurts the image gen-
eration quality of GAN (Goodfellow et al. 2014) and clas-
sification accuracy (Xie et al. 2020; Galloway et al. 2019;
Wightman, Touvron, and Jegou 2021). The BN was not com-
patible with both the dropout (Li et al. 2019) and the weight
decay (Van Laarhoven 2017; Li, Chen, and Yang 2020). Ab-
lation experiments showed that the affine transformation in
the LN increased the risk of over-fitting (Xu et al. 2019).
Some studies have found the BN’s problem when samples
in a mini-batch were not independent in experiments (Ioffe
2017; Niu et al. 2023). To this end, our research precisely
explains the gradient components blocked by the BN opera-
tion. We believe that intuitive findings induced from the ana-
lytic explanation is of considerable values for future studies.

Revisiting the BN opertaion. According to (Ioffe and
Szegedy 2015), given n samples in a mini-batch, let X =

[x(1), x(2), . . . , x(n)] ∈ RD×n denote features of these samples
in an intermediate layer before a BN operation, where the i-
th column x(i) ∈ RD corresponds to the i-th sample. The BN
operation Z = [z(1), z(2), . . . , z(n)] = BN(X) ∈ RD×n contains
the following two phases.

Y = diag(σ ◦ σ + ε1D)−
1
2 (X − µ1⊤

n ) (standardization) (1)

Z = diag(γ)Y + β1⊤
n (affine transformation) (2)

where Y = [y(1), . . . , y(n)] ∈ RD×n; γ,β ∈ RD are used
to scale and shift features Y; µ = 1

n
X1n ∈ RD; σ =

[
√

Σ1,1, . . . ,
√

ΣD,D]⊤ ∈ RD represents a vector of the stan-
dard deviations corresponding to diagonal elements in the
covariance matrix Σ = 1

n
(X − µ1⊤

n )(X − µ1⊤
n )

⊤ ∈ RD×D;
1n ∈ Rn is an all-ones vector; ◦ denotes the element-wise
product; ε is a tiny positive constant to avoid dividing zero.
We ignore the ε term to simplify further proofs. diag(·) trans-
forms a vector to a diagonal matrix.

Blocking of Gradient Components
In this section, we aim to prove that any BN layer in a DNN
will block the back-propagation of the first and the second
derivatives of the loss function. Let the DNN be trained with
any arbirary loss function. The training loss on the i-th sam-
ple can be represented as a function of the standardized fea-
ture y(i). We use the Taylor series expansion at a fixed point

ỹ ∈ RD (which is an arbitrary vector close to y(i)) to decom-
pose the loss function w.r.t. y(i).

Loss(y(i); ỹ) = Loss(ỹ) + (y(i) − ỹ)⊤g

+
1

2!
(y(i) − ỹ)⊤H(y(i) − ỹ) + ∆(i),

(3)

where g ∈ RD and H ∈ RD×D denote the gradient and the
Hessian matrix of Loss(y(i)), respectively; ∆(i) is a residual
term that sums up all terms of higher orders.

In this paper, we consider the following two cases to dis-
cuss the BN’s effects over all samples in a mini-batch.

Case 1: All Samples in a Mini-Batch Share the
Same Analytic Formula of the Loss Function
We first make an attempt to analyze the BN’s trend of ig-
noring specific loss terms in a simple setting that all sam-
ples in a mini-batch share the same analytic formula of the
loss function, as Equation (3) shows. In fact, many applica-
tions belong to this case. For example, when training some
invertible generative models (Dinh, Krueger, and Bengio
2014; Dinh, Sohl-Dickstein, and Bengio 2017; Kingma and
Dhariwal 2018), all training samples share the same analytic
formula of the loss function, Loss(y(i)) = − log p(input(i)),
which measures the log-likelihood of sample input(i). Simi-
larly, when training the generator of a GAN, all samples in
a mini-batch share the same analytic loss function formula,
Loss(y(i)) = log(1 − D(G(input(i)))), where D(·) and G(·)
denote the discriminator and the generator, respectively.

More crucially, we will discuss how to generalize our
theorems derived here to more general cases in Subsection
“Case2: A More General Case.” In general cases, findings in
all theorems are still valid, although the problem of blocking
loss terms is alleviated.

Let us first introduce the decomposition of loss terms.
Theorem 1 (Proof in Appendix C.) If we ignore the tiny
constant ε (which avoids dividing zero) in Equation (1) by
setting ε = 0, then the overall loss of all samples in a mini-
batch Lossbatch =

∑n
i=1 Loss(y(i); ỹ) can be decomposed as

Lossbatch = C + Lossgrad(g)+LossHessian(H) +
∑

i
∆(i) (4)

LossHessian(H) = Lossdiag(Hdiag) + Lossoff(Hoff) (5)

Lossoff(Hoff) = Llinear
d + Lnon

d + Lothers (6)

Then, let us introduce the formulation and physical meaning
of each above compositional term. Please see Appendix C
for detailed discussions of the above terms.

(1) Lossgrad(g) and LossHessian(H) denote the first-order term
and the second-order term in the Taylor series expansion of
Lossbatch in Equation (3). Lossgrad(g) ≜

∑n
i=1(y

(i) − ỹ)⊤g and
LossHessian(H) ≜

∑n
i=1

1
2!
(y(i) − ỹ)⊤H(y(i) − ỹ).

(2) C ≜ nLoss(ỹ) represents the constant w.r.t. X in the
Taylor series expansion in Equation (3).

(3) The second-order term LossHessian(H) can be further de-
composed into two terms, Lossdiag(Hdiag) and Lossoff(Hoff).

(3.1) The term of Lossdiag(Hdiag) =
∑n

i=1
1
2!
(y(i) −

ỹ)⊤Hdiag(y(i) − ỹ) quantifies the effects made by diagonal el-
ements in the Hessian matrix, where Hdiag denotes the matrix
only containing diagonal elements in H.
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(3.2) The term of Lossoff(Hoff) =
∑n

i=1
1
2!
(y(i) −

ỹ)⊤Hoff(y(i) − ỹ) quantifies the effects made by off-diagonal
elements in the Hessian matrix, where Hoff = H − Hdiag

denotes the matrix exclusively containing off-diagonal el-
ements in H. Furthermore, Lossoff(Hoff) can be decomposed
into three terms, i.e., Llinear

d , Lnon
d and Lothers.

(3.2.1) The term of Llinear
d = Hoff

d,:Ylinearyd measures
the effects corresponding to feature components within
Y that are linearly correlated with the d-th row of Y,
i.e., yd = [yd,1, yd,2, . . . , yd,n]

⊤ ∈ Rn. Here Ylinear =
[o⊤

d y1, o⊤
d y2, · · · , o⊤

d yD]⊤o⊤
d is decomposed from Y. od =

yd/∥yd∥ denotes the unit vector in the direction of yd. Hoff
d,: ∈

RD denotes the d-th row of Hoff.
(3.2.2) The term of Lnon

d = Hoff
d,:(Ynon − ỹ1⊤

n )yd measures
non-correlated effects. Ynon = Y−Ylinear is disentangled from
Y, when we remove components linearly-correlated to yd,
i.e., Ylinear, from Y.

Results in Table 6 verify that the Llinear
d term has stronger

gradients w.r.t. yd, i.e., ∂Llinear
d /∂yd, than the Lnon

d term.
(3.2.3) The term of Lothers = Lossoff(Hoff) − Llinear

d − Lnon
d

corresponds to all other loss terms of Lossoff(Hoff), when we
remove all terms (Llinear

d and Lnon
d ) depending on yd.

Theorem 2 (Blocking of gradients proved in Appendix
D.1.)

∂Lossgrad(g)
∂X

= 0,
∂C

∂X
= 0,

∂Lossdiag(Hdiag)

∂X
= 0, ∀d, ∂Llinear

d

∂xd
= 0.

(7)

Theorem 2 shows that Lossgrad(g) and Lossdiag(Hdiag) have no
gradients on input features X. This can simply lead to a
corollary that all network weights W before the BN layer will
not be trained by terms of Lossgrad(g) and Lossdiag(Hdiag), as
follows. Please see Appendix D.3 for more discussions.

∂Lossgrad(g)
∂W

=
∂Lossdiag(Hdiag)

∂W
= 0 (8)

Besides, because of ∂Llinear
d

∂xd
= 0, the impacts of off-diagonal

elements in Ĥ, i.e., Lossoff(Hoff), on weights W before the BN
layer are reduced. In Appendix D.4, we have further proved
that only the batch centering operation in BN can already
block the propagation of gradient ∂Lossgrad(g)

∂X .

Corollary 1 (Proof in Appendix D.2.) Based on Theorem 2,
in the training phase of a neural network, we have

∂2Lossbatch

∂X∂g
= 0,

∂2Lossbatch

∂X∂Hdiag = 0, (9)

and ∀d, ∂2Lossbatch

∂xd∂Hoff
d,:

=
∂2Llinear

d

∂xd∂Hoff
d,:

+
∂2Lnon

d

∂xd∂Hoff
d,:

, where

∂2Llinear
d

∂xd∂Hoff
d,:

=
∂2

∂xd∂Hoff
d,:

(A[o⊤
d y1, o⊤

d y2, · · · , o⊤
d yD]⊤) = 0,

(10)
s.t. A = ∥yd∥ · Hoff

d,:. In contrast, in the testing phase,
∂2Lossbatch

∂X∂g ̸= 0, ∂2Lossbatch

∂X∂Hdiag ̸= 0, and ∂2Llinear
d

∂xd∂Hoff
d,:

̸= 0.

(Conclusion 1) Blocking of gradient components in Case
1. Given a DNN, ∂2Lossbatch

∂X∂g⊤ = 0, ∂2Lossbatch

∂X∂Hdiag = 0, and

∀d, ∂2Llinear
d

∂xd∂Hoff
d,:

= 0 in Corollary 1 show that the BN operation

will block the back-propagation of the following three types
of influence, i.e., (1) the influence of the first derivatives in
g, (2) the influence of the diagonal elements in the Hessian
matrix H, and (3) a considerable ratio of the influence of
off-diagonal elements in the Hessian matrix H.

(Conclusion 2) Reason for blocking. Corollary 1 tells us
that the BN’s blocking of the above influence only exists in
the training phase, but it does not exist in the testing phase.
In Appendix H, we have further proved that it is the deriva-
tives of µ and σ in the standardization phase that eliminate
the influence of Lossgrad(g),Lossdiag(Hdiag), and Llinear

d .
Furthermore, although γ in the affine transformation

phase can alleviate the blocking of Lossgrad(g) by encoding
the gradient g of the first-order term of the loss, Lossdiag(Hdiag)
and Llinear

d still cannot influence parameters in all layers be-
fore the BN operation. Beyond this, an analytic explanation
for detailed information-processing behaviors of a BN layer
may shed new lights into future theoretical research.

Case 2: A More General Case
Then, let us extend our theory to a more general case that
considers following two issues. First, different samples in
a mini-batch may have different analytic formulas of loss
functions. Second, the gradient g and the Hessian matrix H
are unstable, because the change of gating states over dif-
ferent samples in gating layers (such as the ReLU layer) is
discontinuous and unpredictable.

In this subsection, we show that conclusions in Case 1
can still be adapted to the general case, although the ratio of
blocked gradients to all gradients is reduced in the general
case. In certain tasks, the block of gradients from specific
loss terms may not lead to serious damages to DNNs’ per-
formance, but we believe that it is meaningful to provide
analytic insights into the BN’s distinctive behavior of infor-
mation processing.

In general cases, the overall loss of a mini-batch can still
be written in the form of the Taylor series expansion, just
like in Equation (3), when we compute the average gradient
ĝ = 1

n

∑n
i=1 g(i) and estimate an equivalent Hessian matrix

Ĥ = argminĤ
∑n

i=1∥g(i) − ĝ − Ĥ(y(i) − ỹ)∥223. Both ĝ and
Ĥ are computed for all samples in a mini-batch to approxi-
mately mimic the loss landscape over these samples. Later,
we will examine the quality of using ĝ and Ĥ to approximate
Loss(y(i); ỹ). Thus, the loss function for each i-th sample,
1 ≤ i ≤ n, can be written as

Loss(y(i); ỹ) = Loss(ỹ) + (y(i) − ỹ)⊤ĝ

+
1

2!
(y(i) − ỹ)⊤Ĥ(y(i) − ỹ) + ∆̂(i),

(11)

where ∆̂(i) denotes the distinctive term of the i-th sample,
which sums up all errors caused by ĝ and Ĥ, but ∆̂(i) is not
limited to terms of greater-than-two orders ∆(i). Thus, the

3Please see Appendix E.2 for the computational details of Ĥ.
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VGG-16 VGG-11 AlexNet

perror 0.248 ± 0.015 0.240 ± 0.014 0.226 ± 0.010

Table 1: The proportion of loss values that cannot be approx-
imated using ĝ and Ĥ.

∆grad1 ∆grad2 ∆grad3

w/ BN4 1.79e-7±2.1e-7 2.85e-7±3.9e-8 0.51±0.33
w/o BN6 1.04±0.51 1.07±0.57 1.05±0.44

Table 2: Verifying that the BN blocked the propagation of
the 1st and the 2nd derivatives in an MLP.

overall loss of all samples in a mini-batch can be re-written
in the same form of Equation (4), as follows.

Lossbatch = C + Lossgrad(ĝ) + LossHessian(Ĥ) +
∑

i
∆̂(i). (12)

In this way, both Case 1 and Case 2 can be represented using
the same Taylor series expansion form. Thus, Theorems 1
and 2, and Corollary 1 derived based on the Taylor series
expansion in Equation (4) are also valid for Case 2.

(Conclusion 3) Blocking of gradient components in Case
2. Lossgrad(ĝ) and Lossdiag(Ĥ

diag
) have no gradients on fea-

tures before the BN operation, and Lossoff(Ĥ
off
) does not have

strong effects on features before the BN operation. Please
see Appendix E.1 for discussions.

• Examining the quality of using ĝ and Ĥ to approxi-
mately compute Loss(y(i); ỹ). Equation (12) shows that losses
Loss(y(i); ỹ) of all samples in a mini-batch can be approxi-
mated using the same analytic formula based on ĝ and Ĥ. We
have conducted experiments to examine the quality of such
an approximation. Specifically, we used the metric perror =∑n

i=1|∆
(i)|/(

∑n
i=1(|Loss(ỹ)|+|Lossgrad(ĝ)|+|Lossdiag(Ĥ

diag
)|+

|Lossoff(Ĥ
off
)| + |∆(i)|)) to measure the proportion of loss

values that cannot be approximated using ĝ and Ĥ. To this
end, we conducted experiments on AlexNet (Krizhevsky,
Sutskever, and Hinton 2012), VGG-11/16 (Simonyan and
Zisserman 2015), where each network was added a BN layer
before the top FC layer. These DNNs were trained on the
CIFAR-10 dataset (Krizhevsky, Hinton et al. 2009) for im-
age classification. Note that we generally used cross entropy
loss for image classification task. Table 1 reports the propor-
tion perror averaged over all mini-batches. Results show that
perror < 0.25, which means that less than 1/4 loss values could
not be represented by ĝ and Ĥ.

• Limitation & extended questions. How about when the
feature y(i) is not so close to the fixed point ỹ? In other words,
do we need a very tiny residual term ∆(i) in Equation (3) or
∆̂(i) in Equation (12) in the Taylor series expansion? As a
common trick, we can set ỹ to the mean value Ei[y(i)] to
boost the fitness of the Taylor series expansion of losses on
most samples, thereby reducing the residual term. In particu-
lar, we have proved in Appendix F that the third and higher-
order derivatives in the residual term of the sigmoid function
have small strengths when the classification is confident.

More crucially, even though we cannot let the unexplain-
able residual term ∆(i) or ∆̂(i) be fully ignorable in some
tasks, an analytic explanation for the blocking of loss com-
ponents of Lossgrad(ĝ) and LossHessian(Ĥ) is still of consider-
able values for future studies. In fact, Table 4 shows that
the Lossgrad(ĝ) and Lossdiag(Ĥ

diag
) terms have made 37.8%–

79.5% influence w.r.t. the loss value in a general task of
image classification.

Note that though the BN operation blocks the propaga-
tion of many loss terms, the non-negligible residual loss
term ensures that the DNN can still learn from the data.
Nevertheless, experimental results in Figures 1 and 2 show
that given an negligible residual term, the blocking problem
may fully dominate the learning process, thereby damaging
feature representations of the DNN. Therefore, to avoid the
blocking problem, we recommend to ensure the diversity of
samples in a mini-batch. For example, in federated learning
(Konečnỳ, McMahan, and Ramage 2015), it is necessary to
avoid each node being assigned to learn from samples of a
single category.

Experiments
Experimental Verification of Theorem 2
• 1. Verifying the blocking of g and Hdiag. We did experi-
ments on a synthetic dataset and the CIFAR-10 dataset, re-
spectively, to verify that Lossgrad(g) and Lossdiag(Hdiag) had no
gradients on features before the BN.

Experiment 1-1 based on the synthesized loss functions.
In this experiment, we directly designed the loss function
as a polynomial with derivatives of different orders, in or-
der to evaluate the effects of the BN operation on deriva-
tives of different orders. To this end, we synthesized a group
of five loss functions with derivatives of different orders,
∀1 ≤ k ≤ 4, Lossk(y|λ) =

∑n
i=1

∑4
k′=k λk′(y(i))k

′
, by sam-

pling parameters λ = [λ1, . . . , λ4]
⊤ ∼ N(µ = 0,Σ = I4×4)

from a Gaussian distribution. Thus, we constructed a dataset
containing 1000 groups of loss functions by sampling λ for
1000 times. We used each group of four losses w.r.t. a spe-
cific λ to train four 5-layer MLPs. For each MLP, we put a
BN operation on its top. Each layer in the MLP contained
M =100 neurons, except for the last layer containing a sin-
gle neuron. Similarly, we also trained five MLPs without BN
layers as baseline models for comparison. The input of each
MLP was a noisy vector sampled from a Gaussian distribu-
tion N(µ = 0,Σ = IM×M ). Here, M =100.

We measured ∆gradq = Eλ

[
∥ ∂Lossq(y|λ)

∂x − ∂Lossq+1(y|λ)

∂x ∥/
∥ ∂Lossq(y|λ)

∂x ∥
]
, q = 1, 2, 3, to examine whether the q-th or-

der term of the loss could pass its influence through the
BN operation. Table 2 shows that for MLPs with BN layers,
∆grad1 ≈ 0, and ∆grad2 ≈ 0 (see footnote 4), which proved
that the zeroth-order, the first-order, and the second-order
terms5 of the loss could not pass their influence through the

4The small deviation was caused by the accumulation of tiny
systematic computational errors in a DNN, e.g., 0.1 + 0.2 =
0.30000000000000004 in Python caused by the 32-bit floating-
point operations.

5Here the Hessian matrix reduced to scalar second derivative.
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Layer in VGG-11 ∆gradfirst ∆gradsecond,diag ∆gradsecond,off

The 3rd w/ BN4 1.37e-8±2.72e-8 2.72e-8±5.41e-8 1019.49±116.45
top FC w/o BN6 3.58±0.36 2.22±0.26 100.70±11.78

conv5-2 w/ BN4 6.97e-16±1.18e-16 1.23e-9±2.47e-9 323.48±33.79
w/o BN6 1.40±0.14 1.64±0.19 34.41±3.88

conv5-1 w/ BN4 6.88e-16±1.71e-16 1.35e-9±2.93e-9 387.46±300.19
w/o BN6 1.33±0.14 1.81±0.20 39.25±4.26

Table 3: Verifying that all elements in g and diagonal elements in H could not pass their influence through the BN layer.

VGG-16 VGG-11 AlexNet

pblocked 0.795 ± 0.397 0.662 ± 0.303 0.378 ± 0.200

Table 4: Measuring the proportion of the blocked two loss
terms Lossgrad(ĝ) and Lossdiag(Ĥ

diag
).

BN operation. Besides, ∆grad3 = 0.51 ± 0.33 indicated in
the Taylor series expansion that the third-order term suc-
cessfully passed its influence through the BN operation. In
comparison, MLPs without BN layers had relatively large
∀q,∆gradq values6.

Experiment 1-2 based on the CIFAR-10 dataset for image
classification. We constructed three VGG-11 networks by
adding a BN layer (in Equations (1) and (2)) after the third
top FC, conv5-2, and conv5-1, respectively. Each network
was trained on the CIFAR-10 dataset with a classification
loss (Loss∗ =

∑n
i=1 Losscls(y(i))). Then, we tested the block-

ing of the gradient g and diagonal elements in the Hessian
matrix H of each network.

Specifically, in order to evaluate the exact effect of each
term in the Taylor series expansion of the loss, we manu-
ally added noisy first derivatives and noisy second deriva-
tives to construct three additional losses, including Loss2 =∑n

i=1(Losscls(y(i)) + ϵ⊤y(i)), Loss3 =
∑n

i=1(Losscls(y(i)) +

(y(i)− ỹ)⊤diag(ϵ)(y(i)− ỹ)), and Loss4 =
∑n

i=1(Losscls(y(i))+

(y(i) − ỹ)⊤Eoff(y(i) − ỹ)). We set ỹ = 1
n

∑n
i=1 y(i) in this ex-

periment. Each element in ϵ ∈ RD and Eoff ∈ RD×D was
sampled from a Gaussian distribution N(µ = 0, σ2 = 0.12).
Diagonal elements in Eoff were set to 0.

In this way, if ∂Loss∗

∂X = ∂Loss2
∂X = ∂Loss3

∂X , then
it proved that the first derivatives in g and diag-
onal elements in H could not pass their influence
through the BN operation. Therefore, we used metrics
∆gradfirst = ∥ ∂Loss∗

∂X − ∂Loss2
∂X ∥F /∥ ∂Loss∗

∂X ∥F , ∆gradsecond,diag =

∥ ∂Loss∗

∂X − ∂Loss3
∂X ∥F /∥ ∂Loss∗

∂X ∥F , and ∆gradsecond,off = ∥ ∂Loss∗

∂X −
∂Loss4
∂X ∥F /∥ ∂Loss∗

∂X ∥F to measure the influence of the first
derivatives in g, diagonal elements in H, and off-diagonal
elements in H on the gradient ∂Loss∗

∂X . Given a DNN with BN
layers, we trained another DNN of the same architecture but
without BN layers as the baseline for comparison.

According to Table 3, for DNNs with BN layers,

6The metric is computed using x in the same layer, but the BN
operation after x was removed.

∆gradfirst ≈ 0 and ∆gradsecond,diag ≈ 0 (see footnote 4) proved
that elements in g and diagonal elements in H could not pass
their influence through the BN operation. Besides, the large
value of ∆gradsecond,off indicated that off-diagonal elements in
H could pass their influence through the BN operation. In
comparison, baseline DNNs without BN layers had larger
∆gradfirst, ∆gradsecond,diag, and ∆gradsecond,off values. In addition,
we have reported results when each element in ϵ and Eoff was
sampled from Gaussian distributions with large µ and large
σ2 in Appendix I.5, which yielded similar conclusions.

• 2. Verifying that Llinear
d had no gradients on features

before the BN layer. To this end, we directly computed the
norm of the gradient ∥∂Llinear

d /∂xd∥, where Hoff
d,: was com-

puted by following Cohen et al. (2020). To comprehensively
test the BN on different layers, we revised the AlexNet by
adding five additional FC layers before the top FC layer, and
revised the LeNet (LeCun et al. 1989) by adding seven ad-
ditional FC layers before the top FC layer. Please see Ap-
pendix I.1 about the revised architectures. For each DNN,
we added a BN layer before the 1st, 2nd, and 3rd top FC
layers, respectively, to construct AlexNet-1/2/3 and LeNet-
1/2/3. Table 5 reports the statistics of ∥∂Llinear

d /∂xd∥ over dif-
ferent feature dimensions (d) and different mini-batches on
the MNIST dataset (LeCun et al. 1998). Results show that
∥∂Llinear

d /∂xd∥ ≈ 0 in the above six DNNs, which proved that
Llinear

d had no gradients on features before the BN layer. In
comparison, when we removed the BN layer from the DNN,
we found that the metric6 ∥∂Llinear

d /∂xd∥ became much larger.

• 3. Examining that interactions between linearly-
correlated feature components took a main part of the
loss Loff

d . In Theorem 1, Loff
d = Llinear

d +Lnon
d . Note that we have

proved that the Llinear
d term has no effects on xd, so we aimed

to further show that the Llinear
d term had considerable gradi-

ents w.r.t. yd. If so, it means that the BN blocked significant
influence of ∂Llinear

d /∂yd in back-propagation. To this end, we
computed ∥∂Llinear

d /∂yd∥
∥∂Loff

d
/∂yd∥

to measure the relative significance

of the compositional influence of ∂Llinear
d /∂yd to ∂Loff

d /∂yd.
Similarly, we computed ∥∂Lnon

d /∂yd∥
∥∂Loff

d
/∂yd∥

measured the relative

significance of ∂Lnon
d /∂yd to ∂Loff

d /∂yd. We conducted exper-
iments on AlexNet-1/2/3 and LeNet-1/2/3. Table 6 reports the
statistics of ∥∂Llinear

d /∂yd∥
∥∂Loff

d
/∂yd∥

and ∥∂Lnon
d /∂yd∥

∥∂Loff
d

/∂yd∥
over different fea-

ture dimensions and different mini-batches. ∂Llinear
d /∂yd had

considerable impacts on ∂Loff
d /∂yd, which demonstrated that

the BN blocked significant influence of Loff
d .
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AlexNet-1 AlexNet-2 AlexNet-3 LeNet-1 LeNet-2 LeNet-3

w/ BN4 7.1e-12±8.6e-12 2.9e-11±5.1e-11 3.9e-11±7.5e-11 1.0e-10±2.0e-9 5.2e-12±8.8e-12 1.5e-11±2.3e-11
w/o BN6 4.8e-3±4.6e-3 3.6e-3±3.4e-3 6.6e-5±4.8e-5 7.0e-3±5.5e-3 2.7e-3±1.4e-3 1.8e-4±1.7e-4

Table 5: Verifying that Llinear
d passed almost zero4 gradients ∥∂Llinear

d /∂xd∥ through the BN layer.

AlexNet-1 AlexNet-2 AlexNet-3 LeNet-1 LeNet-2 LeNet-3
∥∂Llinear

d /∂yd∥
∥∂Ld/∂yd∥

0.84±0.19 0.73±0.25 0.85±0.22 0.67±0.29 0.68±0.29 0.77±0.27
∥∂Lnon

d /∂yd∥
∥∂Ld/∂yd∥

0.47±0.22 0.56±0.29 0.40±0.28 0.63±0.27 0.61±0.29 0.51±0.27

Table 6: Verifying that ∂Llinear
d /∂yd had greater impacts on the overall gradient ∂Loff

d /∂yd than ∂Lnon
d /∂yd.

Evaluating the Explanation in General Cases
In this experiment, we examined whether the blocked loss
terms Lossgrad(ĝ) and Lossdiag(Ĥ

diag
) were non-ignorable w.r.t.

the entire loss in general cases, so as to evaluate the ef-
fectiveness of our theory. To this end, we measured the
proportion of Lossgrad(ĝ) and Lossdiag(Ĥ

diag
) in the overall

loss in the general case. We conducted experiments on
AlexNet, VGG-11/16, each network was added a BN layer
before the top FC layer. These DNNs were trained on
the CIFAR-10 dataset for image classification. We used
the metric pblocked = (

∑n
i=1|(y

(i) − ỹ)⊤ĝ| +
∑n

i=1
1
2!
|(y(i) −

ỹ)⊤Ĥ
diag

(y(i) − ỹ)|)/
∑n

i=1 Loss(y(i); ỹ) to measure the pro-
portion of the blocked above two loss terms. In Table 4,
pblocked values for the VGG-16, VGG-11, and AlexNet
were 79.5%, 66.2%, and 37.8%, respectively. It meant that
the blocked loss signals were as significant as 79.5% of
the loss value. This proved that the blocked loss terms
Lossgrad(ĝ) and Lossdiag(Ĥ

diag
) were still made non-ignorable

impacts on model training in general cases. In addition,
we also reported the proportion of compositional gradi-
ents ∂Lossgrad(ĝ)/∂y(i) and ∂Lossdiag(Ĥ

diag
)/∂y(i) over the en-

tire gradient ∂Loss(y(i))/∂y(i) in Appendix I.7. It showed
that gradients of the blocked loss terms Lossgrad(ĝ) and
Lossdiag(Ĥ

diag
) were non-ignorable w.r.t. gradients of the en-

tire loss in general cases.

Analyzing the Features Learned by Neural
Networks with BN Operations
In this subsection, we tried to use our theory to conceptually
explain the difference of performance between DNNs with
BN layers and DNNs without BN layers.

Experiment 1: We measured the BN’s effects on fea-
ture representations of the invertible generative model Real-
NVP (Dinh, Sohl-Dickstein, and Bengio 2017). The vanilla
RealNVP had BN operations, thus being termed RealNVP-
BN. Besides, we constructed another RealNVP by replacing
all BN layers with LN layers, namely RealNVP-LN, for com-
parison7. All RealNVPs were trained on the MNIST dataset.

We tested whether a RealNVP model could successfully
distinguish real images and fake images. This was the key

7Appendix I.3 shows how to invert features in RealNVP-LN.

capacity for a generative model. Specifically, a well-trained
RealNVP was supposed to predict high log-likelihood on
real images I real

1 and I real
2 , and yield low log-likelihood on

fake images. We generated fake images by linear interpola-
tion, I inter

α = αI real
1 + (1 − α)I real

2 , α ∈ (0, 1). To sharpen the
difference caused by the BN operation, we learned different
groups of RealNVP-BN/LN, each being trained to generate
a specific pair of categories, as Figure 1 shows. Then, for
each RealNVP, we computed the average log-likelihood of
interpolated images, i.e., 1

M
EIreal

1 ,Ireal
2
[log p(I inter

α )], where M

denotes the number of pixels for normalization. We com-
puted different log-likelihood values by applying different
interpolation rates α. Figure 1 shows that RealNVP-LN usu-
ally assigned much higher log-likelihood with real images
(i.e., images at the points of α = 0 and α = 1) than inter-
polated images. In comparison, RealNVP-BN could not sig-
nificantly distinguish real images and interpolated images.
It may be because the average derivatives shared by all sam-
ples in a mini-batch usually reflected the most common sig-
nal in real images. Thus, the blocking of the first derivatives
prevented the RealNVP from modeling common features of
real digits. Besides, we have reported results on more Real-
NVP models with various revised architectures in Appendix
I.3, and results of using more than two real images to gener-
ate a fake image, which also yielded similar conclusions.

Experiment 2: We measured the BN’s effects on feature
representations for classification by comparing four groups
of DNNs trained on the CIFAR-10 dataset. The first group of
DNNs did not contain any normalization operations, namely
DNN-ori. The second group of DNNs were obtained by
adding BN operations to the DNN-ori, termed DNN-BN.
The third group of DNNs were obtained by replacing all
BN operations in the DNN-BN with LN operations, namely
DNN-LN. These three groups of DNNs were trained when
each mini-batch only contained samples in a specific cate-
gory. The fourth group of DNNs had the same architecture
as the DNN-ori, but they were trained when all samples in
a mini-batch had different labels, termed DNN-ori-base. We
selected VGG-16, ResNet-34 (He et al. 2016), DenseNet-
169 (Huang et al. 2017) for classification. For VGG-16, we
constructed and learned all four groups of DNNs. Specifi-
cally, we added one single BN (or LN) layer before the sec-
ond top FC layer of the VGG network. For ResNet-34 and
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Figure 1: Log-likelihood of real images (at α = 0 and α = 1) and interpolated images generated by the RealNVP-BN and the
RealNVP-LN. The shaded area represents the standard deviation.
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Figure 2: Comparing features of DNNs with and without
BN layers. Points of different colors indicate samples of dif-
ferent categories. The DNN-BN usually learned much less
clustered features than the DNN-LN, when these two DNNs
were learned with the same settings.

DenseNet-169 that already contained BN operations, we di-
rectly selected them as DNN-BN networks, and there were
no DNN-ori networks for such DNNs. In addition, we also
learned two baselines, namely DNN-BN-base and DNN-LN-
base, which were trained when all samples in a mini-batch
had different labels.

In Figure 2, we used t-SNE (van der Maaten and Hin-
ton 2008) to visualize the input feature of the top FC layer
of each DNN, in order to compare the BN’s effects on
the feature representation. When losses of all samples in a
mini-batch shared the same analytic formula, features of the
DNN-BN on different samples were far less clustered than
those of the DNN-ori and the DNN-LN. This indicates that
the BN prevented the DNN from learning discriminative fea-
tures of samples in each specific category. Results on more
DNNs in Appendix I.4 also yielded similar conclusions.

In comparison, when losses of all samples in a mini-batch
had different analytic formulas, the blocking problem did
not significantly damage the feature representation of the
DNN. It was because the remained terms, including both
the residual term and effects of non-diagonal elements in H,
were already enough for classification.

The reason for the damage of feature representation might
be that the first derivatives on the average sample ỹ in a spe-
cific category usually contained information of common dis-
criminative features shared by different samples in this cat-
egory. Specifically, in Appendix I.8, we visualized features
corresponding to the average first derivative g over differ-

ent samples, so as to empirically justify the discrimination
power of such features.

Experiment 3: We measured the BN’s effects on the typi-
cal task of inverting feature gradients to the input in the sce-
nario of privacy protection (Zhu, Liu, and Han 2019). We
trained a decoder, dec-BN, to invert gradients received from
the BN layer to reconstruct the input sample. We trained
another decoder, dec-base, to invert gradients when we re-
moved the BN layer. Experimental results in Appendix I.6
show that it took much more time to train the dec-BN than
the dec-base to hack the private input. It was because the first
derivatives g removed by the BN usually contained informa-
tion of common features shared by most samples. Thus, re-
moving g boosted the difficulty of training the dec-BN. On
the other hand, the final fitting error of the dec-BN was lower
than that of the dec-base. It was because the BN avoided g
dominating the gradient signal, thereby letting the dec-BN
pay more attention to more detailed difference between sam-
ples in a mini-batch. Please see Appendix I.6 for details.

Conclusions and Discussion
In this paper, we have discovered and theoretically proven
the intrinsic blocking problem with the BN. Such a prob-
lem may bring in an uncommon yet non-ignorable risk in
the learning of DNNs. Experiments have demonstrated that
the BN’s blocking prevents the DNN from learning discrim-
inative features in specific applications.

Moreover, we have also proven that it is the standardiza-
tion phase of the BN operation causes the above effects.
However, it is difficult to obtain a simple conclusion that
the standardization phase is harmful. In fact, Liu et al. (Liu
et al. 2021) showed that the standardization phase in the
BN could effectively alleviate the “self-enhancement” phe-
nomenon, and avoided hurting the diversity of features in
the DNN. Besides, Xu et al. (Xu et al. 2019) proved that the
standardization phase in the LN (different from that in the
BN) re-centered gradients of the loss w.r.t. features, and re-
duced the variance of these gradients. Xu et al. also found
that the standardization phase improved the performance of
DNNs in experiment. Nevertheless, we have proved that the
standardization phase causes the blocking of the first and
second derivatives of the loss function in specific applica-
tions. To this end, we use the LN operation to replace the
BN operation in such applications, which avoids the block-
ing problem. We further introduces some limitations of ap-
plying our findings to real applications in Appendix A.
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